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A new calculation method has been developed and used to model electron transport properties in 
semiconductor devices under thermal and electrical applications. Using the relaxation-time 
approximation, the Boltzmann transport equation is solved using the currently established values of the 
material parameters. This method is used to carry out the thermal energy flux, electrical conductivity, 
seebeck coefficient and thermal conductivity. Using the driven equations, thermal and electrical 
properties in CdTe and CdSe materials were been calculated. The calculated results are in fair 
agreement with other recent calculations obtained by experimental methods. 
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INTRODUCTION 
 
The II–VI semiconductor compounds, particularly CdSe 
and CdTe, are of great interest because they are 
potential candidates in many practical applications like 
solar cells, optical detectors, dosimeters of ionized 
radiation, field effect transistors, and optoelectronic 
devices. Its suitable band gap, optical properties, and 
very good stability, recommend cadmium sellenide as a 
very promising semiconducting material for optoelectronic 
applications, especially for solar cell structures. The 
performance of the devices based on CdSe thin films 
depends on the structural and electronic properties of the 
layers obtained under various experimental conditions 
(Bertazzi et al., 2007). The electronic and optical 
properties of semiconductors are strongly influenced by 
the doping process, which provides the basis for tailoring 
the desired carrier concentration and, consequently, the 
absorption, emission and transport properties. When the 
density of n-type or p-type doping becomes sufficiently 
high, the impurity band merges with the conduction or 
valence band and causes the formation of a band tail and 
band gap shrinkage (Özgür et al., 2005). In this work, we 
shall discuss theoretical data obtained for thermal and 
electrical properties of CdSe and CdTe. In order to 
analyze and improve the design of CdSe and CdTe-
based devices, an understanding of the thermal and 
electron transport that occurs within these materials is 
necessary. While electron transport in bulk of these 
materials have been extensively examined (O'Leary et 

al., 2006), the sensitivity of these results to variations in 
the material parameters is yet to be considered. To carry 
out calculations of the electronic transport properties of in 
semiconductor material and devices, it is necessary to 
solve the Boltzmann transport equation. There are many 
different techniques for the solution of the Boltzmann 
equation when the applied field is sufficiently low. The 
use of numerical calculation to solve the Boltzmann 
equation has been described and reviewed elsewhere 
(Jacoboni and Lugli, 1989). However, in more general 
cases the Boltzmann transport equation is often 
exceedingly difficult to solve directly (Moglestue, 1993). 
By contrast, it is relatively easy, although computionally 
intensive, to simulate the trajectories of individual carriers 
as they move through a semiconductor under the 
influence of the applied field and the random scattering 
processes. Indeed, much of our understanding of high 
field transport in bulk semiconductors and in devices has 
been obtained through the use of such a method, Monte 
Carlo simulation. The Monte Carlo method allows the 
Boltzmann transport equation to be solved using a 
statistical numerical approach, by following the transport 
history of one or more carriers (particles), subject to the 
action of external forces, such as an applied electric field, 
and the intrinsic scattering mechanisms.  

Details of the model and the thermal and electrical 
calculations are presented subsequently, followed by the 
results of  calculations  carried  out  on  CdSe  and  CdTe 
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structures are interpreted. 
 
 
CALCULATION METHOD 

 
Consider the distribution function of electrons is f, and the number 
of electrons with an energy between E and E+dE is f D(E)dE. Since 
the electric field, temperature gradient and concentration gradient 
are small, these electrons will have almost the same probability to 
move toward any direction. Also because the solid angle of a 
sphere is 4π, the probability for an electron to move in the (θ,ϕ) 

direction within a solid angle dΩ= φθθ ddsin ) will be dΩ/4π. A 

charge q (= -e for electrons and +e for holes) moving in the (θ,ϕ) 
direction within a solid angle dΩ causes a charge flux of qvcosθ and 
energy flux Evcosθ in the Z direction, where dΩ is defined as the 
angel between the velocity vector and the positive Z direction with a 
range between 0 to π. Hence, the charge flux and energy flux in the 
Z direction carried by all electrons moving toward the entire sphere 
surrounding the point are respectively, 
 

∫∫∫=∫∫
Ω

=
∞

===

∞

= 00

2

004

)(cossin
4

1
)cos))(((

4 EE

qvdEEfDdddEqvEfD
d

J
Z

π

θ

π

φπ

θθθφ
π

θ
π

      (1) 

 

∫∫∫=∫∫
Ω

=
∞

===

∞

= 00

2

004

)(cossin
4

1
)cos))(((

4 EE
E EvdEEfDdddEEvEfD

d
J

Z

π

θ

π

φπ

θθθφ
π

θ
π

    (2) 

