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In this study, some well-known variance component estimation methods, called conventional, Helmert, 
MINQUE, AUE, and Förstner, developed to determine the stochastic model, for the adjustment of 
geodetic networks, have been compared. In doing so, concrete deciding criteria, using statistical tests, 
have been defined and the determination of superior model has been studied. For the validation of the 
models, numerical experiments using data, from a part of the Istanbul Metropolitan Triangulation 
Network (Asian side), have been performed. 
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INTRODUCTION 
 
To compare the stochastic models used in the 
adjustment of horizontal control networks, which require 
the highest accuracy, firstly, concrete comparing criteria 
must be defined by using statistical tests. 

If the hypothesis given subsequently is valid, reliable 
results can be received by using the comparison criteria 
which will be explained later. 

 
“All gross and systematic errors have been eliminated 
before adjustment”. “There is no functional model error”. 
 
 
STOCHASTIC MODELS USED IN HORIZONTAL 
CONTROL NETWORKS 
 
Some well-known stochastic models are used in this 
study.  
 
Conventional stochastic model (Model 1) 
 
The standard deviation of a measured direction, 
evaluated from a group, can be obtained either from the 
Ferrero Equation 
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Where  

0s : a priori standard deviation  of a measured direction 
w: misclosure of the ith triangel 
n: number of triangles in network  
or from station adjustment 
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Where:  

ds
: standard deviation of  a direction in a series 

observation  
v: residual errors of direction observations 
n: number of series observation of directions  
s: number of directions in a station  
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Where: 

0s
: a priori  standard  deviation  of  a  direction in  mean 
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series observation. 

All corrections such as elipsoidal and projectional 
corrections etc. were made for lengths in Đstanbul 
network. So, corrected lenghts were used in this article. 
The centring errors are irrelevant for the length of lines in 
the Istanbul network. 

The a priori variances of the distance measurements 
can be obtained using either Equation (4), given by the 
instrument manufacturer. 
 

Sb+a=s s ×±               (4) 

 

Where: 
S: measured distance 
or Equations (5) and (6) 
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Where: 
g: double-difference measurement for the distance 

0s :  standard deviation for a distance measurement 

ss :  standard deviation for double measurement. 

 

After the computation of the variances of distances and 
directions, assuming that the a priori variance 
determined for a group of directions, is the a priori 

variance (
2

0s ) for a unit weight measurement of the 

weight of the other direction groups and the weights of  
distances in the network, can be obtained from the 
Equations given. 

Weights of the direction groups with unit weight       

1=P
i

 weights of the other direction groups    

 

2

j

2

0

j
s

s
=P           (7) 

Weights of the distances      
)(

2

2

2

s

2

0

s
mm

gonm

s

s
=P

 

 
 

Estimation of variance components using Helmert 
method (Model 2) 
 

The variance components are estimated iteratively with 
the Helmert method. The observations are grouped to 
determine the variance components in this method. The 
Helmert Equation is given subsequently (Garafarend  
and 

 
 
 
 
Schaffrin,1979; Sahin et al., 1992). 
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A: design matrix of full column rank relating the 
observations to the unknown parameters.                                           
P: the assigned weight matrix 
 N: normal matrices 
 c: function of P 

iS : estimated values of variance factors. 

 

The Helmert Equation (8) is solved and the variance (
2

ks ) 

of each group is obtained. Then the weights ( kP ) of the 

observation groups are computed using the following 
Equation. 
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If  
2

ks  is not equal to 1 for all k=1, 2,..., m, iteration is 

continued. When 
2

ks  = 1 for all observation groups, the 

iteration is finished (Sahin et al., 1992; Yavuz, 2000).  
 
 
Estimation of variance components using MINQUE 
(Model 3) 

 
This method is described in  Equations  16  and  19.  The 



 
 
 
 
observations are to be grouped to determine the 
variance components. The MINQUE Equation for the 
variance components is given subsequently (Chen et al., 
1990; Rao, 1971). 
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Where: 
l : the vector of observations 
 I : identity matrix 

m21
T,.....,T,T : corresponding matrices for variance-

covariance components 
Tr : Trace 
 
After some steps, The MINQUE Equation (16) is solved 
and the variance of each group is obtained. Then the 
weights of the observation groups are computed using 
the following equation. 
 

