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Classification and modeling of activity duration provide significant characteristics to estimate the 
psychological behaviour of a smart home resident. This article validates the fact, which was only an 
assumption previously, that smart home event duration can be modeled in Gaussian distribution. It 
proposes a temporal prediction algorithm based on Gaussian distribution to predict the duration of an 
event interval, which approximates the ending time of the smart home user’s activities. It incrementally 
estimates the ending time of an event that follows the central limit theory of statistical probability. The 
results and analysis imply that temporal duration follows Gaussian distribution, which expresses 
almost the same property of Gaussian equation. The algorithm is verified with significant amount of 
MavHome and MIT PlaceLab smart home sensory data, which exhibit 88.3 and 90.3% prediction 
accuracies respectively. Finally, the proposed temporal algorithm is utilized for temporal anomaly 
detection, which has detected 54 and 46 abnormal behaviour when tested with MavLab and MIT 
PlaceLab data respectively. 
 
Key words: Temporal duration, smart homes, Gaussian distribution, prediction algorithm, temporal prediction, 
anomaly detection. 

 
 
INTRODUCTION 
 
Smart home projects have been conducted for the last 
several decades and they convey different ideas, 
functions and utilities. Smart home is an application of 
ubiquitous computing where the home environment is 
monitored by ambient intelligence to provide the user 
with context-aware services and facilitate remote home 
control. It is expanding into different branches of speciali-
zation that focus on the interest of the researchers, and 
user requirements and expectations. 

Smart home research involves the understanding of 
human psychology to predict inhabitant behaviour. The 
success of smart home research mostly depends on how  
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efficiently human behaviour can be represented into 
existing computing elements. User activity is a collection 
of smaller tasks that occur repeatedly following specific 
temporal pattern. Predicting the time duration of events 
is an important parameter to identify temporal 
characteristics of human activity. Unfortunately, the 
event durations are not persistent. Duration varies 
according to user habit, willingness, and may even 
change between weekdays and weekends. The task 
duration is also influenced by environmental parameters 
like temperature, humidity, rain, snowfall and so on. The 
activity duration may also differ during daytime and at 
night. There should be some method to identify this time-
varying pattern and utilize it for temporal prediction. 

Temporal duration is a stochastic random variable that 
eventually follows a statistical distribution. This study 
investigates  the   potential   of  constructing  a  temporal
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Table 1. Allen's thirteen temporal relations. 

 

Relation Pictorial example Inverse relation Pictorial example 

X before Y XXX   YYY X after Y YYY  XXX 

X meets Y XXXYYY Y meets X YYYXXX 

X overlaps Y XXX 

   YYY 

Y overlaps X YYY 

   XXX 

X during Y     XXX 

YYYYYYY 

Y during X     YYY 

XXXXXX 

X starts Y XXX 

   YYYYY 

Y starts X YYY 

   XXXXX 

X finishes Y       XXX 

YYYYYY 

Y finishes X     YYY 

XXXXX 

X equals Y XXX 

YYY 

 

 
 
 
 

prediction algorithm based on the central limit theory. It 
formulates the temporal characteristics of a smart home 
inhabitant based on hypothesis test and validation. 
Initially, we assumed the hypothesis that temporal 
duration follows Gaussian distribution (Allen, 1983; 
Jakkula and Cook, 2007; Ozgun and Orhan, 2011; 
Rashidi and Cook, 2009). Based on this hypothesis, an 
incremental algorithm was proposed, which recursively 
constructed a temporal database with statistical mean 
and standard deviation. We have conducted experiment 
with practical dataset to validate the model. Experimental 
results confirm the validation of the hypothesis, that is, 
smart home temporal duration follows Gaussian 
distribution. 
 
 

RELATED WORKS 
 

Although temporal prediction is a potential problem for 
smart home implementation, there are only a few re-
search outcomes for this problem. A very early study was 
done by Allen in 1983, which mainly discussed temporal 
logic of event intervals (Allen, 1983). In his study, Allen 
argued that time interval is more informative than the 
point of time. The temporal relations between two events 
can be classified into thirteen distinct conditions. If X and 
Y are two events, then temporal relations can be 
classified into thirteen different ways considering the 
inverse of those relations as shown in Table 1. 

