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This study presents the results of comparison of the four strategies of multiobjective differential 
evolution algorithm (MDEA) namely, MDEA1, MDEA2, MDEA3 and MDEA4 in solving five test problems 
and an engineering design problem. The test problems are ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. MDEA is 
a multiobjective algorithm developed from differential evolution, which is an evolutionary algorithm, to 
solve multiobjective optimization problems. The strategies were also compared with the results 
obtained from two other similar algorithms: NSGAII and DEMO. It was found that strategies of MDEA 
named MDEA1 and MDEA2 with binomial crossover method outperformed other two strategies named 
MDEA3 and MDEA4 with exponential crossover method in solving ZDT1 and ZDT4 while MDEA3 and 
MDEA4 outperformed MDEA1 and MDEA2 in solving ZDT2 and ZDT6. All the strategies performed 
equally in solving the engineering design problem presented. It was concluded that the strategies of 
MDEA are comparable/better than similar algorithms presented in solving the test problems and the 
engineering design problem.  
 
Key words: Multiobjective differential evolution algorithm (MDEA), multiobjective, evolutionary algorithm, 
differential evolution. 

 
 
INTRODUCTION 
 
Differential evolution (DE) has grown over the years with 
several extensions to solve multiobjective problems 
(Abbass and Sarker, 2002; Angira and Babu, 2005; Babu 
and Jehan, 2003; Chakraborti et al., 2009; Madavan, 
2002; Nariman-Zadeh et al., 2009). They are competing 
well with other multiobjective evolutionary algorithms 
(MOEAs) and they are producing good results (Angira 
and Babu, 2005; Ascia et al., 2012; Branke et al., 2009; 
Fan et al., 2006). However, more strategies of existing 
MOEAs and development of new ones are necessary to 
overcome some of the shortcomings and to develop more 
efficient and faster algorithms. The performance of 
different MOEAs based on differential evolution and their 
strategies are yet to be determined. This performance 
test will aid the modifications necessary to the existing 
algorithms    and   development   of   new   ones.  Several 

MOEAs have been developed over the past decade. 
They are based on different algorithms (Deb, 1999; Robic 
and Filipic, 2005; Sarker and Ray, 2009; Wang et al., 
2009; Xue et al., 2003; Zitzler and Thiele, 1999). They 
have been applied to real world problems with success 
(Konstantinidis et al., 2012; Lee et al., 2008; Marcelloni 
and Vecchio, 2012). The advantages of MOEA in solving 
real world optimization problems cannot be overempha-
sized. They are better than classical methods in solving 
multiobjective problems. They are faster, easy to use and 
with few control parameters especially differential 
evolution. The objectives in design problems are 
increasing every day and they are usually conflicting with 
multiple constraints. This growth has necessitated the 
development of more powerful algorithms to find 
solutions to them. Researchers in MOEAs are rising up to 
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Table 1. Formulations of the four different strategies of multi-objective differential evolution algorithm (MDEA). 
 

Strategy Description Formulation 

MDEA1 DE/rand/1/bin [ ] 21*F),,(),,( )j,,(),,(
3

rgxjrgxjrgxjigv −+=
 

MDEA2 DE/rand/2/bin [ ]),,(),,(),,(),,(*F),,(),,( 43215
jrgxjrgxjrgxjrgxjrgxjigv −−++=

 

MDEA3 DE/rand/1/exp [ ] 21*F),,(),,( )j,,(),,(
3

rgxjrgxjrgxjigv −+=
 

MDEA4 DE/rand/2/exp [ ]),,(),,(),,(),,(*F),,(),,( 43215
jrgxjrgxjrgxjrgxjrgxjigv −−++=

 

 

Source: Adeyemo and Otieno (2010). 
 
 
 

this challenge with the development of more powerful 
algorithms. Researchers are not working in isolation. 
They are developing hybrid algorithms using the 
advantages of different algorithms to develop a hybrid 
algorithm better than the algorithms (parents) 
themselves. This phenomenon is similar to DE algorithms 
and at large evolutionary algorithms (EAs) where the 
offspring produced from the parents is usually better than 
the parents. 

While the objective of single objective optimization 
problem is to come up with a solution to a problem, 
multiobjective presents many non-dominated solutions. 
The solutions are non-dominated in the sense that no 
solution is superior to another one in a set of non-
dominated solutions when all the objectives are 
considered (Deb, 2001). A final solution is thus chosen 
based on other information available to a user. 

