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The aim of this article is to introduce a new reliable algorithm, namely two-step Laplace decomposition 
algorithm (TSLDA). This new algorithm provides us with a convenient way to find exact solution with 
less computation as compared with standard Laplace decomposition algorithm (LDA). The proposed 
algorithm is use to solve Abel's second kind integral equations efficiently.  
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INTRODUCTION 
 
Singular integral equation that has enormous applications 
in applied problems including fluid mechanics, 
biomechanics, electromagnetic theory and chemistry 
applications such as heat conduction, crystal growth and 
electrochemistry. An integral equation is called a singular 
integral equation if one or both limits of integration 
become infinite, or if the kernel of the equation becomes 
infinite at one or more points in the interval of integration. 
Norwegian mathematician Niels Abel who invented them 
in 1823, in his research of mathematical physics (Jerri, 
1999; Rahman, 2007). There are many numerical and 
analytical schemes such as finite element method, finite 
difference method and perturbation methods can be used 
to obtain an approximate solution for the model problem. 
However, there exist many difficulties such as a mesh 
refinement, a stability condition and selection of small 
and large parameters, etc. To avoid these difficulties, 
decomposition method was introduced (Adomian, 1994; 
Jafari and Gejji, 2006a, b, c) which is a very powerful 
method for solving linear and non-linear problems in 
many fields. Recently, a modification of Laplace 
decomposition algorithm (LDA) was proposed (Majid et 
al., 2011; Hussain and Khan, 2010). The modified 
decomposition algorithm needs only a slight variation 
from the standard LDA and has been shown to be 
computationally efficient. The modified LDA (MLDA)  was  
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established and based on the assumption that the 
function f  

can be divided into two parts and the success 

of the modified algorithm depends on the proper choice 

of the parts 
1

f  and 
2

f . The TSLDA overcomes this 

difficulty and explains how we can choose 
1

f  and 
2

f  

properly without having noise terms. The LDA is used by 
different scientists for solving different equations arises in 
different physical phenomena (Majid et al., 2010, 2011; 
Hosseinzadeh et al., 2010).  
 
 
TWO STEP LAPLACE DECOMPOSITION ALGORITHM 
FOR ABEL'S INTEGRAL EQUATIONS 
  
The weakly-singular Volterra-type integral equations in 
terms of Abel's integral equation can be written as (Jerri, 
1999; Rahman 2007): 
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where )(xf  is non-homogeneous term and ),( txK  

kernel of the equation that approaches infinity as tx →  

which is a singular behaviour of the kernel. The solution 
of this integral is attributed by the convolution theorem of 
Laplace transform. Taking the Laplace transform  of  both  
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sides of the equation yields: 
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Using convolution theorem of Laplace transform, we 
have: 
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Operating inverse Laplace transform on both sides of 
Equation 3, we have: 
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The Laplace decomposition algorithm assumes the 
solution u  can be expanded into infinite series as:  
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By substituting Equation 5 in Equation 4, the solution can 
be written as: 
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In general, the recursive relation is given by: 
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where )(xf  represents the source term. Now we 

illustrate TSLDA after applying the inverse operator, we 

have )(xf  which can be denoted by another function 

Ψ  as follows:  
 

 ).(xf=Ψ                                                                (8) 

 
By using TSLDA we set: 
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where  ,,...,,, 210 mffff
 
  are   the   terms   arising   from  

 
 
 
 
applying inverse Laplace transform on the source term 

)(xf . We define:  
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where ,...,1,0 mk =  kms −= ,...1,0 . Then we verify 

that 0u  satisfies the original Equation 1 and by 

substituting, once the exact solution is obtained we finish. 
Otherwise we go to step two. In second step we set 

=0u )(xf  and continue with the standard LDA: 
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By comparison with LDA and TSLDA, it is clear that 
TSLDA may provide the solution by using one iteration 
only and does not have the difficulties arising in the 

modified method. Further, the number of terms in Ψ  
namely ,m  is small in many practical problems. TSLDA 

is less time consuming. Our purpose in this paper is 

combining the LDA and TSLDA. We divide )(xf  into its 

components and check the required conditions for proper 

choice of )(0 xu . After applying inverse transform, by 

TSLDA criterion, we can find the exact solution of our 
equation after one iteration. 
 
