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INTRODUCTION 
 
Natural scientists have long held a fascination, 
sometimes bordering on mystical obsession for helical 
structures in nature. Helices arise in nanosprings, carbon 
nanotubes, α − helices, DNA double and collagen triple 
helix; the double helix shape is commonly associated 
with DNA, since the double helix is structure of DNA 
(Camci et al., 2009). This fact was published for the first 
time by Watson and Crick (1953). They constructed a 
molecular model of DNA in which there were two 
complementary, antiparallel (side-by-side in opposite 
directions) strands of the bases, guanine, adenine, 
thymine and cytosine, covalently linked through 
phosphodiesterase bonds. 

Helix is one of the most fascinating curve in science 
and nature. Also we can see the helix curve or helical 
structures in fractal geometry, for instance hyperhelices 
(Toledo-Suarez, 2009). The helix may be called a circular 
helix or W-curve (Ilarslan and Boyacioglu, 2007; 
Monterde, 2009). Circular helix is the simplest three-
dimensional spirals. One of the most interesting spiral 
examples are k -Fibonacci spirals. These curves appear 
naturally from studying the k -Fibonacci numbers 
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function. Fibonacci numbers and the related golden mean 
or golden section appears very often in theoretical phy-
sics and physics of the high energy particles (El Naschie, 
2001, 2005). Three-dimensional k -Fibonacci spirals 
were studied from a geometric point of view in (Falson 
and Plaza, 2008). 

We are thinking of a curve as the path traced out by a 
particle moving in Euclidean 3-space. So, position vector 
of the curve is very important to determine behaviour of 
the curve, because a position vector is a vector which 
describes the position of a point P  in space in relation to 
an arbitrary reference origin O . It is equaivalent to an 
imaginary displacement from  O  to P .  

A curve of constant slope or general helix in Euclidean 
3-space is defined by the property that the tangent makes 
a constant angle with a fixed straight line. A classical 
result about helix stated by Lancret in 1802 and first 
proved by de Saint Venant in 1845 (Struik, 1988) says 
that: A necessary and sufficient condition that a curve be 

a general helix is that the ratio 
κ
τ

 is constant along the 

curve, where κ  and 0τ ≠  denote the curvature and the 
torsion, respectively. If both of ( )sκ  and ( )sτ  are non-
zero constant, it is called a circular helix. Thereafter 
Bertrand curves discovered by J. Bertrand in 1850 are 
one of the important and interesting topic of classical 
special curve theory. A Bertrand curve is defined as a 
special  curve  which  shares  its  principal  normals   with  



 
 
 
 
another special curve (called Bertrand mate). The curve 
is a Bertrand curve if and only if there exist non-zero real 
numbers ,A  B  such that ( ) ( ) 1A s B sκ τ+ =  for any 

s I∈    (Carmo, 1976; Izumiya and Takeuchi, 2003). So a 
circular helix is a Bertrand curve. Note that Bertrand 
mates are particular examples of offset curves used in 
computer-aided design (Nutbourne and Martin, 1988). 
Izumiya and Takeuchi (2002) have shown that Bertrand 
curves can be constructed from the spherical curves. 
Thereafter they Izumiya and Takeuchi, (2004) intro-duced 
the concept of slant helix by saying that the normal lines 
of the curve make a constant angle with a fixed direction 
and given a characterization of slant helix in Euclidean 3-
space by the fact that the function  
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is constant. After them, Kula and Yayli (2005) investi-
gated spherical images of tangent indicatrix and binormal 
indicatrix of a slant helix. Moreover, they showed that the 
spherical images are spherical helices. Boyadzhiev 
(2007) explored three-dimensional versions of these two 
properties: Surfaces that are equiangular and those that 
are self-similar. He investigated the relationships among 
these surfaces and gave some examples. Munteanu 
(2010) studied constant slope surfaces in Euclidean 3-
space and found the parametric equations which 
characterized these surfaces and showed that a constant 
slope surface could be constructed by using an arbitrary 
curve on the sphere 2.S   

In this study, we give some characterizations of 
constant slope surfaces and Bertrand curves in Euclidean 
3-space. We find parametrization of constant slope 
surfaces for spherical images of tangent indicatrix, 
principal normal indicatrix, binormal indicatrix and the 
Darboux indicatrix of a space curve. Furthermore we 
investigate Bertrand curves corresponding to constant 
parameter curves of constant slope surfaces. 
 
