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A bounded random process (BRP) model was developed in this paper to interpret why approximate 
entropy (ApEn) can not describe the stochastic characteristic of Brownian motion time series correctly. 
Low ApEn value, generally implying presence of determinacy, also existed in Brownian motion series, a 
stochastic process. The BRP model investigated this phenomenon through quantifying the relationship 
between ApEn and a parameter of BRP model. BRP model was then applied to analyze 
electrocardiograph (ECG) time series from 60 healthy subjects and 60 myocardial infarction (MI) 
patients. ApEn of the healthy group had a close relationship with the parameter of BRP model, while 
this relationship could not be found in MI patient group. Grounded on combination of BRP and ApEn, a 
classifier was designed to assist to diagnose the MI patients. ROC curve and classification figures 
verified the classifier. 
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INTRODUCTION 
 
Approximate entropy (ApEn), presented by Pincus (1991, 
1995), was adopted to analyze the uncertainty or 
variability of a system. It was frequently applied to 
biological time series to determine the regularity and 
complexity of signals (Fusheng et al., 2001; Veldhuis et 
al., 2001; Pincus and Goldberger, 1994; Xua et al., 
2007). 

In the present study, we found that low ApEn value did 
not necessarily imply the presence of deterministic 
characteristics. For example, Brownian motion time 
series, although stochastic, had a very low ApEn value, 
which indicated the determinacy. Thus, we cannot 
determine the regularity or determinacy of signals only 
based on ApEn. Goldberger et al. (2002), Xua et al. 
(2007) also mentioned that ApEn can not be directly 
applied to study the irregularity of slowly fluctuating 
curves with broad amplitude, such as electrocardiograph 
(ECG) signals.  So  wavelet  transformation  (Xua  et  al., 
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2007) and correlation dimension (D2), Largest Lyapunov 
exponent (LLE) (Behnia et al., 2008) and other 
complicated methods had to be adopted to improve the 
estimation of ApEn value. But basic mechanism behind 
the inapplicability of ApEn has not been investigated. 

So, in this work, we developed a bounded random 
process (BRP) model to interpret why ApEn can not 
describe the stochastic characteristic of Brownian motion 
time series correctly. The small ratio of short-term 
variability to long-term variability of Brownian time series 
led to the small value of ApEn, which was confused with 

deterministic processes. Furthermore, , a 
parameter of BRP model was combined with ApEn to 
determine the uncertainty or variability of Brownian 
motion signals. For Brownian motion and Henon map 
series, although stochastic and deterministic respectively, 
they both have low ApEn values. But they had distinct 

relationships between ApEn and .  
Then the BRP model was applied to heart rate 

variability (HRV) analysis of healthy subjects and 
myocardial   infarction   (MI)   patients.   People   tried  to 
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Figure 1. ApEn value for 100 realizations of Brownian motion and 

Henon series. The X axis were simulation times, the Y axis was the 
corresponding ApEn value for each Monte-Carlo simulation. All the 
points having same values in X axis were for the better comparison 
of the distribution of ApEn values of two time series. 

 
 
 
determine the nature of HRV to diagnose heart diseases. 
Complex features (de Chazal and Celler, 1997b), up to 
276 parameters, and multiple neural networks (de Chazal 
and Celler, 1997a) were adopted to make a classification 
to assist diagnosis. Complicated dynamic nonlinear 
techniques were extracted to differentiate between 
normal and arrhythmia, supraventricular arrhythmia, and 
congestive heart failure (Nizami et al., 2010). BRP model 
was applied to analyze HRV for 60 healthy subjects and 
60 MI patients with two features and a linear regression 
function. For the healthy group, there was a close 

relationship between  and ApEn, which could not 
be found in MI patient group. A classifier was designed to 
assist to diagnose the MI patients through linear 
regression of healthy subjects. The ROC curve and 
classification figures verified the performance of the 
classifier. 
 
 
METHODS 
 
Approximate entropy (ApEn)  
 
ApEn (Pincus, 1991) offered an applicable way to analyze short 
and noisy time series. A time series containing many repetitive 
patterns had a relatively small ApEn; A less predictable process 
had a higher ApEn. 

