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In this paper, we present a novel expectation maximization (EM) algorithm for automatic color image 
inpainting using a new discrete multi scale directional sparse representation called the discrete 
shearlet transform (DST). It is now acknowledged that the traditional wavelets are not very effective 
when dealing the multi dimensional signals having distributed discontinuities such as edges. To 
achieve a more efficient representation, one has to use basis elements with much higher directional 
sensitivity. Using a shearlet transform combines the power of multi scale methods with a unique ability 
to capture the geometry of multidimensional data and is optimally efficient in representing images with 
edges. The inpainting can be viewed as an interpolation or estimation problem with missing data. 
Towards this goal, we propose the idea of using expectation maximization (EM) algorithm in a Bayesian 
Framework, which is used to recover the missing samples using a sparse representation-discrete 
shearlet transform (DST). We first introduce an easy and efficient sparse representation-discrete 
shearlet transform (DST) based iterative algorithm for image inpainting. Then, we derive its 
convergence properties. We can demonstrate that this algorithm based on a new sparse representation-
discrete shearlet transform is very competitive in image inpainting applications both in terms of 
performance and computational efficiency. 
 
Key words: Sparse representation, wavelet, image inpainting, optimization. 

 
 
INTRODUCTION 
 
Image inpainting (Tony et al., 2006) refers to filling in 
missing or damaged regions (like cracks or scars) in 
images. In fine art museums, inpainting of degraded 
paintings is traditionally carried out by professional artists 
and usually very time consuming, not to mention the risk 
of completely destroying a precious and world-unique 
ancient painting due to direct retouching. 

Mathematically speaking, inpainting is essentially an 
interpolation problem, and thus directly overlaps with 
many other important tasks in computer vision and image 
processing, including image replacement, disocclusion, 
zooming, super resolution and error concealment. The 
current  work  has  been  motivated  and  inspired  by  the  
 
 
 
*Corresponding author. E-mail: mathi_r2k2@yahoo.co.in. 

error concealment application, which is to automatically 
recover lost packets information during transmission 
processes. 

After the release of the new image compression 
standard JPEG2000, which is largely based on wavelet 
transforms (Fadill et al., 2007), many images are 
formatted and stored in terms of wavelet coefficients. In 
the wireless communication of these images, it could 
happen that certain wavelet packets are randomly lost or 
damaged during the transmission process. Recovering 
original images from their incomplete wavelet transforms 
is an inpainting problem. But this task remarkably differs 
from the classical inpainting problems in that the 
inpainting regions are in the wavelet domain.  

Inpainting in wavelet domain (Raymond et al., 2009) or 
using a sparse representation (Fadill et al., 2007) is a 
completely  different   problem   since   there are  no  well 



 
 
 
 
defined inpainting regions in the pixel domain.  

In the work of Fadill et al. (2007), the authors used the 
dictionary which contains the wavelet transform and other 
directional transforms (Curvelet, Ridgelet). These 
traditional wavelets are not effective when dealing 
multidimensional signals containing distributed 
discontinuities such as edges. This approach, however 
often leads to the formation of Gibbs-type artifacts around 
sharp discontinuities, due to the elimination of small 
wavelet coefficients that should have retained.  

Although, new wavelet extensions such as curvelets 
and contourlets have a better approximation rate, they 
may also suffer from the same type of effects. Choosing 
an appropriate dictionary is a key step towards a good 
sparse representation hence inpainting and interpolation. 
Also, their work does not deal with the multivalued 
images. Therefore in the proposed work, a novel 
directional multiscale mathematical framework 
(Shearlets) (Kutyniok and Labate, 2009; Gao et al., 2009; 
Glenn et al., 2008; Glenn et al. 2009) is applied. The 
proposed work can also be used with the multi valued 
images.  

TV model is the powerful tool for color image inpainting 
(Donald and Chengda, 1995; Leonid et al., 1992) and 
greatly reduce these Gibbs artifacts. But the TV models 
suffer from the stair case effect. That is, the smooth 
regions (ramp) are transformed into piece wise constant 
regions (stairs).  