Based on this logic, Allen presented a constraint 
propagation algorithm, which incrementally updates its 
temporal network using predicative logic. In the study, 
Allen proposed that the temporal logic can be utilized for 
duration reasoning. However, the method provides only 
logical duration relationship, which is not a numerical 
value, that is, if X and Y are two events, it can only esti-
mate whether the duration of X is larger, smaller or equal  
to Y. It does not provide the numerical time duration of X  

or Y (in day, hour, minute or second). 
Gopalratnam and Cook (2007) assume that the time 

interval between smart home events approximates a 
Gaussian distribution. Their Active LeZi algorithm 
incrementally builds a Gaussian that represents the 
observed Gaussian distribution of the relative time of 
smart home events. The mean and standard deviation of 
the Gaussian is constructed incrementally by recursively 
defining the values. The resulting algorithm exhibits 70% 
probability to get the next event within the mean ± 
standard deviation of the predicted time. The algorithm is 
based on the hypothesis that the intervals follow 
Gaussian distribution. But they did not provide any 
statistical evidence of the assumption. Moreover, it is tested 
on synthetic data which does not reflect real life scenarios.  

Jakkula and Cook (2007) tried to combine the above 
two algorithms for temporal prediction. They simplified 
Allen’s temporal logic, which only determines the most 
probable states of thirteen temporal relations. For this 
purpose, an algorithm is proposed to determine the most 
frequent relationship between the events. For interval 
reasoning, the researchers modified Active LeZi to 
predict between µ ± 2σ ranges (µ and σ represent mean 
and standard deviation respectively). Its functionality is 
similar to Allen’s temporal logic, which only estimates the 
relation between the events. It fails to provide 
methodologies to predict the task duration for a smart 
home event. 

Mori et al. (2008) used Gaussian mixture model 
(GMM) to detect the behavioural anomaly of smart home 
residents. Like other previous researchers, the authors 
used the concept of Gaussian distribution without 
validating this hypothesis.  

Most of the previous algorithms related to resolving the 
temporal relationship, which is not the main concern of 
our problem (Allen, 1983; Gopalratnam and Cook, 2007).  

However,  these  methods  provide  several  guidelines 



 

 
 
 
 

Initialize temporal_database: = null 

Initialize task_id: = 1 

 

Loop 

Wait for the sensor data 

If data found 
Grab the sensor_id and status 

Check the sensor_id in the temporal_database 

  If sensor_id does not exists 

Insert task_id, sensor_id, current_time as status_time to the 

Temporal_database 

Set task_id: = task_id+1 

  Else 

If status = ON 

(Update corresponding event in temporal_database and 

predict the ending time of the event) 

Set status: = ON 

Set status_time: = current_ time 

Predict the ending time: = mean ± 2 * standard deviation 

Else  

(Update corresponding event in temporal_database) 

Set time duration: = current time - status time 

Set standard deviation: = | mean – time duration | 

 Set mean: = (mean+ time duration) / 2 

Forever  
 

Figure 1. Pseudocode of the proposed prediction algorithm. 

 
 
 
to develop an algorithm for temporal duration. Several 
algorithms are based on the hypothesis that temporal 
interval follows Gaussian distribution, but they do not 
validate their assumption (Gopalratnam and Cook, 2007; 
Jakkula and Cook, 2007; Youngblood and Cook, 2007). 
The pro-posed algorithm validates the hypothesis and 
presents an efficient technique by intensive analysis of 
practical smart home data. 

 
 
THE TEMPORAL PREDICTION ALGORITHM 
 
Human activity can be modeled via utilizing the 
information generated by sensors attached to home 
appliances. The difference between starting time and 
ending time of an electrical appliance indicates the 
temporal duration of device usage. Contact switches 
connected to furniture doors are used to measure the 
duration of open and close status. A user can be tracked 
with pressure sensors under the floor, which indicate the 
duration of presence at that location. Therefore, most of 
the smart home event durations can be estimated from 
the starting and finishing points. This study proposes a 
method to find out a relationship between the time 
durations of smart home user activities.  