 
APPLICATIONS 
 
Here, some examples are given in order to demonstrate 
the effectiveness of TSLDA. For all examples, the exact 
solutions are obtained by TSLDA. 

 
 
Example  
 
Consider second kind Volterra equation in terms of Abel's 
integral equation is given by (Rahman, 2007): 
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Applying Laplace transform algorithm and using 
convolution theorem of Laplace transform we have: 
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Applying inverse Laplace  transform  to  Equation  13  we  



 
 
 
 
have: 
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The Laplace decomposition method (LDA) assumes a 

series solution of the function )(xu  given by: 
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Using Equation 15 into 14 yields: 
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From Equation our required recursive relation is given as 
follows: 
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The first few components of )(xu
n

 by using recursive 

relation of Equation 18 follow immediately as: 
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As it can be seen from the original Equation 12, non-
homogeneous Abel's second kind integral equation and 

exact solution is in the zeroth component ,0u  there is the 

phenomena of the noise term (Khan and Gondal, 2010a, 
b, c; Khan and Gondal, 2011a, b; Khan and Hussain, 

2011). By examining 0u  and ,
1

u  we can easily observe 

the appearance of the noise term 2/xπ  in .0u  

Therefore, by cancelling the noise term in ,0u  the 

remaining non-cancelled terms provide the exact 
solution. But there are many problems in which the zeroth 
component does not contain the exact solution. Thus, the 
approximation by the standard LDA is compared with the 
exact solution.  
 
 
The two-step Laplace decomposition algorithm 
 

By using TSLDA we decompose the function )(xf  as 

follows: 
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where 
1

f  does not satisfy Equation 12. By choosing 

00 fu =  and by verifying that 0u  satisfy Equation 12, the 

exact solution will be obtained immediately and we have: 
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Therefore, solution by TSLDA is: 
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Example  
 
Considering the second kind Volterra singular integral 
equation given by (Rahman, 2007): 
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Applying Laplace transform and convolution theorem 
yields: 
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Applying inverse Laplace transform to Equation 27, we 
have: 
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The Laplace decomposition method assumes that the 

solution function )(xu  can be decomposed as an infinite 

series as follows: 
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Using Equation 29 into Equation 28 yields: 
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From Equation 30, our required recursive relation is given 
as follows: 
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The first few components of )(xun  by using recursive 

relation of Equation 32 follow immediately as: 
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Similar, we examining 0u  and ,
1

u  can easily observe the 

appearance of the noise term 
3

4 2
3

x  in .0u  Therefore, by 

cancelling the noise term in ,0u  the remaining non-

cancelled terms provide the exact solution. But, there are 
many problems in which the zeroth component does not 
contain the exact solution. Thus, the approximation by 
the standard LDA is compared with the exact solution.  
 
 

The two-step Laplace decomposition algorithm 
 

By using TSLDA we decompose the function )( xf  as 

follows: 
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It is obvious that 
1

f  does not satisfy Equation 26. By 

choosing 00 fu =  and by verifying that 0u  satisfy 

Equation 26, the exact solution will be obtained 
immediately and we have: 
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Therefore,   solution     by      TSLDA      is      given     as: 
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Conclusion 
 
In this work, we proposed new modification in standard 
Laplace decomposition algorithm. In the two illustrated 
examples, we showed that TSLDA consists of three 
steps: the first step is applying Laplace transform on our 
equation and then inverse transform, the second step is 
verifying that the zeroth component of the series solution 
includes the exact solution. If yes we finish, otherwise we 
should go to third step where we continue with the 
standard LDM. The obtained results in examples indicate 
that TSLDA is feasible, effective and do not have the 
"noise terms". The TSLDA overcomes the difficulties 
arising in the modified decomposition method. The power 

of TSLDA depends on the proper choice of 
0

u  and 
1

u  

and the occurrence of the exact solution in the zeroth 
term. If the exact solution exists in the zeroth component, 
TSLDM requires less calculation in comparison with LDA. 
This article is the first step to apply transforms methods 
to solve singular integral equations, and will be an 
interesting area of research in a near future. 
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