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This paper gives a detailed and comprehensive study of a reliable algorithm which is called the
Modified Decomposition Method (MDM) and is mainly due to Geijji and Jafari to solve linear and
nonlinear problems of physical nature. It has been shown that the MDM is very easy to implement and
is fully compatible with the nonlinear nature of the physical problems. Moreover, this algorithm is
independent of the inbuilt deficiencies of most of the previous techniques. Several examples are given
to re-confirm the reliability and efficiency of the algorithm.
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INTRODUCTION

The physical phenomena related to physics,
astrophysics, telecommunications, signals and systems,
magnetic dynamics, water surface, gravity waves, ion
acoustic waves in plasma, electromagnetic radiation
reactions, engineering and applied sciences are
governed by differential equations and hence the
appropriate solutions of such equations are utmost
important (Abbasbandy, 2007; Abdou et al., 2005; Geijji
et al., 2006; He, 2008; Ma, 2006; Mohyud-Din et al.,
2009, 2010; Zhu, 2007). The through study of the
literature sees the development of number of new
techniques including decomposition, homotopy
perturbation, homotopy analysis, polynomial spline, sink
Glarkin, B-spline, perturbation, differential transform, exp-
function, variation of parameters and variational iteration
(Abbasbandy, 2007; Abdou et al., 2005; Geijji et al.,
2006; He, 2008; Ma, 2006; Mohyud-Din et al., 2009;
2010; Zhu, 2007). Most of these used schemes are
coupled with the inbuilt deficiencies like calculation of the
so-called  Adomian’s  polynomials, linearization,
perturbation, limited convergence and non compatibility
with the physical nature of the problems.

Moreover, these techniques involve very lengthy
calculations coupled with a complicated computational
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procedure. In the similar context there was a dire need to
develop an appropriate reliable, efficient and simple
technique which could be fully compatible with the
physical nature of the nonlinear problems without
compromising their basic physics coupled with the
suitable level of accuracy. Recently, Geijji and Jafari
(Geiijji et al., 2006) presented an exceptionally simple but
very accurate technique which is Modified Decomposition
Method (MDM) to solve nonlinear problems of diversified
physical nature. It has been observed that MDM (Geiijji et
al., 2006; Mohyud-Din et al., 2009) is much better as
compare to the above mentioned algorithms. Firstly, it
does not require the small parameter assumption which
is a major draw back in the traditional perturbation
methods. No discretization or linearization is required and
hence the scenario of getting some ill posed problems is
avoided successfully.

Moreover, MDM is more reliable than homotopy
analysis method (HAM) which is a generalized Taylor
series method, gives an infinite series solution and is
coupled with all the deficiencies and limitations of this
technique to have practical examples. Moreover, such
schemes (HAM) are not compatible to cope with the
secular terms arising in the higher-order approximate
solutions, whereas Modified Decomposition Method
(MDM) gives an asymptotic solution with few terms. The
MDM does not require the calculation of so-called
Adomian’s polynomials and hence is a better option as



compare to the traditional Adomian’s decomposition
method. Moreover, MDM is brief, concise and more
generalized than the above mentioned technique and
does not even require any unrealistic assumptions which
ruin the basic physical structure of the nonlinear
problems. The basic motivation of the present paper is a
detailed and comprehensive study of Modified
Decomposition Method (MDM) and its further extension
for physical problems. Several examples are given to
reveal the complete reliability of these algorithms.

Modified Decomposition Method (MDM)
Consider the following general functional equations:
f() =0, (1)

To convey the idea of the Modified Decomposition
Method (Geijji et al., 2006; Mohyud-Din et al., 2009), we
rewrite the above equation as:

y=N(y)+c, (2)
Where N is a nonlinear operator from a banach space

B — B and fis a known function. We are looking for a
solution of equation (1) having the series form:

y=2 3)

The nonlinear operator N can be decomposed as:

i=0

N(iy,}N<y0>+i{N(iy_/J—N(iyjj} )
From Equations (3) and (4), Equation (2) is equivalent to:

>y = c+N(yo>+i{N[i yj]—N[i yj]}. (5)

i=0 i=0 j=0 j=0

We define the following recurrence relation:
Yo=¢,
y?= N(,), ©)
Vs =N+, ) =Ny +...+ Yy, ), m=123,..,