Multiobjective differential evolution algorithm (MDEA) 
has been widely used to solve multiobjective problems 
with multiple constraints especially crop planning and 
optimum cropping patter determination (Adeyemo and 
Otieno, 2010). While MDEA was tested on test problems 
and engineering design problem, other strategies 
developed, MDEA2, MDEA3 AND MDEA4 are yet to be 
tested on test problems to determine their performance 
using different problems. The objective of this study was 
to determine the performance of the four different 
strategies of MDEA using different test problems and an 
engineering design problem. We wanted to find out the 
right parameter setting for each of the strategies for their 
optimum performance. Furthermore, we wanted to find 
out the best strategy for different types of problems and 
to find out any improvement needed for their optimum 
performance. 
 
 
Strategies of multiobjective differential evolution algorithm 
(MDEA) 

 
MDEA was proposed by Adeyemo and Otieno (2009). The 
algorithm is based on the first strategy of differential evolution which 
is DE/rand/1/bin which denotes that it uses binomial crossover and 
one vector for perturbation (Storn and Price, 1997). Later they 
proposed three other strategies and named them MDEA2, MDEA3 
and MDEA4 and named  the  original  one  MDEA1  (Adeyemo  and 

Otieno, 2010). MDEA2, MDEA3 and MDEA4 use the description 
DE/rand/2/bin, DE/rand/1/exp and DE/rand/2/exp as their 
formulations respectively (as presented in Table 1) from the ten 
strategies proposed by Storn and Price (1997).  

Initially, practical advice by Price and Storn (2008) was followed 
in choosing crossover constant (CR) and scaling factor (F) but the 
values were later varied to get the best results from the strategies of 
the MDEA. 

In MDEA, the vectors are randomly generated to create initial 
solutions to the problem. The generated solutions are allowed to 
undergo mutation, crossover and selection for the chosen number 
of generations just like the traditional differential evolution. The 
evolved solutions in the final generation are checked for domination 
and the dominated solutions are removed. Usually from previous 
experiment of this algorithm with crop planning problem and test 
problems, all the solutions turned out to converge to Pareto fronts 
(Adeyemo and Otieno, 2009, 2010). The trial solution survives to 
the next generation if its objective function is better or equal in all 
the objectives to the target solution. MDEA handles multiple 
constraints using penalty function proposed by Deb (2001). This 
algorithm combines the advantages of DEMO (Robic and Filipic, 
2005) and the algorithm by Fan et al. (2006). However, MDEA runs 
faster with more quality Pareto optimal solutions than both 
algorithms (Adeyemo and Otieno, 2009). 

 
 
RESULTS 

 
The four strategies of MDEA namely MDEA1, MDEA2, 
MDEA3 and MDEA4 were tested using five of the six test 
problems proposed by Zitzler et al. (2000). The 
description of the test problems are given in Table 2. 
These are unconstrained test beds. They are labeled 
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. They have two 
objectives to be minimized. The population size for all the 
problems was set at 300. The number of parameter, D 
was 30 in ZDT1, ZDT2 and ZDT3 while D was 10 for 
ZDT4 and ZDT6 and the maximum generation was 2000 
at a step of 500. These steps are named convergence 
Stages A, B, C and D for 500, 1000, 1500 and 2000 
iterations, respectively. The results were recorded at 
each stage (500 iterations). For ZDT1, CR and F were 
set at 0.2 and 0.3 respectively. These control parameters 
were set by trial and error to determine the best for each 
problem and each strategy. For ZDT1, all the 300 
solutions converged to the Pareto optimal front within 500 
iterations  (Stage  A)  for  MDEA1  and MDEA2. While the  
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Table 2. Description of test problems used in this study. 

 

Problems N Variable bounds Objective functions 
Optimal 

solutions 
Comments 
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convergence was maintained after 500 iterations for 
MDEA1, the solutions started diverging after 500 
iterations for MDEA2 (Stage B). MDEA3 could not 
converge with CR = 0.2  and  F = 0.3, therefore,  we  tried 

CR = 0.85 and F = 0.5. After 2000 iterations (Stage D), 
only 154 non-dominated solutions converged to the 
Pareto front. Divergence was noticed after 2000 iterations 
(Stage D).  It was  found  that  71, 129, 160 and 154 non- 



 