 
PRELIMINARIES 
 
We now recall basic concepts on classical differential 
geometry of space curves and the definitions of the 
spherical images and constant slope surfaces in 
Euclidean 3-space. After that, we give the 
parametrizations about Bertrand curves and constant 

slope surfaces. Let 3: I R→�f  be a curve with 

( ) 0t′ ≠�f  where ( ) / ( )t d dt t′ =� �f f . We also denote the 

norm of x  by .x  The arc-length of a curve �f , 

measured from  
0( ) ,t�f  

0t I∈  is; 
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We say that a curve �f  is parameterized by the arc-

length if it satisfies ( ) 1.s′ =�f  Let us denote 

( ) ( )s s′= �T f  and we call ( )sT  a unit tangent vector of 

�f  at .s  We define the curvature of �f  by 

( ) ( ) .s sκ ′′= �f  If ( ) 0sκ ≠ , then the unit principal 

normal vector ( )sN  of curve �f  at s  is given by 

( ) ( ) ( )s s sκ′′ =�f N . The unit vector 

( ) ( ) ( )s s s= ×B T N  is called the unit binormal vector of 

�f  at .s  We recall the well known Frenet-Serret 
formulae: 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ).

s s s

s s s s s
s s s

κ
κ τ
τ

′ =
′ = − +
′ = −

T N
N T B
B N

                                  (3)       

                                                                                 

For any unit speed curve 3: I R→�f , we call 

( ) ( ) ( ) ( ) ( )s s s s sτ κ= +W T B  the Darboux vector field 

of .�f  Let us define the curve C  on 2S  with the help of 

vector field 
( )

( )
( )
s

s
s

= WC
W

. This curve is called the 

spherical Darboux image or the Darboux indicatrix of .�f  

The unit tangent vectors along the curve �f  generate a 

curve ( )T  on 2S . The curve ( )T  is called the spherical 

indicatrix of T  or more commonly tangent indicatrix of 

the curve �f . If ( )s=� �f f  is a natural representation of 

�f , then ( ) ( )s=T T  will be a representation of ( ).T  
Similarly, one considers the principal normal indicatrix 
( ) ( )s=N N  and binormal indicatrix ( ) ( )s=B B  (Struik, 
1988) . 

For a general parameter t  of a space curve �f , we 
can calculate the curvature and the torsion as follows: 
 

3 2

( ) ( ) det( ( ), ( ), ( ))
( ) ,  ( )
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t t t t t
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Constant slope surfaces are those for which the position 
vector of a point of the surface makes constant angle with  
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the normal at the surface in that point in the Euclidean 3-
space (Munteanu, 2010). 

Let 2: I S→f  be unit speed spherical curve. We 

denote v  as the arc-lenght parameter of f . Let us 

denote ( ) ( )v v= �t f  and we call ( )vt  a unit tangent 

vector of f  at v , where 
d
dv

=�
ff .  We now set a vector 

( ) ( ) ( )v v v= ×s f t , where f  denotes either the position 
vector or the point of the curve. By definition of the curve 
f , we have an orthonormal frame  { }( ), ( ), ( )v v vf t s  

along f . This frame is called the Sabban frame of f  
(Koenderink, 1990).  Then we have the following 
spherical Frenet-Serret formulae of :f   
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ),
g

g

v v

v v v v

v v v

κ
κ

=
= − +

= −

�

�

�

f t
t f s

s t

                                          (5)           

                                                                 
where ( )g vκ  is the geodesic curvature of the curve f in 

2S  which is given by ( ) det( ( ), ( ), ( )).g v v v vκ = �f t t  We 

now define a space curve  
 

0 0

( ) ( ) cot ( ) ( )
v v

v v
v a t dt a t t dtθ ′= + × +� ��γγγγ f f f c,       (6)       

 
where ,a  θ  are constant numbers and c  is a constant 
vector. 
 