In the work of Ingrid et al. (2003), the authors used the 
operator ‘K’ which must be implemented sparsely. If the 
operator is not sparsed perfectly then iteration may be 
too heavy. Also, authors used variational approaches as 
thresholding techniques for sparsifying the wavelet 
expansions of noisy signals in order to remove the noise. 
The main drawback of these variational approaches is 
that they are limited to special kind of operators ‘K’. 

In this paper, to overcome these deficiencies, a new 
generalized expectation maximization (GEM) model is 
introduced with the new tight frame of shearlets. A key 
feature is that the discrete shearlet transform has many 
flexible attributes that lead to better stability and reduced 
Gibbs type artifacts.  

The EM algorithm formalizes the idea of replacing the 
missing data by estimated ones from coefficients of 
previous iteration, and then reestimates the new 
expansion coefficients from the complete formed data, 
and iterates the process until convergence (Jeff, 1983). 
We here restrict ourselves to zero-mean additive white 
Gaussian noise, even if the theory of the EM can be 
developed for the regular exponential family. In this 
proposed model, the expectation maximization algorithm 
is superior to that of TV model (Gaohang et al., 2009; 
Jerome and Marc, 2006; Marius and Xue, 2006; Antonon, 
2004).  

We shall demonstrate that our method based on 
combining shearlets with expectation maximization 
algorithm using Bayesian framework performs better than  
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the traditional wavelet technique. Furthermore, the 
number of iterations is significantly reduced.  

This paper is arranged as follows. Subsequently, we 
give a brief overview of the discrete shearlet transform 
(DST). Thereafter, the brief analysis of Expectation 
Maximization Algorithm is given. Followed by the GEM 
algorithm for image inpainting using a sparse 
representation DST. Afterward, the convergence 
properties of inpainting method in shearlet domain are 
presented. Then, numerical experiments are given to 
illustrate efficiency of the proposed method. Finally, the 
paper was concluded. 
 
 

DISCRETE SHEARLET TRANSFORM (DST) 
 
It is now widely acknowledged that traditional wavelet 
methods do not perform as well with multidimensional 
data. Indeed wavelets are very efficient in dealing with 
point wise singularities only. In higher dimensions, other 
types of singularities are usually present or even 
dominant, and wavelets are unable to handle them very 
efficiently. Images, for example, typically contain sharp 
transitions such as edges, and these interact extensively 
with the elements of the wavelet basis. As a result, many 
terms in the wavelet representation are needed to 
accurately represent these objects. In order to overcome 
this limitation of traditional wavelets, in this paper, a new 
wavelet transform is introduced, namely shearlet 
(Kutyniok and Labate, 2009; Gao et al., 2009; Glenn et 
al., 2008).  

The shearlet approach which we proposed here, is 
particularly designed to have deal with directional and 
anisotropic features typically present in natural images, 
and has the ability to accurately and effectively capture 
the geometric information of edges. The number of 
orientations in shearlet construction doubles at each 
scale, while in the Curvelets case it doubles at each other 
scale.  

The shearlets are defined on the Cartesian domain and 
the various directions are obtained from the action of 
shearing transformations. By contrast, the Curvelets are 
constructed in the polar domain and the orientations are 
obtained by applying rotations. Shearlet approach can be 
associated to a multiresolution analysis but the other 
directional transforms does not support this 
multiresolution analysis. When we use shearlets, there 
are no restrictions on the number of directions for the 
shearing and there are no constraints on the size of the 
supports for the shearing. 
 
 

Continuous shearlet transform (DST) 
 

The continuous shearlet transform is a non isotropic 
version of the continuous wavelet transform with a 
superior directional sensitivity. In dimension n=2, this is 
defined as the mapping. 
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Figure 1. Frequency support of shearlets for various values of a and s. 

 
 
 

 
 
Figure 2. The figure illustrates the succession of Laplacian pyramid and directional filtering. 