318          Int. J. Phys. Sci. 
 
 
 
dominated solutions were noticed at convergence stages 
A, B, C and D respectively. We had to experiment 
MDEA3 with different values of CR and F of 0.95 and 0.9 
respectively to achieve the convergence of all the 300 
solutions at convergence Stage D. We noticed a faster 
convergence of 278, 293, 298 and 300 at convergence 
Stages A, B, C and D respectively. For MDEA4, when we 
used CR = 0.2 and F = 0.3, only 87, 123, 194 and 185 
solutions converged at convergence Stages A, B, C and 
D respectively. We could not achieve 100% convergence 
of non-dominated solutions (300) until we changed our 
CR and F to 0.95 and 0.9 respectively. It can be 
concluded that for test problem ZDT1, higher values of 
CR and F (0.95 and 0.9, respectively) could made the 
solutions converge to Pareto fronts for MDEA3 and 
MDEA4 while lower values of CR and F (0.2 and 0.3 
respectively) achieved fast convergence for MDEA1 and 
MDEA2. 
 
 
Performance measures 
 
The common performance measures for multi-objective 
algorithms are employed in this study. Two performance 
metrics are used for adequately evaluating both goals of 
multi-objective optimization. One performance metric 
evaluates the progress towards the Pareto-optimal front 
and the other evaluates the spread of solutions. The 

descriptions of convergence metric ϒ and diversity metric 

∆ used to evaluate strategies of MDEA are given below. 
They are: 

 
 
Convergence metric ϒϒϒϒ 

 
This metric measures the distance between the obtained 
non-dominated front, Q and the set, P* of the Pareto-
optimal solutions. It is defined as: 
 

Q

d

Q
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==ϒ 1               (1) 

 
where Q is the number of non-dominated vectors found 
by the algorithm being analysed and di is the Euclidean 
distance (in the objective space) between the obtained 
non dominated front Q and the nearest member in the 
true Pareto front P. 

 
 
Diversity metric ∆∆∆∆ 

 
This metric measures the extent of spread achieved 
using the non-dominated solutions. It is defined as: 
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where di is the Euclidean distance (measured in the 
objective space) between consecutive solutions in the 
obtained non-dominated front Q, and d  is the average of 

these distances. The parameter df and dl are the 
Euclidean distances between the extreme solutions of the 
Pareto front P* and the boundary solution of the obtained 
front Q. Also an algorithm having a smaller value of 

diversity metric ∆ is better. 
All the 300 solutions converged to Pareto front at 

convergence Stage A for MDEA1 and MDEA2 for ZDT2 
using CR =0.1 and F = 0.3. CR and F were increased to 
0.95 and 0.9 respectively as with ZDT1 to achieve 
convergence of all the 300 solutions at convergence 
Stage C for MDEA3 and MDEA4. When we increased F 
to 0.95, all the solutions (300) converged to the Pareto 
front at convergence Stage B for MDEA4.  

For ZDT3, CR = 0.5 and F=0.5 were used for MDEA1 
and MDEA2 to achieve a convergence of 297 and 288 
solutions respectively at Stage C. Only 280 and 287 
solutions converged to the Pareto front at convergence 
Stages C and D respectively for MDEA3 and MDEA4 
(Figure 1).  For ZDT4, we experimented with CR = 0.2 
and F=0.3 for MDEA1 and MDEA2 and all the 300 
solutions converged to Pareto front at convergence Stage 
A. Only 168 and 164 solutions converged to Pareto front 
at Stage A using the same parameters for MDEA3 and 
MDEA4 respectively. The parameters were changed to 
CR = 0.95 and F = 0.9 for MDEA3 and MDEA4 for all the 
300 solutions to converge to Pareto front at convergence 
Stage A. 

We experimented ZDT6 with CR = 0.6 and F = 0.2 for 
MDEA1 and MDEA2 and all the 300 solutions converged 
to Pareto front at convergence Stage A. 205 solutions 
converged at convergence Stage A for MDEA3 and no 
convergence was noticed for MDEA4 using the same 
parameters. However, all the 300 solutions converged to 
Pareto front at Stage A for both MDEA3 and MDEA4 
when the parameters were changed to higher values (CR 
= 0.95 and F = 0.9) Figure 2 and 3. 