Suppose, for any appliance, 
s

t  indicates the starting 

point and 
e

t  indicates the ending point of  device  usage.  
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Let 
1s

t  be the 1st starting point of the appliance, which 

ends at 
1e

t ; 
2st be the 2nd staring point of that device, 

which ends at 
2et and so on. And, 

nst  is the n th starting 

point of the appliance, which ends at
net . There are m 

appliances that can be represented by 1x , 2x , 3x ,…,
m

x . 

We have to predict the ending time, 
e

t of any appliance 

usage given that the starting time is
s

t . It also implies 

that the system is aware of all previous starting 

times
1s

t ,
2st ,…..,

nst and ending times 
1e

t ,
2et ,….,

net .  

 
 
Data collection 
 
For our work, we used practical smart home data from 
MavLab (webpage-ailab, 2011) and PlaceLab (webpage-
placelab, 2011). MavLab is the testbed of MavHome at 
University of Texas in Arlington. The data sample 
consists of the activities of six inhabitants at MavHome 
in April 2003. MavHome dataset has 51 different 
appliances with time and status information. There are a 
total of 689 sequential sensor events with 326 temporal 
durations. 

We used wire switch data from PlaceLab Intensive 
Activity 1 (PLIA1) dataset (webpage-placelab, 2011). 
PLIA1 is a dataset from MIT PlaceLab, which was 
initiated by MIT House_n research group (Intille et al., 
2006). The wire switches detect on/off and open/close 
events such as doors being opened/closed and knobs 
being turned using switches built into the infrastructure. 
There are total 953 sequential events from 30 wire 
switches, which create total 469 durations of the events. 
 
 
METHODOLOGY 

 
The problem is to predict the ending time of an event, given the 
starting time. The ending time is directly related to the duration of the 
task. Suppose, 
 

11xt , 
21xt , 

31x
t ,……., 

n
x

t
1

 are the durations of 1x  event. 

12xt , 
22xt , 

32x
t ,……..

n
x

t
2

are the durations of 2x  event. 

…………………………. 

1mxt , 
2mxt , 

3mx
t ………

nmx
t are the durations of 

m
x  event. 

 

We have to develop a model considering all these temporal durations 
according to the corresponding events to predict the finishing time of a 
smart home event. 

An incremental learning algorithm is proposed to represent the 
dataset in the temporal_database, where temporal_database is the 
name of the database location. Instead of storing every value of time 
duration, it processes the mean and standard deviation using only the
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Figure 2. Prediction accuracy when µ ± σ is used to predict the ending time of MavLab events. 

 
 
 

 
 

Figure 3. Prediction accuracy when µ ± 2σ s used to predict the ending time of MavLab events. 

 
 
 
previous value, which is the incremental output of all the previous 
history.  

Figure 1 is the pseudocode of the proposed prediction algorithm. 
Initially, the temporal_database is empty. The program waits for the 
sensor data. If any sensory information arrives, it checks the 
sensor_id in the temporal_database, where sensor_id is the 
identification of sensory information. If sensor_id is not found, it 
assigns a unique task_id for the sensor, stores the sensor_id, status 
and current_time as status_time, where task_id is the identification of 
the sensor, status is the present status of the sensor, current_time is 
the time the sensor information arrive and status_time is the 
combination of both status and current_time. At this point, mean and 
standard deviation is empty. If sensor_id exists, it checks whether the 
arriving sensor status is ON or OFF. If arriving status is ON and the 
corresponding temporal_database event status is OFF, it just updates 
the corresponding database event status to ON and predicts the 
ending time by calculating µ ± 2σ. If arriving status of the sensor is 
OFF and the corresponding temporal_database event status is ON, it 
updates the status to OFF; calculates the event time_duration from 
last status_ time and current_time and sets status_time to 
current_time. Then, it updates the deviation from last mean and 
calculated time_duration, where time_duration is the duration of task 

execution. Finally, it computes the mean from last mean and 
calculated time_duration. 

 
 
PERFORMANCE ANALYSIS AND RESULTS 
 
The algorithm is tested incrementally to evaluate its 
performance. For this purpose, initially it was trained with 
the first event, and tested using only that event to 
estimate the prediction accuracy. Then, it was trained 
with the first two sequential events and tested using 
those two events for prediction accuracy calculation. 
Similarly, the temporal_database was trained with all the 
events and tested with those events to check whether it 
can predict the time durations accurately. 