 
 

 

                                   (1) 
 
Each analyzing elements 

tsa ,,
  called shearlets has a 

frequency support on a pair of trapezoids, at various 
scales, symmetric with respect to the origin and oriented 
along a line of slope s. The support becomes increasingly 

thin as .0a  As a result, the shearlets form a 

collection of well-localized waveforms at various scales, 
orientations and locations, controlled by sa, and t , 

respectively. The frequency supports of some 
representative shearlets are illustrated in Figure 1.  
 
 

Discrete shearlet transform (DST) 
 

By  sampling,  the   continuous   shearlet    transform   on 

appropriate discretizations of the scaling, shear, and 
translation parameters tsa ,,  one obtains a discrete 

transform which is associated to a Parseval (tight) frame 

for
22 RL  (Peter and Edward, 1983). The construction of 

shearlet transform procedure is illustrated on Figure 2 
and Table 1. 
 
 

GENERALIZED EXPECTATION MAXIMIZATION (GEM) 
ALGORITHM 
 

Let  us now turn to the  missing data case  and  let  us 
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the construction of Shearlet transform and the procedure is illustrated on Figure 2. 
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Table 1. Construction of Discrete Shearlet Transform. 

 

S/N Algorithm 1 

1 Apply the laplacian pyramid scheme to decompose fa
j-1

 into a low pass image fa
j
 and a high pass image fd

j
 

2 Compute P. fd
j 
on a pseudo polar grid. 

3 Apply a band pass filtering to the matrix P. fd
j
 

4 Directly re-assemble the Cartesian sampled values and apply the inverse two-dimensional FFT  

 
 
 
observations do not contain all information to apply 
standard methods to solve the problem equations. 
Nevertheless, the EM algorithm can be applied to 
iteratively reconstruct the missing data and then solve 
the equation for the new estimate. The estimates are 
iteratively refined until convergence. Recall that the EM 
algorithm is a means of obtaining MAP/PMLE estimates 
(of which maximum likelihood is a particular case) of a 
parameter in cases where the PMLE is hard to obtain. 
The (Bayesian) EM algorithm will then produce a 
sequence of estimates alternating between two steps: 
 
E-step: Computes the conditional expectation of the log 
likelihood of the complete data, given the observed data 

and the current estimate
)(t , by defining the surrogate 

function:  
 

                   (2) 
M-step: Updates the estimates according to: 
 

  )()1( minarg tt Q 







                    (3) 
 
The E step: for regular exponential families, it is known 
that the E step involves finding the expected values of the 

sufficient statistics of the complete data Y  given observed 

data 
obs

Y  and the estimate of 
)(t

  and 
2  (Fadill et 

al., 2009; Donald and Chengda, 1995). Then, as the 
noise is zero-mean white Gaussian, the E-step reduces to 
calculating the conditional expected values and the 
conditional expected squared values of the missing data, 
that is: 
 

 (4) 
 
and 
  

   (5) 
 
The M step consists in maximizing the penalized 

surrogate function with the missing observations replaced 

by their estimates in the E step at iteration t , that is:  
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Thus, the M step updates 
)1( t

X and 
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Where 00 CardItrMn   is the number of observed 

pixels. D  denotes whichever estimation operation, 

associated to the penalty function   , applied to the 

expansion coefficients in . Note that at convergence, we 

have the noise variance inside the mask (that is, with 
observed pixels). If the noise variance is known in 

advance, the re-estimation of 
2  in the M step can be 

ignored. 
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Figure 3. The framework of our proposed scheme (DST + GEM Model for Inpainting). 

 
 
 

A very important feature of the M step is that it involves 
a denoising operation depending on the choice of 

thepenalty function. For example, under the 
1l  norm 

penalization and an orthogonal dictionary 
)1( t  can be 

simply estimated using the well known soft thresholding 
scheme. This can also be extended to redundant 
representations as we will see later. Other prior penalties 
will lead to different estimation rules in the M-Step. 
 
 
PROPOSED SCHEME: DST BASED GEM INPAINTING 
MODEL 
 

The frame work of our proposed scheme is illustrated in 
Figure 3. An image with continuous color and intensity 
levels can be treated as a two dimensional object. Colors 
are treated as fluid that flow (or) diffuse from the 
surrounding areas into the empty region.  