For us to calculate ApEn in the following analysis, we recalled the 
calculation of ApEn (Pincus, 1995). For a time series 

, vectors with length , 

, were retrieved. 

, the distance between  and , was defined as 

the maximum difference in the scalar components of  and

. If ,  and  was similar.  was a 
fixed parameter setting the "tolerance" of comparison.   

 
 
 
 

 was the number of vectors ( ) 

such that for ( ), .  

was the probability to find a vector which was similar with .  
 

                                          (1) 
 
and  
 

1

))(log(
1

1

,

,

+−
=
∑

+−

=

mN

iC

F

mN

i

rm

rm

                                                      (2) 
 

was the logarithmic average over all the vectors of the  
probability.  

ApEn was given by:  
 

rmrmrm FFApEn ,1,, +−=
                                                         (3) 

 

In this paper, ApEn value was calculated with  and the  
equaled 15% of the standard deviation (SD), as suggested by 
Pincus (1991). 
 
 
ApEn values in Brownian motion and Hénon map series 
 
ApEn values were calculated for Brownian motion and Hénon map 
series. The Hénon map was a deterministic discrete-time dynamical 
system (Hénon, 1976). It was one of the most studied examples of 
dynamical systems that exhibit chaotic behavior, and the 
parameters in our work were 1.4 and 0.3. Brownian motion was a 
stochastic process, while Hénon map was a deterministic series. 
The two series should have distinct ApEn characteristics if ApEn 
can catch their uncertainty effectively. Monte-carlo simulation of 100 
realizations of Brownian motion series and 100 realizations of 
Hénon map series were implemented. Brownian motion time series, 
although stochastic, were found to have some very low ApEn 
values, just as deterministic signals. The results are shown in 
Figure 1. There was no statistical significance (0.4230 ± 0.2149 vs. 
0.4796 ± 0.0075, p > 0.05) between the two processes. Thus, it was 
impossible to decide determinacy or uncertainty of these two series 
only by ApEn values.   

So, bounded random process (BRP) model was developed to 
investigate the mechanism behind the phenomenon.  
 
 
Bounded random process (BRP) model 
 
From the definition of ApEn, we hypothesized that the low ApEn 
value of Brownian motion series (It can be generated with the 

integral of white noise and has spectrum) might be as a 
result of the small inter-beat variability comparing with the range 
time series varies. A bounded random process (BRP) model was 
constructed to interpret the relationship between ApEn and the ratio 
of short term variability to the long term variability.  The BRP model 
was defined as following: 
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Figure 2. The ApEn representation of the bounded random process. 

 
 
 

 described the short-term variability of a time series, where 
differences between successive points were random processes, 

with zero mean and 
2α  variance, where α  was the standard 

deviation of . The model differed from Brownian motion 

because of the long-term bound .  

stood for the range of signal varies, that is, , 

and . When  exceeded the boundary, new 

was produced until  were within the boundary. 
Then ApEn was calculated for the time series generated from this 

BRP model. For simplicity,  was assumed to be uniformly 

distributed and . The time series was rescaled into , 
and the normalized series was: 
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where the standard deviation of 
)(* ie

was . The reason 
we did not use Equation (5) from the beginning was that we wanted 

to preserve the parameter  and be consistent with the former 

analysis. The flow to construct  series with BRP model is shown 
in Appendix A. 

In the new time series characterized by Equation (5), we 

considered two characteristic series with data length  were 
similar to each other. ApEn reflected the probability of the states 

that  of the two series were still within the distance . 