 
Theorem 1  
 

Under the above notation, �γγγγ  is a Bertrand curve. 
Moreover all Bertrand curves can be constructed by the 
aforementioned method (Izumiya and Takeuchi, 2002). 
This theorem gives parametrization of Bertrand curves 
and we can give parametrization of constant slope 
surfaces as follows. 
 
 
Theorem 2  
 

Let 3: S R→�f  be an isometric immersion of a surface 

S  in the Euclidean 3-space. Then S   is of constant 
slope if and only if either it is an open part of the 
Euclidean 2-sphere centered in the origin, or it can be 
parametrized by  
 

( , ) s in (co s ( ) s in ( ) ( )),u v u v v vθ ξ ξ ′= + ×�f f f f      (7)                      

  
 
 
                                            
where θ  is a constant (angle) different from 0 , 

( ) c o t lo gu uξ ξ θ= =  and f  is a unit speed curve on 

the Euclidean sphere 2S  (Munteanu, 2010). 
Then we have the following corollary of Theorem 2. 

 
 
Corollary 1  
 
The position vector of ( , )u v�f  lies on the 

{ }( ) , ( )S p v vf s  plane, where ( ) ( ) ( )v v v′= ×s f f . 

 
 
THE CHARACTERIZATIONS OF CONSTANT SLOPE 
SURFACES AND BERTRAND CURVES  
 
Here, we give some characterizations of constant slope 
surfaces and Bertrand curves in Euclidean 3-space. We 
find parametrization of constant slope surfaces for spheri-
cal images of tangent indicatrix, principal normal 
indicatrix, binormal indicatrix and the Darboux indicatrix 
of a space curve. Furthermore we investigate Bertrand 
curves corresponding to constant parameter curves of 
constant slope surfaces and give an example of constant 
slope surfaces and Bertrand curves. 

The parametrization of Bertrand curves had been given 
previously, follow is the lemma. 
 
 
Lemma 1  
 
Let 2: I S→f  be unit speed spherical curve. Then 
 

0 0
( ) ( ) t a n ( ) ( )

v v
v a t d t a t t d tξ ′= + ×� ��γγγγ f f f                (8)       

                                                                      
is a Bertrand curve, where ,a  ξ  are constant numbers. 
Moreover all Bertrand curves can be constructed by this 
method. 
 
 
Proof 
 
By using the method in Izumiya and Takeuchi (2002 ),  

we compute the curvature and the torsion of ( ).v�γγγγ  
Taking the derivative of Equation 8 with respect to v , we 
have 
 
�

2

( ) ( ( ) tan ( ))

( ) (1 tan ( )) ( )

( ) ( 1 tan ( )) ( ) tan ( ) ( ) ( ( ) tan ( )) ( ).

g
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Therefore, by Equation 4, we can calculate as follows: 



 
 
 
 

2 2cos (1 ( ) tan ) cos ( ( ) tan )
( )  and ( )g gv v
v v

a a

ξ κ ξ ξ κ ξ
κ ε τ

− +
= = , (10)       

                        
where 1.ε = ±  
 
It follows from these formulae that 
 

( ( ) tan ( )) 1a v vεκ ξτ+ = ,                                        (11) 
 
so that ( )v�γγγγ  is a Bertrand curve. 

Conversely, let ( )s�γγγγ  be a Bertrand curve. There exist 

real numbers ,A  B  different from 0  such that 

( ) ( ) 1.A s B sκ τ+ =  We take that ,a A= tan .
B
a

ξ =  We 

assume that 0a >  and choose  1,ε ±  
cos

0.
a

ε ξ >  If 

we consider the Frenet frame { }, ,(s) (s) (s)T N B  for the 

curve ( )s�γγγγ , we define a spherical curve 
 

( ) (cos ( ) sin ( )).s s sε ξ ξ= −f T B                              (12)       
                                                                                       
Thus we have 
 

( ) cos ( ( ) tan ( )) ( ) cos ( ).s s s s s
a
εε ξ κ ξτ ξ′ = + =f N N      (13)         