 
With the relaxation-time approximation, the Boltzmann transport 
equation for electrons take the following form, 
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where q =-e for electrons and +e for holes. For the steady state 
case with small temperature/concentration gradient and electric 
field in the Z direction only, the variation of the distribution function 
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The equilibrium distribution of electrons is the Fermi-Dirac 
distribution 
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where µ  is the chemical potential that depends strongly on carrier  

 
 
 
 
concentration and weakly on temperature. Both E and µ  are 

measured from the band edge for example, EC for conduction 
band). This reference system essentially sets EC = 0 at different 
locations although the absolute value of EC measured from a global 
reference varies at different location. In this reference system the 

same quantum state k
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with locations. In this case, 0)( ≠∇=∇ CEkE
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, making the 

following derivation is somewhat inconvenient. However, both 
reference systems will yield the same result.  
From Equation 5, 
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From Equation 6, 
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Also because 0)( =∇ kE
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 for the reference system that we are 

using 
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From Equations 7 and 8, 
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Combine Equations 4 and 9, we obtain 
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Note that  
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where eϕ is the electrostatic potential (also called electrical 

potential, which is the potential energy per unit of charge 

associated with a time-invariant electric field E
r

);  
From Equations 10 and 11, we obtain 
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From Equation 12, we obtain 
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where eqϕµ +=Φ , is the electrochemical potential that 

combines the chemical potential and electrostatic potential energy. 
This definition of the electrochemical potential is the definition in 
Chen’s text multiplied by a factor of q. Both definitions are used in 
the literature, both the definition here are used more widely. 
Electrochemical potential is the driving force for current flow, which 
can be caused by the gradient in either chemical potential (for 
example, due to the gradient in carrier concentration) or the 
gradient in electrostatic potential (that is, electric field). When you 

measure voltage V∆ across a solid using a voltmeter, you actually 

measured the electrochemical potential difference ∆Φ per unit 

charge between the two ends of the solid, that is, qV /∆Φ=∆ . 

If there is no temperature gradient or concentration gradient in the 

solid, the measured voltage equals eϕ∆ .  

In the current case all the gradients and E
r

are in the Z direction, so 
from Equation 13,  
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Combine Equations 1 and 14, we obtain the charge flux and energy 
flux respectively 
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and 
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Note that the first term in the right hand of Equation 15 side is zero 
and the second term yields 
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Note that 
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Use Equation 17 to eliminate v in Equation 19, we obtain 
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The energy flux from Equation 21 can be broken up into two terms 
as following  
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where JZ is the current density or charge flux given by Equation 22. 
At temperature T = 0 K, the first term in the right hand side of 
Equation 21 is zero, so that the energy flux at T = 0 K is 
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Because electrons do not carry any thermal energy at T = 0 K, the 
thermal energy flux or heat flux carried by the electrons at T ≠ 0 is 
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Equations 23 and 24 can be rearranged as  
  

)()
1

( 1211
dZ

dT
L

dZ

d

q
LJ

Z
−+

Φ
−=                                     (25) 

 

 )()
1

( 2221
dZ

dT
L

dZ

d

q
LJ

Z
q −+

Φ
−=                                (26) 

 
where  
 

 ∫
∂

∂
−=

∞

= 0

0
2

11 )(
3

2

E

dEEED
E

f

m

q
L τ                                   (27) 

 

 ∫ −
∂

∂
−=

∞

=0

0
12 )()(

3

2

E

dEEEED
E

f

mT

q
L τµ                   (28) 



 

3158          Int. J. Phys. Sci. 
 
 
 

12
0

0
21 )()(

3

2
TLdEEEED

E

f

m

q
L

E

=∫ −
∂

∂
−=

∞

=

τµ                (29) 

 

∫ −
∂

∂
−=

∞

=0

20
22 )()(

3

2

E

dEEEED
E

f

mT
L τµ               (30) 

 

In the case of zero temperature gradient and zero carrier 

concentration gradient, 0=
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dT
and 0=

dZ

dµ
, Equation 24 
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The electrical conductivity is defined as  
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In the case of non-zero temperature gradient along the Z direction, 
a thermoelectric voltage can be measured between the two ends of 

the solid with an open loop electrometer, that is, 0=ZJ . Hence 

from Equation 30 we obtain 
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As discussed previously, the voltage that the electrometer measure 

between the two ends of the solid is qV /∆Φ=∆ . Similarly, 

qddV /Φ= . The Seebeck coefficient is defined as the ratio 

between the voltage gradient and the temperature gradient for an 
open loop configuration with zero net current flow 
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Combine Equations 33, 34, and 35, we can write 
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The scattering mean free time depends on the energy, and we can 
assume 
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where τ0 is a constant independent of E. When E is measured from 
the band edge for either electrons or holes, the density of states 
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Combine Equations 35 and 37 
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The integrals in Equation 38 can be simplified using the product 
rule 
 

dEEfsdEEfsEfdEE
E

f

E

s

E

ss

E

s
∫−=∫−=∫

∂

∂ ∞

=

−
∞

=

−∞
∞

= 0

1
0

0

1
000

0

0 |           (39) 

