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We consider periodic solution for nonlinear free vibration of conservative, single degree of freedom 
systems. A new analytical technique called Energy Balance Method (EBM) is applied to calculate 
approximations in order to achieve the nonlinear frequency of the system. Comparing with numerical 
solution using Runge-Kutta method, just one iteration leads us to high accuracy of solutions which are 
valid for a wide range of vibration amplitudes as indicated in this study. The EBM is a novel method 
which alleviates drawbacks of the traditional numerical techniques. 
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INTRODUCTION 
 
Most of the engineering problems especially vibrating 
systems, are often described by their governing 
equations in the form of differential equations, either 
linear or nonlinear. Many researchers have worked on 
linear and nonlinear systems having single or multi 
degrees of freedom, but hardly any of those problems 
have analytical solution. Surveys of the literature with 
numerous references have been given by many authors 
utilizing various analytical methods for solving nonlinear 
oscillation systems. Some of these well-known analytical 
methods such as perturbation techniques (He, 1999) 
(traditional perturbation methods) contain many 
shortcomings. They are not useful for strongly nonlinear 
equations, so for overcoming the shortcomings, many 
new techniques have been appeared in open literature, 
for instance: Homotopy perturbation (Bayat et al., 2010; 
Bayat et al., 2011a), parameter–expansion (Kimiaeifar et 
al., 2010), parameterized perturbation (He,1999), energy 
balance (Bayat et al., 2011b,c; Bayat and Pakar, 2011a; 
He, 2002), variational approach (Bayat et al., 2011d; 
Pakar et al., 2011b; He, 2007) and other analytical and 
numerical methods (Bayat et  al.,  2011e, f, g;  Bayat  and  
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Abdollahzadeh, 2011i, j; Bayat and Pakar, 2011k; Ghasemi 
et al., 2011; Shahidi et al., 2011; Soleimani et al., 2011; 
Ehidiamhen, 2009; Yang, 2010). 
  Among this method, EBM has been considered to solve 
the nonlinear systems in this paper. In this paper, we use 
EBM for pendulum attached in rolling wheels that are 
restrained by a spring. This method can be seen as a 
Ritz-like method and leads to a very high convergence of 
the solution and can be easily extended to other 
nonlinear oscillations. In short, this method yields 
extended scope of applicability, simplicity, flexibility in 
application and avoidance of complicated numerical and 
analytical integration as compared to others among the 
previous approaches such as the perturbation methods 
and so could prove widely applicable in engineering and 
science. To illustrate the accuracy and application of this 
method some comparisons are presented. The EBM 
seems very easy to study the behavior of dynamical 
systems and also calculate the natural frequency. 
 
 
A SINGLE-DEGREE-OF-FREEDOM CONSERVATIVE 
SYSTEM 
 

An example of a single-degree-of-freedom conservative 
system has been considered that is described by an 
equation as follows. A rigid rod  is  rigidly attached  to  the  
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Figure 1. Pendulum attached to rolling wheels that are 
restrained by a spring (Nayfeh, 1979). 

 
 
 

axle as shown in Figure 1. The wheels roll without slip as 
the pendulum swings back and forth. The wheel is 
restrained by a spring which is fixed to a wall on the other 
side .Only the ball on the end of the pendulum has 
appreciable mass and it may be considered a particle. 
The governing equation of the motion is: 
 

 2 2 2 22 cos( ) sin( ) sin( ) 0tt tm l r rl mrl mgl kr                                                     

                                                                                      (1) 
 
With initial conditions 

 
(0) , (0) 0.tA                                                       (2) 

 
 
BASIC IDEA OF EBM 
 
In the present paper, we consider a general nonlinear 
oscillator in the Form (He, 2002): 
 

 ( ( )) 0u f u t                                                                 (3) 

 

In which u  and t are generalized dimensionless dis-

placement and time variables, respectively. Its variational 
principle can be easily obtained: 
 

2

0

1
( ) ( ( ))

2

t

J u u F u dt                                                 (4) 

 

Where  
2

T



  is period of the nonlinear oscillator,  

 

( ) ( ) .F u f u du   

 
 
 
 
Its Hamiltonian, therefore, can be written in these forms: 
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( ) ( )

2
H u F u F A                                                     (5) 

 
Or 
 

21
( ) ( ) ( ) 0

2
R t u F u F A                                            (6) 

 
Oscillatory systems contain two important physical 
parameters, that is, the frequency   and the amplitude 

of oscillation. A . So let us consider such initial 
conditions: 
 

(0) , (0) 0u A u                                                         (7) 

 
We use the following trial function to determine the 
angular frequency   

 

( ) cosu t A t                                                               (8) 

 
Substituting (8) into u  term of Equation (6), yield: 

 

   2 2 21
( ) sin cos 0

2
R t A t F A t F A                                                                        

                                                                                       (9) 
 

If, by chance, the exact solution had been chosen as the 

trial function, then it would be possible to make R zero 

for all values of t by appropriate choice of . Since 

Equation (8) is only an approximation to the exact 

solution, R  cannot be made zero everywhere. 