σ

P
P i

1+i =                                                                  (20) 

 

If σ is not equal to 1 for all i=1, 2,..., m the iteration is 

continued. When 1σ =  for all observation groups, the 

iteration is completed (Sahin et al., 1992; Yavuz, 2000).  
 
 

AUE method (Almost unbiased estimation) (Model 4) 
 

This method is described by Horn et.al. (1975) and Lucas 
(1985). 

The AUE Equation used to determine the variance 
components is given subsequently. 
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Where: 
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l: the vector of observations 
A: design matrix of full column rank relating the 
observations to the unknown parameters 
P: the assigned weight matrix 
N: normal matrices 
 

In this method, the variance components are estimated 
by grouping the observations. After some steps, the AUE 
Equation (2, 12) is solved and the variance of each group 
is obtained. The a priori weights can be selected as 

P P ....... P 11

(0)

2

(0)

i

(0)
= = = =  for all groups (Sahin et al., 

1992; Yavuz, 2000). After each iteration, the weights of 
the observation groups are computed as follows: 
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Where: 

iP : the weight in ith iteration 

If σ  is not equal to 1 for all i=1, 2,..., m the iteration is 

continued. When σ=1 for all observation groups, the 

iteration stops (Sahin et al., 1992; Yavuz, 2000). 
 
 
Förstner method (Model 5) 
 
The equation given by Persson (1981) for the estimation 
of variance components is given subsequently. 
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Where: 
i: number of observation group 
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Where: 

i
k : number of observations in ith group 
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i
N : normal matrices in ith group 

i
v : least squares residuals in ith group 

x : vector containing the unknown parameters 

iP : the weight matrix in ith group 

 

The observations are to be grouped to determine the 
variance components. After some steps the Förstner 
Equation (25) is solved and the variance of each group is 
obtained. The initial weights can be selected as 

P P ....... P 11

(0)

2

(0)

i

(0)
= = = =  for all groups. After each 

iteration, the weights of the groups are computed as in 

Equation (24). When 
2

i
σ = 1 for all groups, the iteration is 

stopped. 
 
 

CRITERIA FOR EXAMINING THE STOCHASTIC 
MODELS 
 

Resulting time  
 

The observations vector and the functional model are 
kept fixed in the adjustment computations for the 
comparison of the stochastic models. Naturally, the 
stochastic models, that give meaningful and true results 
in an acceptable time, are superior to the others, which 
do not give meaningful and true results in an acceptable 
time. 
 
 

Global test and gross error localization and 
elimination 
 
To test the compatibility of the estimated a posterior 

variance factor $σ
0

2
 with the selected a priori variance 

factor σ
0

2
, the global test is applied first. In this test, σ

0

2
 

is compared with $σ
0

2
. If the global test fails and some 

residuals show excessive magnitude, a gross error 
localisation and elimination technique (Baarda’s data 
snooping or Pope tau-test) is employed. Considering the 
elimination of a minimum number of observations with 
gross error during the adjustment, the stochastic model 
which proves the null hypothesis is accepted to be 
superior to those that reject the null hypothesis. 
 
 

Homogeneity test 
 

The homogeneity of a network depends on the stochastic 
model under the condition that the other parameters of 
the adjustment are fixed. Because of error ellipses are 
used to get two dimensional mean square  errors  for  the  

 
 
 
 
adjusted network points, the simple arithmetical mean 
and the standard deviation of the sum of the major (a) 
and the minor (b) semi-axes of the computed error 
ellipses, related to the network points after the 
adjustment, have been taken as a criterion to determine 
the superior model from the point of homogeneity in this 
study,. The homogeneity condition for this network is as 
follows: 
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Equation (29) can be used for the comparison of the 
adjustment results, obtained by using the stochastic 
models, from the point of homogeneity. The sums 
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for each stochastic model 

are accepted as a measurement set. The mean values 
and the standard deviations of these mean values are: 
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If the homogeneity condition Equation (29) is exactly 
valid 
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then the standard deviations 
(0)
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Equation (30) are homogeneity criteria for the stochastic 
models. In the homogeneity test, standard deviations 
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σ  related to each stochastic models are compared in 

pairs.  
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c  belonging to the j-th, and k-th stochastic 

models and the number of stochastic model is m, the null 
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then the null hypothesis is true. In this case, we cannot 
decide which one of two models at hand are superior. 
If 
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it is accepted that the stochastic model having the value 

of 
k
σ  is superior to the model having the value of 

j
σ . 