In order to deal with color images, RGB images are 
turned into a Luma/Chrominance representation e.g., 
YCrCb or Lab, and each channel is processed 
independently. The received degraded color input image 
is subjected with discrete shearlet transform (DST). Then, 
the shearlet transformed image is inpainted using 
generalized expectation maximization (GEM) model. The 
algorithmic view of the whole model is described in Table 
2. 
 
 
CONVERGENCE PROPERTIES OF GEM INPAINTING 
MODEL IN SHEARLET DOMAIN 
 

In Jeff (1983) t h e r e  is no simple general result for the 
EM that guarentees convergence to a local or global 

minimum without further assumptions. For instance, if the 

penalty function is convex, then the penalized log 
likelihood will be strictly convex and the EM algorithm will 
be guaranteed to converge to the unique maximum 
penalized likelihood value and a unique optimal image. 
But, if the penalty function is not convex then the 
sequences of the Bayesian EM estimates will only 
converge to a stationary point. The image at convergence 
will depend on the initialization of the algorithm.  

As noted in the work of Fadill et al. (2009), the 
convergence rate (at least when the initial position is not 
too far from the true image) is linear and governed by the 

fraction of missing information, that can be evaluated from 
the Fisher information matrix. Thus, here we decide to 

use the observed part of the image  as an initial 

estimate.  
Many interesting penalties that produce sparse 

solutions are non-convex or even non-smooth. 
Unfortunately, their use will be at the price of no 
guaranty to converge to a global or even to a local 
minimum. To circumvent this major drawback, we use the 
same heuristic argument as that of the MCA, for which 
we give a statistical interpretation.  

Indeed, one can consider the penalized log likelihood 
functional of the M-step as Gibbs energy, where the 
regularization parameter parallels the temperature in the 
same spirit as for simulated annealing. Then, we start at 

a high temperature (that is,  ) and then decrease   

according to a prescribed schedule (e.g. exponential or 

linear). For each value of , we run one iteration of the 

GEM inpainting Algorithm. This algorithm has flavor of a 
stochastic version of the EM. 
 
 
PERFORMANCE COMPARISON 
 

In previous work, the inpainting algorithm based on - 

Laplacian (Zhang et al., 2007; Shibo 2001) with TV model 
was applied to several synthetic and real degraded 
images, from which we present few examples. Figure 4 
depicts an example on real old degraded photograph. 
The dictionary contained the shearlet transform and the 

convex  penalty was used. The threshold parameter 

was fixed to the classical value 3 .  

From the resulting pictures shown in Figure 4, we can 
see that out shearlet inpainting model based on the p - 

Laplacian operator can dramatically improve the image 
quality better than TV wavelet inpainting model, 
especially in the large number of damaged coefficients.  

We illustrate the performance of the proposed 
algorithm for image inpainting in shearlet domain using 
GEM model and compare it with the image inpainting 
method proposed by Liu et al. (2007). Our codes are 
written in MATLAB 2008a. 

We test our inpainting systems on a number of 
standard color images from the USC-SIPI image data 
base and Kodak image library. Some results are 

Expectation Maximization (GEM) Model.  
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Table 2. Shearlet domain inpainting with GEM Model. 
 

Algorithm 2 

1. Get the degraded color image as an input image 

2. Using the input image obtained in step (1), obtain a Discrete Shearlet Transformed image 

3. Apply the GEM Inpainting Model by using the following steps to get a restored image  

Require : Observed image obsY  and a mask M , Convergence threshold   

3.1 Repeat 

3.2 E Step 

3.3 Update the image estimate  
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Our codes are written in MATLAB 2008a. 

 

 

 

 

 

 

 

 

We test our inpainting systems on a number of standard color images from the USC-SIPI image 

a b c 

 
 

Figure 4. (a) Children (b) Separated inpainting region (c) Inpainted image with the TV + -Laplacian. 
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Figure 5. (a) Baby (b) Separated Inpainting Region (c) Inpainted image with the GEM Model in Shearlet Domain. 