The four strategies were further tested on an 
engineering design problem of cantilever design (Deb et 
al., 2001). The description of this problem is given by Deb 
et al. (2001). It has two decision variables, two conflicting 
objectives to be minimized, two constraints and two 
bound constraints. The population size used for this 
problem was 100, CR = 0.8 and F = 0.3 were used for 
MDEA1 and MDEA2 with only 50 solutions converging to 
Pareto front at convergence Stage A. At higher values of 
CR = 0.95 and F = 0.9, 50 solutions also converged to 
Pareto front at Stage A for MDEA3 and MDEA4 (Figure 
4). 
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(a) NSGA (b) DEMO

(c) MDEA1, 500 ITERATIONS (d) MDEA2, 500 ITERATIONS

(e) MDEA3, 2000 ITERATIONS (f) MDEA4, 1000 ITERATIONS
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Figure 1. Results of different algorithms on test problem ZDT1. 

 
 
 

Performance of the strategies 
 
It was observed that MDEA1 and MDEA2 behave alike 
and MDEA3 and MDEA4 form another group. For 
convergence to be achieved, lower values of CR and F 
were suitable for MDEA1 and MDEA2 while higher values 
of CR and F (close to 1) favour the convergence of 
MDEA3 and MDEA4. It can be concluded that MDEA1 
and MDEA2 with binomial crossover method perform 
better with lower values of CR and F and MDEA3 and 
MDEA4 with exponential crossover method perform 
better with higher values of CR and F (very close to 1) 
(Adeyemo and Otieno, 2010; Price and Storn, 2008) 
(Figure 5). 

MDEA1 and MDEA2 converge within convergence 
Stage A (500 iterations) in all the test problems except 
ZDT3 which is a difficult optimization problem (Zitzler et 
al., 2000) and mostly all the solutions converged to the 
Pareto front except in cantilever problem where only half 
of them converged. In contrast, convergence to Pareto 
front only occurred at convergence Stages C and D for 
MDEA3 and MDEA4 except ZDT4 and ZDT6 and 
cantilever problem where it occurred at convergence 
Stage A.   Also,   not   all   the   solutions   converged    to   

the Pareto front in all the problems using MDEA3 and 
MDEA4. In ZDT3 which is a difficult optimization, only 
280 and 287 solutions converged to the Pareto front for 
MDEA3 and MDEA4 respectively. Half of the solutions in 
cantilever problem converged to the Pareto front like 
MDEA1 and MDEA2. Therefore, it can be concluded that 
MDEA1 and MDEA2 which use binomial crossover 
method, have been shown to show superior performance 
than MDEA3 and MDEA4 in the test problems except in 
the engineering design problem where they performed 
equally. This shows that all the strategies of MDEA are 
capable of solving the engineering problem with 
reasonable time (within 100 iterations). We also 
experimented with different values of CR and F for all the 
strategies when solving the engineering cantilever 
problem. It was found that all the strategies performed 
very well with any combination of values of CR and F. It 
further confirmed that all the strategies of MDEA are 
capable of solving the engineering design problem 
presented (Adeyemo and Otieno, 2010). 

In Figure 1(a-f), the non-dominated solutions for NSGA, 
DEMO, MDEA1, MDEA2, MDEA3 and MDEA4 are 
presented. It is found that the non-dominated solutions 
for  MDEA1  are  of  more  quality  than those of the other 
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algorithms as can be deduced from convergence and 
diversity metrics in Tables 3 and 4. Though the generated 
Pareto optimal fronts are similar in all the algorithms, 
those of strategies of MDEA outperformed those of 
NSGA and DEMO (Tables 3 and 4). Also those of 
MDEA1 and MDEA2 outperform MDEA3 and MDEA4 on 
the same ZDT1 problem (Tables 3 and 4). We can 
conclude that MDEA is better in achieving quality Pareto 
front than the other algorithms. 

Figure 2(a-f) shows the Pareto optimal fronts for test 
problem ZDT2 for all the algorithms. It was found that 
MDEA3 and MDEA4 produced Pareto fronts of higher 
quality than MDEA1 and MDEA2 in terms of diversity and 
convergence (Tables 3 and 4). MDEA2 produced the 
worst Pareto front in terms of convergence with solutions 
scattered on the Pareto front (Table 3). Though MDEA1 
and MDEA2 converged faster at convergence Stage A 
while MDEA3 and MDEA4 converged at convergence 
Stage C, still their Pareto fronts are worse than MDEA3 
and MDEA4 in convergence as can be seen in Table 3. 
MDEA1, MDEA3 and MDEA4 have superior Pareto fronts 
than the other algorithms (NSGAII and DEMO) but 
MDEA2 have an inferior Pareto front in test problem 
ZDT2 in diversity and convergence as in Tables 3 and 4. 