                                                    
Let v  be the arc-length parameter of f  , then we have  

cos .
dv
ds a

ε ξ=  Moreover we have 

 

( ) (cos ( ) sin ( )) cos cos (cos ( ) sin ( ))
dv

a s a s s s s
ds a

εε ξ ξ ξ ξ ξ ξ= − = −f T B T B   (14)   

              
And 
 

tan ( ) tan (cos ( ) sin ( )) cos ( )

sin (cos ( ) sin ( )).

d dv
a v a s s s

dv ds a
s s

εξ ξε ξ ξ ξ

ξ ξ ξ

× = − ×

= +

ff T B N

B T

  (15)              

                 

Since ,
d

s
dv

= × ff  we have             

 

0

0

0

0 0
( ) tan ( ) ( ) cos (cos ( ) sin ( ))

sin (cos ( ) sin ( ))

( ) ( ).

v v s

s

s

s

s

s

a t dt a t t dt t t dt

t t dt

t dt s

ξ ξ ξ ξ

ξ ξ ξ

′+ × = −

+ +

= =
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�

� �

f f f T B

B T

T γγγγ
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This completes the proof. 
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Then we have the following theorem. 
 
 
Theorem 3  
 
Let ( )v�γγγγ  be a Bertrand curve. Then, ( )v′�γγγγ  lies on the 
constant slope surface. 
 
 
Proof 
 
By Lemma 1, taking the derivative of Equation 8 with 
respect to v  , we obtain 
 

( ) ( ) tan ( ) ( ).v a v a v vξ′ ′= + ×�γγγγ f f f                          (17)      
                                                                
We can take that sin cosa u θ ξ=  and then 

tan sin sin ,a uξ θ ξ=  where ,u  θ  are constant. Thus 

by Theorem 2, ( )v′�γγγγ  is u = constant parameter curve of 

constant slope surface ( , )u v�f   and ( )v′�γγγγ  lies on it. 
This completes the proof. 
We now show the relation between Bertrand curves and 
constant slope surfaces. We have the following theorem. 
 
 
Theorem 4 
 

Let 3: S R→�f  be an isometric immersion of a surface 

S  in the Euclidean 3-space and ( )v�f  be u =  constant 

parameter curve of constant slope surface ( , ).u v�f  Then 

0
( )

v
v dv� �f  is a Bertrand curve. 

 
 
Proof 
 
By Equation 7, we get 

( ) sin cos ( ) sin sin ( ) ( )v u v u v vθ ξ θ ξ ′= + ×�f f f f  for 

u = constant. If we integrate ( )v�f  then the equation is  
 

0 0 0

( ) sin cos ( ) sin sin ( ) ( ) .
v v v

v dv u v dv u v v dvθ ξ θ ξ ′= + ×� � ��f f f f    (18)       

 

Since coefficients of ( )vf  and ( ) ( )v v′×f f  are 

constant, we can take that sin cosa u θ ξ=   and then 

tan sin sin .a uξ θ ξ=  Therefore we obtain 

0 0 0

( ) ( ) tan ( ) ( ) .
v v v

v dv a v dv a v v dvξ ′= + ×� � ��f f f f  

 

By  Lemma  1,  
0

( )
v

v dv� �f   is  a   Bertrand   curve.   This 
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completes the proof. 

We have the following parametrizations of constant 
slope surfaces. 
 
 
Proposition 1 
 
Let 3: I R→αααα  be a space curve parametrized by the 

arc-length s  and 2( ) : I S→T  be spherical image of 
tangent indicatrix of space curve αααα . Then constant slope 
surface can be parametrized by 
 

0
( , ) sin cos ( ) sin sin ( ),  where ( ) .

s
u v u v u v v s dsθ ξ θ ξ ′= + = ��

Tf T B T  

                                                                                  (19) 
 
                                 
Proof 
 
From Theorem 2, we 
have ( , ) s in (c o s ( ) s in ( ) ( ) ) .u v u v v vθ ξ ξ ′= + ×�f f f f

Since 2( ) : I S→T  is a spherical curve, we can take 
that ( ) ( ) .v=T f  Thus 
 

( , ) sin (co s ( ) s in ( ) ( ))u v u v v vθ ξ ξ ′= + ×�
Tf T T T          (20)         

                                                       
and from the Frenet frame and the Frenet-Serret 
formulae, we get 

( , ) s in co s ( ) s in s in ( ).u v u v u vθ ξ θ ξ= +�
Tf T B  

This completes the proof. 
We have the following corollaries of Proposition 1. 