If null hypothesis is true, we cannot decide the model 
superiority. In this case, mean accuracy test is applied 
and the order of superiority of the stochastic models is 
made according to result of this test.  
Null hypothesis for mean accuracy test, 
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The test value is compared with the value of 
fα1 ,

F
−

. 

Where: f=2(u-1) 
 
If 
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Null hypothesis is true. In this case, it is decided that 
there is no superiority between two stochastic models 
taken in hand. 
If 
 

t F
j , k f

>
−1 α ,

                                                             (38) 

 
it is accepted that the stochastic model having the value 

c
o , k

 is superior than the others (Equation 36). 

 
 

Isotropy test 
 
Isotropy is a characteristic concerning with the accuracy  
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criteria, which is related to the positions of the points, 
being independence from the direction in horizontal 
control networks. Error ellipses take the form of circle in 
full isotrop nets. Mathematical form of this speciality is as 
follows: 
 

a = b
i i

 or 

a - b 0 i 12 u
i i

=    ,   = , ,....,                             (39) 

 

Equation (39) can be used to compare the results of the 
adjustments, obtained from the stochastic models, from 
the point of isotropy. To carry out this, following equation 
belonging to each stochastic models is thought as a 
measurement set. 
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Then, the mean values and the standard deviations of 
these measurement sets are computed as follows: 
 

e

e
i = 1

u

u

i

0
=

∑

                                           (41) 

 

σ =

(e - e )
i = 1

u

u (u - 1 )

0 i

2∑
                              (42) 

 

These values are accepted as isotropy criteria for the 
comparison of stochastic models. Comparison is made 
similarly as expressed in section 3.3 using the Equations 
from (28) to (34) or Equation (38) if needed. But in the 

equations mentioned previously, instead σ  σ
(0)

and   , 

c   e
0 0

and  must be used. 

 
 

EXPERIMENTS 
 
The part of Istanbul Metropolitan Triangulation Network, 
surveyed in 1987, has been selected as application 
network. 448 direction and 208 distance observations 
were made in the net. Observations are separated into 
two groups like directions and distances for Models 2, 3, 
4 and 5.  
 
 

Comparison of the models according to criteria 1 
 

Needed time to determinate the weights are taken as 
criteria 1. It continued < 1 min for Model 1. For the other 
models, needed time for an iteration is as follows (Table 
1): 
 

The final adjustment  computation  step  is  finished  in  4
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Model 1. 
 

Model 2 Model 3 Model 4 Model 5 

sm
1 22  

sm
1532  

s20m16  
s20m6  

 
 
 

Table 1.  Total iteration times to calculate the weights of the models (σ
2
 = 1). 

 

Model no. Total iteration number Total time 
Calculated weights 

First group Second group 

Model 2 7 sm
9

h
0 34  0.2575835929 0.1689553333 

Model 3 7 smh
3 4545  0.2575839782 0.1689548039 

Model 4 10 smh
2 2043  0.2575828403 0.1689563675 

Model 5 11 smh
1 4009  0.2575834582 0.1689555168 

 
 
 

Model 2. 
 

Model 1 Model 2 Model 5 Model 4 Model 3 

~
m5  sm

13
h

0 34  
smh

1 4013  
smh

2 2047  
smh

3 4549  
 
 
 

min for both models. As a result, considering the total 
computation times, the superiority arrangement of the 
models according to criteria 1 can be given as Model 2. 

 
 
Comparison of the models according to criteria 2  

 
Global test on the posterior variance factor is applied to 
the adjustment results, and the following results are 

obtained (from F distribution table 1.172F ,0.95431, =
∞

): 

 

For Model 1, 
 

2.646

1.136

1.848
T

2

2

== > 1.172 null hypothesis is rejected. 