Figures 2 to 4 shows the accuracy curves using 
MavLab data. Figure 2 illustrates the prediction accuracy 
when the ending times of the events were predicted 
between µ ± σ. Initially, when the training history is small,
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Figure 4. Prediction accuracy when µ ± 3σ is used to predict the ending time of MavLab events. 

 
 
 

 
 

Figure 5. Prediction accuracy when µ ± σ is used to predict the ending time of PlaceLab events. 
 
 
 

it shows immature prediction accuracies. The increment 
of training sequence tries to converge the temporal 
database. The prediction accuracy becomes almost 
stable in the range of 60 to 80%. 

The prediction accuracy increases when the predictor 
estimates the ending point between mean µ ± 2σ. In this 
case, the algorithm converges after about 350 sequences 
and shows persistent prediction accuracy between 80- 
90% as shown in Figure 3. The performance improves if 
µ ± 3σ is utilized to verify the algorithm. In this case, the 
prediction accuracy lies between 90 to 97% as shown in 
Figure 4. Figures 5 to 7 exhibits prediction accuracies 
when MIT PlaceLab data is used to verify the algorithm. 

When the algorithm is tested between µ ± σ range, the 
prediction accuracies lie between 50-80% (Figure 5). 
Figure 6 shows that prediction accuracies increase when 
µ ± 2σ is utilized to calculate the prediction accuracy. 
The average prediction accuracy is 79.4% and most of 
the time, the curve shows prediction accuracies between 
60 to 90%. 

The prediction accuracy becomes more stable (Figure 
7) when µ ± 3σ is used as the time duration range. In this 
case, the curve shows stable prediction accuracies 
between 80 to 90% (except a few exceptional cases). 

The figures (Figures 2 to 7) illustrate some significant 
properties of the algorithm. Initially, the training sequence
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Figure 6. Prediction accuracy when µ ± 2σ is used to predict the ending time of 

PlaceLab events. 

 
 
 

 
 

Figure 7. Prediction accuracy when µ ± 3σ is used to predict the ending time of PlaceLab event. 
 
 
 

sequence is not adequate for prediction. At those stages, 
the algorithm shows immature prediction accuracies. 
With the passage of time, more events arrive and the 
algorithm starts to converge. After a certain amount of 
sensory information, it shows stable prediction 
accuracies. 

The curves of Figures 2 to 7 shows that the prediction 
accuracy is reasonable compared with previous 
researches where the predictor used µ ± 2σ range to 
determine the ending time. Therefore, this property is 
utilized in the proposed algorithm to predict the durations. 

THE TEMPORAL MODEL 
 
The algorithm is tested from different angles with respect 
to the standard deviation multiplier to properly identify 
the temporal pattern of smart home event durations. For 
this purpose, the temporal database is first trained with 
all smart home sensor data sequences. Then it is tested 
for the incremental multipliers of standard deviation 
which are added to the mean. Figure 8 shows how 
prediction accuracy increases according to the increment 
of the multiplier.  
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Figure 8. Prediction accuracy increases according to increment of standard deviation multiplier. 
 
 

 

The lower accuracy curve shows the prediction 
accuracy using MavHome data. The curve shows that 
when µ ± σ is used for end time prediction; it exhibits 
74.2% prediction accuracy. If µ ± 2σ is applied, the 
accuracy increases to 83.4%, which is about 9.2% better 
than the previous result. It shows about 3.1% 
improvement when µ ± 3σ is utilized for prediction. If µ ± 
4σ is applied, the accuracy becomes 88.3%, which is 
1.8% higher than the previous one. The accuracy curve 
becomes almost parallel to the x-axis with further 
increments of the multiplier.  