Collocation at 
4

t


  gives: 
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Its period can be written in the form: 
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RUNGE-KUTTA METHOD 

 
For the numerical approach to verify the analytic solution, 
the fourth Runge-Kutta method has been used. This 
iterative algorithm is written in the form of the following 
formulae for the second-order differential equation: 
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Where, t  is the increment of the time and 1h , 2h , 3h  

and 4h  are determined from the following formulae: 
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                                                                                     (13) 
 
The numerical solution starts from the boundary at the 
initial time, where the first value of the displacement 
function and its first-order derivative are determined from 

initial condition. Then, with a small time increment t , the 
displacement function and its first-order derivative at the 
new position can be obtained using Equation (12). This 
process continues to the end of the time limit. 
 
 
APPLICATIONS 
 
Its variational formulation can be readily obtained from 
Equation (1) and is as follows: 
 

2 2 2 2 2 2 2

0

1 1 1
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                                                                                     (14) 
 
Its Hamiltonian, therefore, can be written in these forms: 
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And 
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We use the trial function to determine the angular 
frequency , that is,  

 

( ) cost A t                                                               (18) 

 
If we substitute (18) into (17), it will results to the 
following residual equation: 
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If we collocate at 
4

t


  we obtain: 
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This leads to the following result: 
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According to Equations (21) and (18), we can obtain the 
following approximate solution: 
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RESULTS AND DISCUSSION 

 
To show the efficiency and the accuracy of the EBM, the 
procedures explained in previous sections are applied to 
obtain natural frequency and corresponding displacement 
of a conservative single degree of freedom system. 
Comparisons of results for different parameters via 
numerical and EBM is presented in Figures 2 to 5.From 
Figures  2  and  3,  it  is  obvious  that  the  motion  of  the
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Figure 2. Comparison of analytical solution of  based on time with the numerical solution for 

5, 1, 0.2, 9.81, 5, 2m l r g k A       . 
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Figure 3. Comparison of analytical solution of   based on time with the numerical solution for 

10, 0.6, 0.3, 9.81, 10, 8m l r g k A      . 
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Figure 4. Comparison of analytical solution of 
t based on time with the numerical solution for 

5, 1, 0.2, 9.81, 5, 2m l r g k A      . 
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Figure 5. Comparison of analytical solution of 
t based on time with numerical solution for 

10, 0.6, 0.3, 9.81, 10, 8m l r g k A      . 
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Figure 6. The phase plane,
 

5, 1, 9.81, 10, 2m r g k A     . 
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Figure 7. Variation of frequency respect to various parameters of amplitude (A) for 10, 0.5, 1, 9.81, 10m l r g k     . 

 
 
 
system is periodic. Figures 4 and 5 represents 

comparison of analytical solution of 
t  based on time with 

the numerical solution for different parameters of the 
system. As shown in Figures 2 to 5, it is apparent that the 
EBM has an excellent agreement with the numerical 

solution using Rung-Kutta and these expressions are 
valid for a wide range. Figure 6 shows the phase plan of 
the problem and Figure 7 to 9 represent the  variation of 
frequency respect to various parameters of amplitude (A), 
(r)  and  (l)  and  Figure  10  is  the  sensitivity analysis  of  
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Figure 8. Variation of frequency respect to various parameters of (r) for 5, 9.81, 10, 10m g k A    . 
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Figure 9. Variation of frequency respect to various parameters of (l) for 
 5, 9.81, 10, 10m g k A    5, 9.81, 10, 10m g k A    5, 9.81, 10, 10m g k A   

. 

 
 
 
frequency. To further illustrate and verify the accuracy for 
this approximate analytical approach, the results obtained 

with the EBM and the Runge-Kutta are tabulated in Table 
1 and the maximum relative error is less than 2.9376%.



920          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 10. Sensitivity analysis of frequency for 
 5, 5, 9.81, 10, 2m r g k A    
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 5, 5, 9.81, 10, 2m r g k A    
. 

 
 
 

Table 1. Comparison of frequency corresponding to various parameters of system. 
 

A m l r g k 
EBM

  NM
  Error (%) 

0.1 5 2 0.5 9.81 2 2.9554 2.8685 2.9376 

0.5 5 2 0.5 9.81 2 2.8376 2.7566 2.8542 

2 5 1 0.2 9.81 5 2.4045 2.3406 2.6587 

3 8 0.5 0.3 9.81 10 1.5081 1.4867 1.4222 

8 8 0.5 0.3 9.81 10 2.0451 2.0059 1.9172 

10 10 3 2 9.81 20 1.4712 1.4518 1.3190 

15 10 3 2 9.81 20 0.6835 0.6782 0.7790 

20 10 3 2 9.81 20 0.7767 0.7698 0.8870 
 
 
 

Conclusion 
 

In this study we have considered the nonlinear vibration 
of a single degree of freedom system. It has been proved 
that EBM is clearly effective, convenient and does not 
require any linearization or small perturbation and 
adequately accurate to both linear and nonlinear 
problems in physics and engineering. These cases study 
demonstrates that the results of EBM are exactly equal 
and in excellent agreement with numerical solution 
obtained by the Runge-Kutta method. EBM is a novel 
method for the analysis of nonlinear systems. The results 
indicated that EBM is extremely speedy, light, with high 
accuracy. EBM provides an easy and direct procedure for 
determining approximations of periodic solutions.  
 
 

Nomenclature:  , Rotation angle of the pendulum;
 
m

,
mass 

of  pendulum;
 
r

,
 radius of rolling wheel; l ,  distance  between 

 

center of rolling wheel and center of mass of pendulum; K , 

spring stiffness;
 
g

,
 gravity of earth; A , amplitude;  , system 

frequency; EBM, energy balance method. 
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