 

For Models 2, 3, 4 and 5, 
 

1.175

1

1.084
T

2

2

== > 1.172 null hypothesis is rejected. 

 

After the elimination of four observations with gross error 
from the observations set, the adjustment is remade 
using all of the models and the global test on the 
posterior variance factor is reapplied to the adjustment 
results: 
 
For Model 1, 

T
1.568

1.136

2.460

2

2
= = > 1.173 null hypothesis is rejected 

 

For Model 2, 3, 4 and 5, 
 

T
1

0 .9 4 1

1 . 1 2 9

2

2
= =

< 1.173 null hypothesis is true.  

 

The results mentioned previously prove that a lot of 
measurements must be eliminated from the observations 
heap for Model 1. But, because of the elimination of 28 
observations with gross error (Table 2) might weaken the 
net geometry, this is not done. As a result, the superiority 
arrangement of the models according to Criteria 2 can be 
given as:  
 

Models 2, 3, 4 and 5 
Model 1 
 
 

Comparison of the models according to criteria 3 
 

Superiority arrangement of the models according to 
Criteria 3 can be given as: 
 

Model 2, 3, 4 and 5 
Model 1 
 
 

Comparison of the models according to criteria 4 
 

Isotropy  test  results  have  been given in Table 3 and 4.  
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Table 2. Gross error detection test results. 
 

 Gross error detection test 

 Direction observations with 

gross error 

Distance observations with 

gross error 

Model 1 

Baarda-Data snooping 
22 directions 6 distances 

   

Model 2, 3, 4 and 5 34138-34105 

34069-34070 Pope Tau      34138-34098 

Baarda-Data snooping 34098-34138 

 
 
 

Table 3. Homogeneity and mean accuracy test results; F 1.465675,75,0.95 = ,  F 1.6551150,0.95 = . 

 

Model no. 
1 

0939.0
)0(

=σ  

2, 3, 4, 5 

0689.0
)0(

=σ  

Superior model according 

to homogeneity 

Mean accuracy test 

value 

Superior model according 

to mean accuracy 

1  T=1.8573 2, 3, 4, 5   

 
 
 

Table 4. Homogeneity and mean accuracy test results; 1.4656
75,75,0.95

F = , 1.6551
150,0.95

F = . 

 

Model no. 

1 

0184.0=σ
 

2, 3, 4, 5 

0156.0=σ  

Superior model 

according to isotropy 

Mean accuracy 

test value 

Superior model according 

to mean accuracy 

1  T=1.3912 equivalent t=1.5298 equivalent 

 
 
 

Table 5. The general superiority arrangement of the models. 
 

Model no. Criteria 1 Criteria 2 Criteria 3 Criteria 4 Total General arrangement 

1 1 5 5 5 16 5 

2 2 1 1 1 5 1 

3 5 1 1 1 8 4 

4 4 1 1 1 7 3 

5 3 1 1 1 6 2 

 
 
 

As a result, the superiority arrangement of the models 
can be given as: 

 
Models 2, 3, 4 and 5 
Model 1 
 
The evaluation of the results related to the adjustment of 
Asiatic Site net considering the whole criterion. 

The general superiority arrangement of the models, 
according to the whole criterion in the adjustment of 
Asiatic Site net, are summarised. 

According to Table 5, the models except Model 1 are 
equivalents according to three criteria. Only calculation 
times are different. 
 
 

GENERAL REMARKS AND CONCLUSION 
 
The stochastic models determined by the methods 
Helmert, Minque, AUE, Förstner, proved the superiorities 
against the conventional model by the aid of theoretical 
researches  and  practical applications  are  done  in  this 
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study, is to be used especially in the adjustment of 
geodetic nets, which require higher accuracy and 
precision, in private and public sector applications. Since 
the Helmert model has taken the first plase in the general 
superiority arrangement of the models, we propose the 
Helmert stochastic model for using in horizontal control 
networks. These aforementioned results determined, are 
transferable to other networks. We did not find any 
researches related to similar comparisons of the 
stochastic models made by the other researchers. 
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