 
Using Equation 38 to reduce Equation 39 to 
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The two integrals in Equation 40 can be simplified with the reduced 
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where the Fermi-Dirac integral is defined as  
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Use Equation 42 to reduce Equation 41 to  
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Seebeck coefficient for metals: 

For metals with 0/ >>= TkBµη , the Fermi-Dirac integral can 

be expressed in the form of a rapidly converging series 
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If we use only the first two terms of Equation 44 to express the two 
Fermi-Dirac integrals in Equation 43, we obtain the following (q = -e 
for electrons in metals) 
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This value can be either positive or negative depending on r, or how 
the scattering rate depends on electron energy. We can ignore the 
weak temperature dependence of µ and assume µ = EF, the Fermi 
level that is the highest energy occupied by electrons at 0 K in a 
metal.  
 
 
Thermal conductivity of electrons 
 
From Equation 21 
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Use Equation 52 to eliminate 
dZ

dΦ
 from Equation 21 to obtain 
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The Peltier coefficient Π and thermal conductivity ek are defined in 

the following.  
In the case of zero current JZ = 0 and non-zero temperature 
gradient along the Z direction, 
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Equation 45 can be reduced to the following by expanding the (E-µ) 
term in the two integrals, 
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For metals, S is usually very small so that from Equation 49 
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Note that 
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Compare Equation 51 with Equation 5, we can obtain 
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Combine Equations 53 and 52, 
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We can use E = mv2/2 to rewrite Equation 54 as  
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When E is far away from µ , )(0 Ef  remains to be either 0 or 1 

as the temperature changes, so that 
T

Ef

∂

∂ )(0 is non-zero only 

when E is close to µ . Therefore, Equation 55 can be 

approximated by taking v = vF and τ= τF, that is, the Fermi velocity 
and the scattering mean free time of Fermi electrons, 
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Figure 1. Calculated temperature dependence of electrical conductivity of CdTe and 
CdSe materials. 
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This is essentially the kinetic theory expression of the thermal 
conductivity.  
 
 
CALCULATION RESULTS 
 
Electrical conductivity of CdTe and CdSe semiconductors 
are determined using our calculation method. The 
variation in electrical conductivity of CdTe and CdSe with 
temperature are shown in Figure 1.  

It is observed that the conductivity increases non-
linearly with the increase in temperature. This is 
explained in terms of structural changes occurring in 
these materials with temperature. In deposited CdTe and 
CdSe materials there are some lattice defects, 
geomerical and physical imperfections randomly 
distributed on the surface and the volume of the 
materials. The roughness of the surface, grain 
boundaries and inclusions in the volume are the main 
components of the geomerical imperfection. The 
importance factor, which is resposible for the physical 
properties of the material, is the structure. The materials 
are composed of randomly oriented grains with the 
appearance  of  the  grain  boundaries.   An   increase  of 

temperature of the material affects the structure 
significantly causing a considerable increase in the mean 
size of the grain and a decrease in the drain boundary 
area. This decrease is due to the migration of the smaller 
crystallites and joining of those grains, which are similarly 
oriented, to form bigger crystallites. Because of these 
structural changes the inter grain boundary area 
decreases and so there is a decrease in the scattering of 
electrons. Consequenly, the carrier concentration also 
increases with the increase of temperature. This in turn 
increases the conductivity of given sample. 

The thermal conductivity of undoped CdTe and CdSe 
materials have been calculated. The results are shown in 
Figure 2. These results show that the thermal con-
ductivity of the CdTe is much less than that of the CdSe. 
In the 20 to 100 K range the thermal conductivity of the 
two materials is about 2% of the value imposed by 
boundary scattering at the walls of the crystal.  
 
 
CONCLUSION 
 
In conclusion, we have quantitatively obtained 
temperature-dependent of electrical and thermal con-
ductivity of CdTe and CdSe semiconductors. The 
behaviour of two compounds are similar, although the 
CdSe  material   shows   a  better  thermal  and  electrical  
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Figure 2. Calculated values for the thermal conductivity of CdTe and CdSe materials versus 
temperature. 

 
 
 
conductivity in all temperature ranges. 
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