 
 
Corollary 2  
 
Let ( )v�f  be the position vector of u = constant 

parameter curve of constant slope surface  ( , )u v�
Tf  . 

Then we have the following relations: 
 

( ), ( ) ( ), ( ) constant and ( ), ( ) 0.v v v v v v< >=< >= < >=� � �f T f B f N  (21)                               
 
 
Corollary 3  
 
Let ( )v�f  be u = constant parameter curve of constant 
slope surface ( , ) .u v�

Tf  Then  
 

0 0 0

( ) sin cos ( ) sin sin ( )
v v v

v dv u v dv u v dvθ ξ θ ξ= +� � ��f T B         (22)    

                                              
is a Bertrand curve. 

In the following, we present analogue results in terms 
of spherical images of principal normal, binormal and  the  

 
 
 
 
Darboux indicatrices of space curve αααα . 
 
 
Proposition 2  
 

Let 
3: I R→αααα  be a space curve parametrized by the 

arc-length s  and 2( ) : I S→N   be spherical image of 
principal normal indicatrix of space curve αααα . Then 
constant slope surface can be parametrized by 
 

0
( , ) sin cos ( ) sin sin ( ), where ( ) .

s
uv u v u v v s dsθ ξ θ ξ ′= + =��

Nf N C N     (23)              

 
                   
Proof 
 
From Theorem 2, we have 

( , ) sin (cos ( ) sin ( ) ( )).u v u v v vθ ξ ξ ′= + ×�f f f f  

Since 2( ) : I S→N  is a spherical curve, we can take 

that ( ) ( ).v=N f  Thus 
 

( , ) sin (cos ( ) sin ( ) ( ))u v u v v vθ ξ ξ ′= + ×�
Nf N N N    (24)         

                                                           
and from  ( ) ( ) ( ),v v v′× =N N C  we get 

( , ) sin cos ( ) sin sin ( ).u v u v u vθ ξ θ ξ= +�
Nf N C  

This completes the proof. 
We have the following corollaries of Proposition 2. 

 
 
Corollary 4 
 

Let ( )v�f  be the position vector of u = constant 

parameter curve of constant slope surface  ( , )u v�
Nf . 

Then we have the following: 
 

( ), ( ) constant.v v< >=�f N                                        (25)                                                              
 
 
Corollary 5 
 

 Let ( )v�f  be u = constant parameter curve of constant 

slope surface ( , )u v�
Nf . Then  

 

0 0 0

( ) sin cos ( ) sin sin ( ) .
v v v

v dv u v dv u v dvθ ξ θ ξ= +� � ��f N C              

                                                                                     (26)       
                                              
is a Bertrand curve. 



 
 
 
 
Proposition 3 
 
Let 3: I R→αααα  be a space curve parametrized by the 

arc-length s  and 2( ) : I S→B   be spherical image of 
binormal indicatrix of space curve αααα . Then constant 
slope surface can be parametrized by 
 

0
( , ) sin cos ( ) sin sin ( ),  where ( ) .

s
u v u v u v v s dsθ ξ θ ξ ′= + = ��

Bf B T B    (27)        

  
                 
Proof 
 
From Theorem 2, we have 

( , ) s in (co s ( ) s in ( ) ( )).u v u v v vθ ξ ξ ′= + ×�f f f f Since 
2( ) : I S→B  is a spherical curve, we can take that 

( ) ( ).v=B f  Thus 
 

( , ) sin (cos ( ) sin ( ) ( ))u v u v v vθ ξ ξ ′= + ×�
Bf B B B    (28)      

                                                  
and from the Frenet frame and the Frenet-Serret 
formulae, we get 

( , ) sin cos ( ) sin sin ( ).u v u v u vθ ξ θ ξ= +�
Bf B T  

This completes the proof. 
We have the following corollaries of Proposition 3. 