Then:

vy, +t..+ty,,)=N(Qy,+..+y,), m=123,.,

and
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y=f+iy,»,
i=1

if N is a contraction, that is
INx)-N(y)II<llx=yll, 0< K <1,then

ly, . BN, +. 49, My, .49, JISKIly, 1<K [y, I,
m=0123...,

and the series z,»f v
converges to a solution of Equation (1)

absolutely and uniformly

(Geijji et al., 2006; Mohyud-Din et al., 2009), which is
unique, in view of the Banach fixed-point theorem.
Numerical applications

Here, we apply Modified Decomposition Method (MDM)
to solve a wide range of physical problems.

Example 1

Consider the following homogeneous coupled Burger’s
equation:

u, —u, —2uu +uv) =0,

v, —v_ —2w + (uv)x =0,

with initial conditions:

u(x,0)=sin x, v(x,0)=sin x.

Applying Modified Decomposition Method (MDM), we get:

t 2
(5, 0)=u, (6,0 + [ [aax”; +2u, (u,), ~(u,v, )xjds.
0

v, )=y, (x,t)+j [ "
0

9%y
"2y, (v,). —(u,v,). j ds.

Consequently, following approximants are obtained:

u,(x,t)=c,
u,(x,t)=sin x
vo(x,1) =c,

v, (x,t)=sin x,
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Figure 1. (u(x, t) or v(x, t)).

u,(x,1) = Nuy(x,1),
u,(x,t)=sin x —¢sin x,
v (x,t) = Nvy(x,1),

Vo (x,t)=sin x —tsin x,

u,(x,t)= N(uo(x,t)+u1(x,t)) — Nu,(x,1),
2
uz(x,t):sinx—tsinx+5sin X,

vy (x,1) = N (v (x,0)+v, (x,0)) = Nvy(x,0),
2
vz(x,t):sinx—tsinx+5sin X,

The series solutions are given by:

2 3 4
. 1 t t
u(x’t)zsmx(l_t+———+——+J’

21 3 4!

2 3 4
V(x,t):Sin x(l_t+t——t—+—t—+J,

21 3! 4!

and the closed form solutions are given as (Figure 1):

u(x,t)=expEt)sinx,

v(x,t)=expEt)sinx.

Example 2

Consider the following telegraph equation:

u,.=u, +I/t, —u,

Figure 2. The series solution.

with boundary conditions:
u(0,n)=e™, u (0,t)=e7,
and the initial conditions:
u(x,0)=e", u, (x,0)=—2¢".

Applying Modified Decomposition Method (MDM), we get:

t t 2
u, (x,t)=e™ +xe™ +I J (aa;i" + aaut” —unjdsds.
0 0

Consequently, the following approximants are obtained:

u()(x’t) = C’

u,(x,t)=e (1+ x),

u (x,t) = Nuy(x,1),

ul(x,t): [1+ x+lx2 +lx3j e,
2! 3!

u,(x,t)=N (uo(x,t)+u1(x,t)) — Nu,(x,1),

u, (x,1)= 1+x+lx2 +lx3 +lx4 +lx5j e,
2! 3! 4! 5!

(1) = Vot (6.0)+14 (06 1)+, (6.1)) = Nlaty (6.1)+14,(5.),

u3(x,t):(l+x+1x2 +lx3 +lx4 +1x +lx6 +1x7) e,
2! 3! 4 5! 6! 7

The series solution is given by (Figure 2):

Uxi) 1+x4lj4lx34lx44lf4lx64lx74}x84lx9+. e,
2 3 4 3 4 7 8 9
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and the closed form solution is given as: u,(x,t) = Nuy(x,1),
ulrt)=e" . uy(x,y.0) =™ (1-1),
v (x,1) = Nv,(x,1),

Example 3 v (x,y,1) =€ (1+1),

. . . . w (x,1) = N w, (x,1),
Consider the following nonlinear system of partial

differential equations: w (x,y,t)=e " (1+ 1),
U +V W, =V W =—U, uy (x,1) = N (g (x,0) 41, (x,0)) = Ny (x,1),
2
= ' t
v +quy +Wyux Vs u,(x,y,t)y=e"" 1—t+§}