 
 
 

Table 3. PSNR values of our scheme compared to edge based inpainting and -Laplacian inpainting. 

 

Original image Edge based inpainting -Laplacian inpainting Our scheme 

Baby 24.34 28.76 35.56 

Seawater 34.67 35 45.67 

Festival 12.23 15.5 25.5 

Kodim01 45.78 45.99 56.67 

Kodim03 34.87 35 48.9 

Kodim22 22.13 24.23 32.1 

Kodim23 62.11 62.11 65.23 

Kodim08 18 18 21.23 

Yard 50 51.1 65.12 

girl 25.65 25.7 37.8 

 
 
 
presented here to evaluate the peak signal to noise ratio 
(PSNR) as well as reconstructed quality of our scheme. 

In all testes, we use shearlet base GEM model inpainting. 

Peak signal to noise ratio (PSNR) is also used to 
measure the quality of the restored images. It is defined 
as follows: 
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Where maxI is the maximum possible pixel value of the 
image. Figure 5 shows test image baby and 
corresponding results of our proposed system. Compared 
with the p - Laplacian operator inpainting and block 

based inpainting (Ignacio and Jung, 2007), the proposed 
GEM model gives good PSNR values with similar visual 

quality levels. Table 3 summarizes the PSNR values for 
different images which ensure the reproducibility of the 
results. Figures 6, 7 and 8 illustrate different kinds of 
features found in actual photographs. 

Figure 6 shows a 640×480-pixel photograph exhibiting 
uncorrelated high frequencies represented by the leaves 
of the trees. It was superimposed with a textual mask (18 
pt font size) covering 18.77% of its original area. The 
restored image, obtained in 6.37 s, essentially recovers 
all details of the original picture. Notice, for instance, the 
children playing in the back.  

Figure 7 shows a 640 × 480 - pixel image containing 
very few high contrast edges, but with 14.54% of its area 
scratched. The image shown on its right was recovered in 
5.87 s. Finally, Figure 8 shows a Seawater scene (512 × 
384 pixels) containing a large number of high contrasts 
edges and superimposed with a mask covering 16.19% 
of its area. Figure 7 (right) was reconstructed in 4.06 s. 

 

a b c 
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Figure 6. Yard: Image containing uncorrelated high frequency with text covering 18.77% of its area. Right: 
restored image obtained with our algorithm.  

 
 
 

 
 

Figure 7. Festival: Image containing few high contrast edges. Mask covers 14.54% of its area. Right: 
restored image. 

 
 
 

 
 

Figure 8. Seawater. Left: Image containing many high contrast edges, with text 
covering 16.19% of its area. Right: restored image. 
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Figure 9. Plot of time (s) required for implementing algorithm vs. Images. 

 
 
 

Notice that such a reconstruction is mostly fine, except 
for some disconnected branches on the top right. Due to 
the relatively small scale of some of the masked 

branches, -Laplacian inpainting techniques are also 

likely to fail to connect these edges.  
From Figure 9 we can easily observe that the proposed 

scheme gives best results and the results produced by 
this algorithm are comparable to those obtained by edge 
based inpainting and -Laplacian inpainting but faster, 

that is, required too little time to produce the results. 
 
 
Conclusion 
 
In this paper, a new discrete shearlet transform domain 
inpainting model based on generalized expectation 
maximization (GEM) for restoring arbitrary number of 
coefficients in arbitrary locations of shearlet coefficients 
for images with noise is presented. Comparing the 
proposed model to TV wavelet p Laplacian inpainting 

model, the better inpainting quality with much less 
computing time is achieved, especially with large number 
of damaged wavelet coefficients.  

Experimental results using many standard color images 
validate the ability of our proposed scheme in achieving 
higher PSNR values while preserving good visual quality. 
Compared to edge based inpainting and p -Laplacian 

inpainting, at the similar visual quality levels, maximum 
PSNR value of 65.23 can be acquired by our approach. 
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