Further observation on MDEA3 is presented in Figure 
3. Figure 3a shows the non-dominated solutions’ 
convergence at CR = 0.85 and F = 0.5. It was found that 
at convergence Stage A, only 219 solutions were non-
dominated with scattered solutions on the Pareto front. At 
convergence Stage B (1000 iterations), only 268 
solutions were non-dominated (Figure 3b). We therefore 
decided to increase CR to 0.95 and F to 0.9. It was found 
that 293 solutions were non-dominated at convergence 
Stage A (Figure 3c); 300 solutions at convergence Stage 
C, respectively (Figures 3d). The quality of the Pareto 
front in Figure 3d also improved. This shows that MDEA3 
can only perform excellently with higher values of CR and 
F (close to 1) for a problem like ZDT2. 

In Figure 4, ZDT3 optimization results are presented for 
all the algorithms. It was found that only MDEA1 and 
MDEA4 produced high quality non-dominated solutions 
interms of convergence and diversity in Tables 3 and 4. 
MDEA3 produced poorest non-dominated solutions in 
convergence and diversity as in Tables 3 and 4. It took 
MDEA4 2500 iterations to produce 287 non-dominated 
solutions and MDEA1 produced 297 non-dominated 
solutions in 1500 iterations (convergence Stage C). 
Though MDEA2 had more non-dominated solutions (288) 
than MDEA4, the non-dominated solutions of MDEA4 are 
said to be of better qualities because they spread evenly 
(that is, more diversity) (Table 4). 

ZDT4 solutions are presented in Figure 5. It was 
observed that MDEA1 and MDEA2 have higher qualities 
of non-dominated solutions with more diversity than 
MDEA3 and MDEA4 though all the solutions are 
comparable/better than the ones by NSGAII and DEMO 
(Tables  3  and  4).  The  non-dominated  solutions by the  

 
 
 
 
MDEAs were generated at the convergence Stage A 
(under 300 iterations). 

ZDT6 test problem solutions are presented in Figure 6. 
It was found that all the strategies of MDEA produced 
100% non-dominated solutions at the convergence Stage 
A (within 500 iterations). MDEA3 and MDEA4 have non-
dominated solutions with higher diversity (Table 4). The 
solutions are well spread on the Pareto fronts unlike 
MDEA1 and MDEA2. All the non-dominated solutions are 
comparable/better in convergence and diversity than 
NSGAII and DEMO (Table 4). It was found that MDEA3 
and MDEA4 are better than MDEA1 and MDEA2 in 
diversity and convergence in the test problems ZDT2 and 
ZDT6 which have similar concave shape Pareto fronts. 
Also MDEA1 and MDEA2 are better in convergence and 
diversity in ZDT1 and ZDT4 which have similar convex 
shape Pareto fronts (Tables 3 and 4). Therefore, the 
results agree with the findings of (Adeyemo and Otieno, 
2010) that MDEA strategies with binomial crossover 
method (MDEA1 and MDEA2) can perform better than 
MDEA strategies with exponential crossover method 
(MDEA 3 and MDEA4) in some problems. Furthermore, 
we can now establish that MDEA3 and MDEA4 with 
exponential crossover method are also better in 
someproblems than MDEA1 and MDEA2 with binomial 
crossover method. Also, MDEA1 and MDEA4 are better 
than MDEA2 and MDEA3 in solving similar problems but 
MDEA1 has faster convergence than MDEA4 while 
MDEA4 has more diversity of non-dominated solutions 
than MDEA1 in similar problems.  

We therefore proceeded to solving engineering 
cantilever problem with the algorithms. The results are 
presented in Figure 7. We set lower values of CR and F 
(CR = 0.8 and F = 0.3) for MDEA1 and MDEA2 as in the 
previous test problems. We set higher values of CR and 
F (CR = 0.95 and F = 0.9; close to 1) for MDEA3 and 
MDEA4. All the four strategies performed well in solving 
the problem and producing non-dominated solutions. The 
solutions further confirm our previous results that MDEA1 
and MDEA2 outperform MDEA3 and MDEA4 in finding 
solutions on convex shaped Pareto fronts. The solutions 
of all the strategies of MDEA are comparable to the ones 
by DEMO and NSGAII. It is further confirmed that all the 
strategies of MDEA are capable of solving the 
engineering cantilever design problem presented with 
ease. 
 