W, UV, FU v, =—w,
v, (x,t) = N(vo()c,t)+v1 (x,t)) - Nv,(x,1),

with initial conditions: — t?
V,(x,y,t) =€ 1+t+§ ,

,O — x+y’ ,O — x—y’ ,O —
ux y)=e . ¢ W w,(x,t) = N(wo(x,t)+w1 (x,t)) - Nw,y(x,1),

Applying Modified Decomposition Method (MDM), we get:

o [295

0

2
, t
w,(x,y,t)=e " (1+ t+§}

uy (x,1) = N (g (x, 1)+, 1)+, (x, 1)) = N (1 (6, 8) +u, (x,1)),

¢ (v, (xy, ow, (% ,9) o L
+'([ [( J[ ox +u, df, u,(x, y,t)=e"| 1- H_E_g

( au (x y’ (aw” (x, y,f)J Jdg vy (x,t) = N(v()(x,z‘)+v1 (zx, ti+v2 (x,t)) — N(v()(x,t)+v1 (x,t)),
0x

( vi(x,y,t)=e"" (1+t+t2!+;!}
(aun(x . j I, (x, y,@j_v J de |0 =N OG0 s (00) = N oy (ot (50),

i =
du, (x,y, &)\ v, (x,3,5)
H ( dy Udg

.’[ ({ v, (x,y, J(a”"(x’y’@}wjdé The series solution is given by:
0

t
n+1(x y’ t) e j
0

o
= Xty _—
wy(x,y,t)=e (1+ t+2' 3']

Wy, ) =e™"

o'—.,v» OQ—.N

dy
( 1) = x+y 1_t+i_i+i_i+...
Consequently, following approximants are obtained: wxy.r=e 21 31 51 71 ’
_ t2 3 5 f7
uo(X,Z)—C, v(x,y,t):eky 1+l‘+5+§+;+?+"' s
uo (X, y,t) — ex+y . . . .
. t> 1t
= = Y —_—— e — e
vo(x,1) =c, w(x,y,t)=e 1+t+2! 3!+5! -
Vo(x,y,t)=e""",
w, (x,1) = c, The closed form solution is given as (Figures 3 to 5):
Wy (X, y,t)=e""", (w,v,w) = (7", e e,
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2
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u,(x,1)

u,(x,t) = Nuy(x,1),

u,(x,1)
u,(x,t)

—(x —sin x)r,

(x,1)) = N uy(x,1),

N (u, (x,0)+u,

Example 4

3!}

t3

T

t2

—sin x) (
Nuty 061414, (6 )+, (1) — N (6 £)+ (1)),

X

(

u,(x,t)

order singular parabolic

Consider the following fourth

partial differential equation:

u(x1)=

tS

t4

) -5 )
4 s
tS

The solution is given as:

(x

(‘x’ t)

Uy

t>0

O<x<l,

u
7 =0,

84

ox

|

X

sin x

[

+

0’u

or?

with initial conditions:

O<x<l,

Xx—sin x,

u(x,0)

s

—

(x—sinx)e

£t

[2

e —t——— -

3 45

2!

[1
which is the exact solution. (Figure 6).

(x—sinx)

u(x.r)

O<xxl

(x,0) =—(x—sin x),

ot

and the boundary conditions:



Figure 6. Depicts the series solution.

Example 5

Consider the following three-dimensional initial boundary

value problem:

1 1 1
= Xu_+—Yu_+—7u_— 0<xy< t<
=g g T xy<l .

subject to the Neumann boundary conditions:

u (A1) =0 u(Lyz0) =62 sinhy,  u(x0z1)=0
u,(x1z0) =6 sinhr, 1, (x,051) =0 u,(Ly,z,1) =6)°2 sinhr,
and the initial conditions:

u(x,y,2,0)=0,  u,(x,y,20)=x"y’z".

The exact solution for this problem is:

u(x,y,z,t)=x°y°z®sinht.