Assuming two series as  and , because of the 

similarity between  and , there was: 
 

                                     (6) 
 

For the specialty of the BRP model, the state  was more 

related to the state  than earlier states. For simplification, we 

assumed , and  was 

uniformly distributed. So the range that  varies 

was 
β

αε 1212 =
, so as . Then if 

ε12<r , the probability that  and  were 
similar was equal to the ratio of the shaded area to the square area 
in Figure 2 (also Appendix B for the detailed explanation).
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Figure 3. ApEn-  relationship for 100 realizations of 
Brownian motion and Henon series. X axis were the 

 values for each realization of Brownian motion; Y 
axis were the corresponding ApEn  
value. 
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If ε122<<r , 
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Equation (8) revealed that ApEn was directly related to both  and 

 values. When  was small, that is, , the ApEn value 
significantly decreased, which led to the same ApEn character as 
deterministic signals. That was why Brownian motion and Henon 
map series can not get distinct ApEn characteristics. In such a 
case, the deterministic and stochastic signals both had small ApEn 
values, so it was not possible to discriminate them only based on 
ApEn. 

 Then, we tried to investigate the Brownian motion and Henon 

map series with the combination of ApEn and . 
 
 

ApEn and  of Brownian motion and Hénon map series 

 
To validate the BRP model, we  plotted the  Monte-Carlo  simulation 
(ApEn values in Brownian motion and Hénon map series) results 

with the combination of ApEn and  in Figure 3. We saw  the 

monotonic-increasing linear relationship between ApEn and 

 for Brownian motion series, which indicated the small 

ApEn values were caused by the small . While for Hénon 
map series, there was no such relationship, since it cannot be 
characterized with BRP model. 

Here, although we assumed  was uniformly distributed, 

 could have other distributions, such as Gaussian distribution. 
The results of simulation showed that the ApEn had similar 
characteristics to the uniform distribution shown in Equation (8), 
and the expression of the equation was more complicated.  
 
 
APPLICATION IN HEART RATE VARIABILITY (HRV) ANALYSIS 
 
Dataset description 
 
ECGs Data from 60 healthy subjects and 60 MI patients between 
17 and 87 years of age were downloaded from 
PhysioBank(http://www.physionet.org/). The sampling frequency of 
the ECG data sets was 1 kHz and the resolving power of the data 
was 16 bits. 
 
 

ApEn and  analysis for healthy and MI groups 
 
The BRP model was applied to ECG signals to analyze HRV of 

healthy and MI group.  was approximated by the root mean 
square of successive differences (RMSSD) between adjacent RR-
intervals (the interval from the peak of one QRS complex to the 

peak of the next ) and  was calculated by the range of heart rate 

varies. To overcome the influence of outlier points, the range  

included 98% of the data points.  , where  stood for the 
ratio     of     short-term     variability      to      long-term      variability

 

 

 

( )log ε

( )log ε

* /
lo g ( )

( / )

lo g ( )
/

lo g lo g ( ) lo g ( )

2

3 r
A p E n

3

3 r

3

3 r

α β

α β

α β

ε

≈ −

= −

= + −

α

β ε α β<<

( )log ε

( )log ε

( )log ε

( )log ε

( )lo g ε

( )e i

( )e i

( )log ε

α

β

β

αε
β

= ε



Wang and Lu        655 
 
 
 

 
 

Figure 4. The relationship between log (ε) and ApEn for 60 MI patients. 

X axis were the  values for each MI patient; Y axis were the 
corresponding ApEn value. 

 
 
 

 
 

Figure 5. The relationship between  and ApEn for 60 

healthy subjects. X axis were the  values for each healthy 
subject; Y axis were the corresponding ApEn values. 

 
 
 

We showed the relationship between  and ApEn of 60 MI 
patients and 60 healthy subjects in Figures  4  and  5,  respectively. 

For healthy group, the R-square between ApEn and  was 
0.8848;   while   for   MI   group,   the    R    square    was    4.35e-9.
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Figure 6. ROC curve for the classification of healthy subjects and MI patients. 

 
 
 
So, for healthy people, there was an obvious linear relationship 

between   and ApEn, and this relationship did not exist in 
the ECGs of MI patients. Based on the distinct characteristics of MI 
and health group, a classifier was designed to diagnose MI 
patients. 

 
 
A classifier based on ApEn-log(ε)  
 
Based on the different characteristics of healthy subjects and 

patient group, we extracted the ApEn and   as features to 
design a classifier, which could assist to diagnose MI patient 
clinically.  