 
 
Corollary 6  
 

Let ( )v�f  be the position vector of u = constant para-

meter curve of constant slope surface ( , )u v�
Bf . Then we 

have the following: 
 

( ), ( ) ( ), ( ) constant and ( ), ( ) 0.v v v v v v< >=< >= < >=� � �f T f B f N  (29)     
                              
 
Corollary 7 
 

Let ( )v�f  be u = constant parameter curve of constant 

slope surface ( , )u v�
Bf . Then  

 

0 0 0

( ) sin cos ( ) sin sin ( ) .
v v v

v dv u v dv u v dvθ ξ θ ξ= +� � ��f B T  (30)                                          

 
is a Bertrand curve. 
 
 
Proposition 4  
 

Let 3: I R→αααα  be a space curve parametrized by the 
arc-length   s    and   2( ) : I S→C     be   the    Darboux  
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indicatrix of space curve αααα . Then constant slope surface 
can be parametrized by 
 

0
( , ) sin cos ( ) sin sin ( ) where 1, ( ) .

s
u v u v u v v s dsθ ξ ε θ ξ ε ′= + = ± = ��

Cf C N C  (31)       

 
 
Proof 
 
From Theorem 2, we have  
 

( , ) sin (cos ( ) sin ( ) ( )).u v u v v vθ ξ ξ ′= + ×�f f f f   
 
Since 2( ) : I S→C  is a spherical curve, we can take 

that ( ) ( ).v=C f  Thus we get  
 

( , ) sin (cos ( ) sin ( ) ( ))u v u v v vθ ξ ξ ′= + ×�
Cf C C C    (32)  

      

and since 
2 2

τ κ
τ κ

+=
+

T BC   and  
2 2

κ τε
τ κ

− +′ =
+

T BC , we 

obtain  .ε′× =C C N  Therefore we have 

( , ) sin cos ( ) sin sin ( ).u v u v u vθ ξ ε θ ξ= +�
Cf C N  

This completes the proof. 
We have the following corollary of Proposition 4. 
 
 
Corollary 8 
 

Let ( )v�f  be u = constant parameter curve of constant 

slope surface ( , )C u v�f . Then  
 

0 0 0

( ) sin cos ( ) sin sin ( )
v v v

v dv u v dv u v dvθ ξ ε θ ξ= +� � ��f C N      (33)           

 
is a Bertrand curve. 

We now give an example of constant slope surfaces 
and Bertrand curves and draw their pictures by using 
Mathematica. 
 
 
Example  
 

We consider a spherical curve ( ) (cos ,sin ,0)v v v=f . 

Then we have ( ) ( ) (0,0,1)v v′× =f f . The constant 
slope surface is  
 

( , ) sin (cos ( ) sin ( ) ( )) (Munteanu, 2010),u v u v v vθ ξ ξ ′= + ×�f f f f  
 
thus we get 
 

( ) sin (cos ( ) sin ( ) ( ))v u v v vθ ξ ξ ′= + ×�f f f f   for   
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Figure 1. ( , )u v�f  constant slope surface (Munteanu, 2010). 

 
 
 

 
 

Figure 2. ( )v�f u = constant parameter curve of ( , )u v�f . 

 
 
 
u = constant. By using Theorem 4, we have the following 

Bertrand curve  , , ( ) cot :
5 5

u e u
π πθ ξ ξ� �= = = =� �

� �
   

 

0 0 0

( ) sin( )cos(cot ) (cos ,sin ,0) sin( )sin(cot ) (0,0,1) .
5 5 5 5

v v v
v dv e v v dv e dv

π π π π= +� � ��f  

 
 

 
 

Figure 3. 
0

( )
v

v dv� �f  Bertrand curve corresponding to 

( )v�f . 

 
 
 

We can draw pictures of ( , ),u v�f  ( )v�f  and 
0

( ) ,
v

v dv� �f  

respectively (Figures 1 to 3). 
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