The higher accuracy curve shows that for MIT 
PlaceLab data, the prediction accuracies are all time 
higher than MavHome data (Figure 8). It shows 90.3% 
prediction accuracy for µ ± σ, µ ± 2σ and µ ± 3σ duration 
ranges respectively. The curves of Figure 8 resemble the 
pattern of Gaussian distribution. A Gaussian distribution 
is expressed by the following probability density function 
(Montgomery et al., 2004), 
 

2

2

2

)(

2

1
)( σ

µ

πσ

−−

=

x

exf  for, - ∞<<∞ x               (1) 

 
From (1), we can compute that for any Gaussian random 
variable, 
 
P (µ - σ < X < µ + σ) =0.683 
P (µ - 2σ < X < µ + 2σ) =0.955 
P (µ - 3σ < X < µ + 3σ) =0.997 

 Figure 9 illustrates the temporal model of smart home 
event duration. Smart home event temporal duration 
follows a Gaussian distribution that can be represented 
by a bell-shaped curve and shows a 74.2% probability of 
predicting the ending time between µ - σ and µ + σ (for 
MavHome data). 83.4 and 86.5% accuracies are 
achievable if the durations are [µ - 2σ, µ + 2σ] and [µ - 
3σ, µ + 3σ] respectively (for MavHome data). Figure 10 
shows a similar bell-shaped curve when the algorithm is 
tested using MIT PlaceLab data. Both the curves prove 
that smart home event duration follows Gaussian 
distribution. 
 
 

TEMPORAL ANOMALY DETECTION 
 
Inhabitant activity prediction algorithms make significant 
contribution to anomaly detection (Youngblood and 
Cook, 2007; Rashidi and Cook, 2009), activity 
identification (Chen et al., 2009; Barnes et al., 1998), 
assistive services (Barger et al., 2005; Brdiczka et al., 
2009; Assim et al., 2006; Adlam et al., 2004) etc. The 
proposed temporal model and temporal prediction 
algorithm can effectively detect and identify abnormal 
behaviour of the residents. The model can easily be 
implemented into low computing power hardware 
because of simplicity and effectiveness. 

Suppose the inhabitant takes average 30 min for taking 
bath. Sometimes he may take more than 30 min, but 
never exceeds 35 min. If the duration exceeds 35 min, it 
means that there is a possibility of anomaly. This algorithm 
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Figure 9. The bell curve for MavHome events’ temporal duration which 
shows that it follows a Gaussian distribution. 
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Figure 10. The bell curve for MIT PlaceLab events’ temporal 

duration which shows that it follows a Gaussian distribution. 

 
 
 

can be utilized to identify these types of abnormal be-
haviours. Consider another scenario where the inhabitant 
forgets to close the main door. This inactivity can be 
easily detected by average door open time duration and 
its deviation.  

The proposed algorithm can detect the temporal 
anomaly of a smart home resident. It generates a 
temporal database of smart home event durations, which 
consist of average event durations and their deviations. 
For MIT PlaceLab data, the algorithm generates 30 
average durations and 30 standard  deviations  for  every  

 
 
 
 
event. When, the algorithm was tested using all the 
previously seen temporal durations, it detected total 46 
temporal anomalies.  

When the temporal database was trained with 
MavHome data, it generated 51 average durations and 
51 standard deviations for all the event durations. The 
algorithms got total 326 durations between the events 
and it detected 54 abnormal behaviours that exceeded 
normal time durations.  

In case of any abnormal activities, the smart home can 
generate an alarm or contact the remote health care 
center for immediate support.  
 
 
CONCLUSION 
 
This article presents an effective algorithm to predict 
temporal durations and ending times of smart home 
events. Although it is a potential problem for smart home 
event prediction, such an algorithm had not been 
formulated previously. The paper proposed an algorithm 
that shows 83.4% prediction accuracy when tested with 
MavHome smart home data. For MIT PlaceLab data, it 
exhibits 89.4% prediction accuracy. Several important 
properties related to the central tendency of the dataset 
are evaluated to illustrate the actual pattern of temporal 
durations. It validates the fact that smart home event 
duration can be modeled in Gaussian distribution, which 
was only an assumption previously. The proposed 
algorithm has a major application for temporal anomaly 
detection. It has detected 54 and 46 abnormal activities 
of the residents when tested with MavLab and MIT 
PlaceLab dataset respectively. The proposed temporal 
duration prediction algorithm and the temporal model 
present an effective way to represent temporal chara-
cteristics of the inhabitants.  
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