30 subjects were extracted from the 60 healthy subjects as 
training data to design the classifier. With the linear regression of 
the 30 training data, we could get a linear function 

. Based on the distance of ApEn-  
point to the linear function, each individual was classified to healthy 
or MI group. 

The remained 30 healthy subjects and 60 MI patients were 
adopted as test data to evaluate the classification. The ROC curve 
was plotted for the different distance thresholds, as shown in Figure 
6. The AUC of the ROC curve was very close to 1, indicating the 
good performance of the classifier. From ROC curve, the optimal 
diagnostic point was obtained, that was, the optimal distance 
threshold in our classifier was 0.107. It meant that for an individual, 

if the distance between its ApEn-  value and the linear 
function was no greater than 0.107, it was diagnosed to be healthy; 
otherwise, it was diagnosed to be MI patient. The classification 
figure was shown in Figure 7. Points falling into the region  between 

the dot lines were classified into healthy group. The true positive 
rate was 90% and true negativerate was 95%, respectively. By 
contrast, if only ApEn values were used for classification, the true 
positive was 60% and true negative was 65%.  
 
 
DISCUSSION 
 
In this paper, we developed a bounded random process 
model to derive the relationship among short-term 
variability, long-term variability and ApEn value in 
biological time series. The model was applied to the 
analysis of HRV in ECGs signals, which can assist to 
diagnose MI patient subjects based on the ApEn and 

 relationship. This paper also suggested that the 
ratio of short-term variability to long-term variability 
should be considered when we apply ApEn method to 
effectively reveal the deterministic rhythm.  

The relationship between  and ApEn analyzed 
in the method was consistent with data analysis results in 
healthy subjects. While in MI patients, this relationship no 
longer existed. Since BRP model was a statistical time 
series model, this results revealed that HRV series from 
healthy subjects can be well characterized by BRP 
model, which was less deterministic; while HRV series 
from MI patients were inclined to include deterministic 
rhythm, such deterministic rhythm may destroy the linear 

relationship between  and ApEn expressed in 
Equation (8). 
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Figure 7. Classification for healthy subjects and patients group 
under the optimal diagnosis point 0.107. 

 
 
 

Table 1.  R-square values between ApEn and . 
 

           Data length 

R-square value 
300 400 500 600 

Healthy subjects 0.2635 0.4789 0.6796 0.8848 

MI patients 3.25e-10 9.01e-10 3.73e-9 4.35e-9 
 

For 60 healthy subject and 60 MI patients, the R-Square value between ApEn and  were calculated for 
different data length. 

 
 
 

The basic mechanism of difference between healthy and 
patient groups needs further investigation. 

Due to the non stationary nature of HRV series, ApEn 
values were calculated based on different data lengths, 
which led to different R-Square values between ApEn 

and , shown in Table 1. We noticed that for HRV 
series from healthy subjects, data length > 400 was 
enough to show the significant correlation between ApEn 

and ; while for MI patients, R-square values were 
low for all different data lengths. 

The two parameters used in the BRP model resembled 
the two time domain parameters in ECGs series, the 
short-term and the long-term variability or bound 

measures. The short-term bound,  and long-term 

bound could limit from severe fluctuations from one 
beat to the next as well as limit the heart beating out of 
the normal condition. 

From the analysis in the method, it was also easy for us 
to qualitatively understand the relationship between ApEn 
and   sample   frequency.  If  the  sample  frequency  was 

doubled, the  decreased by half of its amplitude. 
Assuming variance of new time series was not 

significantly affected by , the ApEn value decreased, 
which was consistent with the results of paper (Hornero 
et al., 2005). 
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APPENDIX 
 
A. The detailed procedure to realize Bounded Random Process model is as follows: 

 

 
 
 
 

B: The calculation of relationship between ApEn and  is equivalent as the following problem: 
 

Random variables  and  are uniformed distributed in , what is the probability of 
rBA <−

, while  ε12<r .  

The answer is equal to the ratio of shaded area to the square area in Figure 1, noted as ,  
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