 
Conclusions 
 
Strategies of multiobjective differential evolution algorithm 
(MDEA) are presented in this study. They were tested on 
five different test problems with different shapes of Pareto 
fronts. They were later tested on an engineering design 
problem. The strategies are based on the crossover 
methods and number of vectors used for the perturbation. 
MDEA1  and  MDEA2   use   binomial  crossover  method  
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Figure 2. Results of different algorithms on test problem ZDT2. 

 
 
 

 
 
Figure 3. Experiment of the convergence on test problem ZDT2 by MDEA3. 
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Figure 4. Results of different algorithms on test problem ZDT3. 



 

Otieno and Adeyemo          323 
 
 
 

 
 
Figure 5. Results of different algorithms on test problem ZDT4. 



 

324          Int. J. Phys. Sci. 
 
 
 

Table 3. Statistics of the convergence metrics results on all the test problems. 
 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSGA-II 0.033482±0.004750 0.072391±0.031689 0.114500±0.004940 0.513053±0.118460 0.296564±0.013135 

DEMO 0.001113±0.000134 0.000820±0.000042 0.001197±0.000091 0.001016±0.000091 0.000630±0.000021 

MDEA1 0.000921±0.000005 0.000640±0.000000 0.001139±0.000024 0.048962±0.536358 0.000436±0.000055 

MDEA2 0.000911±0.000010 0.080635±0.000841 0.001200±0.000000 0.041892±0.618792 0.000520±0.000111 

MDEA3 0.000103±0.000008 0.000600±0.000016 0.019050±0.005011 0.215873±0.230000 0.000561±0.000212 

MDEA4 0.000113±0.000015 0.000605±0.000051 0.001099±0.000028 0.221000±0.025893 0.000542±0.000252 

 
  

Table 4. Statistics of the diversity metrics results on all the test problems. 

 

Algorithms ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

NSGA-II  0.390307±0.001876 0.430776±0.004721 0.738540±0.019706 0.702612±0.064648 0.668025±0.009923 

DEMO 0.319230±0.031350 0.335178±0.016985 0.324934±0.029648 0.359600±0.026977 0.461174±0.035289 

MDEA1 0.283708±0.002938 0.450482±0.004211 0.299354±0.023309 0.406382±0.062308 0.305245±0.019407 

MDEA2 0.280015±0.006014 0.460023±0.002102 0.3110000±0.000030 0.412000±0.000055 0.356000±0.001113 

MDEA3 0.301500±0.000552 0.310560±0.005101 0.315100±0.000001 0.612000±0.000321 0.111000±0.000555 

MDEA4 0.298012±0.000412 0.320050±.0002300 0.201000±0.003000 0.551000±0.000022 0.161000±0.000021 
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Figure 6. Results of different algorithms on test problem ZDT6. 
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Figure 7. Results of different algorithms on cantilever design problem.  

 
 
 

while MDEA3 and MDEA4 use exponential crossover 
method. MDEA1 is based on DE/rand/1/bin, MDEA2 on 
DE/rand/2/bin, MDEA3 on DE/rand/1/exp and MDEA4 on 
DE/rand/2/exp. MDEA2 and MDEA4 use two vectors for 
their perturbation while MDEA1 and MDEA3 use one 
vector for their perturbation. All the strategies of MDEA 
produced non-dominated solutions that converge to the 
Pareto fronts in the five different test problems. MDEA1 
and MDEA2 outperformed MDEA3 and MDEA4 in finding 
solutions on convex shaped Pareto fronts that is, ZDT1 
and ZDT4 while MDEA3 and MDEA4 outperformed 
MDEA1 and MDEA2 in finding solutions on concave 
shaped Pareto fronts i.e. ZDT2 and ZDT6. In all, it was 
found that MDEA1 and MDEA4 are better than MDEA2 
and MDEA3 in solving all the test problems. It was 
however, found that MDEA4 produced non-dominated 
solutions of better quality and more diversity than MDEA1 
though with  higher  iterations.  In  the engineering design 

problem, all the strategies of MDEA performed excellently 
with MDEA1 and MDEA2 outperforming MDEA3 and 
MDEA4. It was concluded that all the strategies of MDEA 
are comparable/better than the other two algorithms 
compared (NSGAII and DEMO) in solving the test 
problems and the engineering cantilever design problem 
presented. It is suggested that modifications should be 
made to the strategies of MDEA to make them perform 
better in terms of diversity especially, MDEA2 and 
MDEA3. 
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