Applying Modified Decomposition Method (MDM), we get:

u ., (x,y,2) = xy°z% +Lj‘j‘ x? azu” +y? azu” +7° azu” —u_|dsds.
i1 (X5 Vs y axz y axz ax2 n o
Consequently, following approximants are obtained:

u,(x,t)=c,
u,(x,y,z,t)= x6y6z6t,
u,(x,t) = Nuy(x,1),

t3
u,(x,y,z,t)= x6y6z6 [t + ;j ,
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Figure7. f =1 and z=1.

u,(x,t)=N (uo(x,t)+u1(x,t)) — Nu,(x,1),

3! 5!
1y (1) = Nty (6, 1)1, (6, 1) 1, (6.1)) — Nluty (. )+, (x, 1)),

£
u,(x,y,z,t)= )c6y6z6 (t+—+—j,

t3 ts t7
6.6_6 :
Uu,(x, V,Z,t =X V7 t+—+—+— y oo

The series solution is given by:

S 2

£t f
,Z,¢) =l 20 = [ 2% N T T N T
u(xy,z,1) =lim),_,_u (6 y,2,0)=xy" 35

and the closed form solution is obtained as (Figure 7):

u(x, y,z,t) = x°y°z° sin ht.

Figure 7 depicts the series solution at r=1, z=1.

Example 6

Consider the following Helmholtz equation:

’u(x,y) du(xy)

2% x? " azyz +8u(x,y):O,
with initial conditions:
u(0,y)=sin(2y), u (0,y)=0.
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Figure 8. Depicts the series solution.

The exact solution for this problem is:
u(x,y)=cos(2x)sin(2y).

Applying Modified Decomposition Method (MDM), we get:

tot 2 2
u,, (x,t)=sin2y+ j j [[ aaxuz" J + [aayuz" J +8(u, )J dsds.
00

Consequently,
(Figure 8):

following approximants are obtained

u,(x,t)=c,
u,(x, y)=sin(2y),
u,(x,t) = Nuy(x,1),
u,(x,y) =sin(2y)—2x*sin(2y),
u,(x,t)=N (uo(x,t)+u1(x,t)) — Nuy(x,1),
u,(x,y) =sin(2y)—2x> sin(2y)+§x4 sin(2y),
14, (05,1) = N{uty (061)-+1 (51) 4, (3.)) = Ny (5. 0)+14 (5.1),

) ) 2 4. 4 . .
u(x, y)=sin(2y) —2x s1n(2y)+§x s1n(2y)75x sin(2y), :.
u(x,y)=lim,__u,(x,y)=sin(2y)cos(2x),

which is the exact solution. Figure 8 depicts the series
solution.

Example 7

Consider the following Helmholtz equation:

-i'
"'-l-
o0 YR

Figure 9. Depicts the series solution.

’u(x,y) N d’u(x,y)

azxz azyz —M(X, y):(),

with initial conditions:
u(0,y)=y, u,(0,y)=y+cosh(y).
The exact solution for this problem is:

u(x,y)=ye*+xcosh(y).

Applying Modified Decomposition Method (MDM), we get:

. [ az azun
u,1+1(x,t)=s1n2y+jj‘ ax P ~(u, ) |ds ds.
00

Consequently,
(Figure 9):

following approximations are obtained

u,(x,y)=y+xy+xcosh(y),

1 1
u (x,y) = y+xy+xcosh(y)+gyx3 +§yx2,

1 1 1
u,(x,y)=y+xy+xcosh(y)+—yx’ += yx* +— w*,
(X%, y) = y+xy () X oy

1 1 1 1
= y-+ay+xcosh( ) +— o +— 3o +— ' +— 0,
(%, y) =y+xy () 6)9‘3 2303 e 120”;
u(x,y)=lim,__u,(x,y)=ye +xcosh(y),

which is the exact solution. Figure 9 depicts the series
solution.



CONCLUSION

In this paper, we applied Modified Decomposition Method
(MDM) to solve a wide range of physical problems related
to physics and applied sciences. The method is applied in
a direct way without using linearization, perturbation,
transformation, discretization or restrictive assumptions. It
may be concluded that the MDM is very powerful and
efficient in finding the analytical solutions for a wide class
of boundary value problems. The method gives more
realistic series solutions that converge very rapidly in
physical problems. It is worth mentioning that the method
is capable of reducing the volume of the computational
work as compare to the classical methods while still
maintaining the high accuracy of the numerical result.
The fact that the MDM solves nonlinear problems without
using the Adomian’s polynomials is a clear advantage of
this technique over the decomposition method.
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