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A number of potentially super-hard materials were examined using ab-initio methods. Low Gibbs free 
energy polymorphs of diamond-like materials for y = 0 to 7 in the stoichiometric type C8-y By, were 
identified at absolute zero of temperature. These were proposed as possible super-hard materials with 
useful applications. The materials with y = 0 to 3, that is, diamond (C), cubic C7B (c-C7B), rhombohedral 
C3B (r-C3B) and orthorhombic C5B3 (o-C5B3) were found to be dynamically and mechanically stable. A 
diamond standard was used as a stable comparison. Results of their bulk modulus calculations 
suggest that these materials were potentially super-hard in character. Systematic trends were 
established, the hardness was observed to reduce with increasing boron content. The materials under 
study were all determined as being brittle with diamond being the most brittle, C3B and C5B3 are the 
least brittle with B/G values of 1.32. Of the materials studied, diamond was determined to have the 
lowest degree of elastic anisotropy with a Universal Elastic Anisotropy Index of only 0.041 while C5B3 
had the highest anisotropy of 1.160, making it the most susceptible to micro-cracks. Our electronic 
band structure studies of c-C7B, which was predicted to be the hardest in the C8-y By system after 
diamond, showed that the top of the valence band was about 1.7 eV above the Fermi level with a band 
gap between the valence and conduction bands, making c-C7B a hole-type conductor having a likely 
increase in conductivity with increased applied hydrostatic pressure. 
 
Key words: Phase stability, elastic anisotropy, ultra-hard material. 

 
 
INTRODUCTION  
 
Super-hard materials have important applications in high 
speed machining tools for cutting and drilling as well as 
abrasives and wear-resistant coatings because of their 
strength. Diamond is extremely hard but at high 
temperatures and in the presence of oxygen it becomes 
unstable due to oxidation reactions (John et al., 2002). It 
is not suitable for machining steel and other alloys of iron 
because of its redox reactions with iron  and  some  other 

metallic elements (Nassau and Nassau, 1979) at 
temperatures exceeding 80 K. Cubic boron nitride (c-BN) 
is a super abrasive which is more thermally stable than 
diamond and is better suited for machining steel. 
However, despite the high oxidation resistance 
temperature and high chemical inertness of c-BN, it is 
only about half as hard as diamond (Singh, 1986). The 
possible replacement of both diamond and c-BN by better  
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performing super abrasives has motivated a lot of 
researcher interest.  

An important frontier in high-pressure science and 
technology research has been the synthesis of novel 
ultra- or super-hard materials. Diamond anvil cells (DAC) 
are reported (Stavrou et al., 2016) to have been 
successfully used in synthesizing such materials under 
high pressure and temperature conditions. 

Covalent bonds are strong and highly resistant to 
plastic and elastic deformations (Zhao et al., 2016). The 
predominant atomic binding mechanism in super-hard 
materials is therefore covalent bonding. The constituent 
atomic elements in these materials are often light, like C, 
B, O, and N (Habanyama et al., 2018) which are 
chemically suited for covalent bonding (Hu et al., 2016). 
Since covalent bonds are generally directional and short, 
the light elements are able to form highly shear resistant 
3-dimentional networks.  

A method of reducing diamond‟s susceptibility to 
oxidation and reaction with ferrous alloys is to dope it with 
boron. However, the highest possible doping 
concentration of boron in boron-doped diamond (BDD) is 
very low. The synthesis of new diamond-like compounds 
of carbon and boron is being considered as an effective 
method of achieving a much higher boron content. There 
have been recent developments in computational 
discovery of super-hard materials (Kvashnin et al., 2019) 
and ab-initio calculations of elastic constants (Mazhnik 
and Oganov, 2019; Niu et al., 2019). Recent theoretical 
work has also been carried out on diamond-like boron 
carbon nitrides (d-BCxN) (He et al., 2019; Gao et al., 
2018). 

The Vickers hardness (HV) of ultra-hard materials is 
known to be more than 40 GPa (Solozhenko and 
Gregoryanz, 2005). Materials with super-hard 
characteristics are known to have a value of the bulk 
modulus that exceeds 250 GPa (Lowther, 2000). Both the 
bulk and shear moduli have been used as scales to 
estimate the level of hardness of materials (Clerc, 1999). 

A single crystal seldom exhibits a totally isotropic 
elastic response, essentially all known crystals exhibit 
some form of elastic anisotropy, meaning that the elastic 
moduli are generally dependent on the different crystal 
orientations. The degree of anisotropy in the properties of 
materials is very important in their application. The 
generation of micro-cracks and lattice distortions in 
materials is often related to the elastic anisotropy. 
Ledbetter and Migliori (2006) point out the effects of 
elastic anisotropy in dislocation dynamics, phase 
transformations and other crystal phenomena.  

Energetic or thermodynamical stability is determined by 
the relative value of the system‟s Gibbs free energy,  
 

TSPVEG  .                                     (1) 

 
The internal energy is E, volume is V, pressure is P, 
temperature is T and the system‟s entropy is S. The most  
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stable compound phase maximizes the chemical bond 
strength and has the lowest value of G. Our calculations 
involve ground state structures of compounds determined 
under a thermal limit conditions (that is, neglecting zero 
point motion) at zero-temperature (T = 0 K). In this case, 
the minimum Gibbs free energy is equivalent to the 
minimum enthalphy, H where, 
 

PVEH  .              (2) 
 

In this work, we study the energetic, dynamical, 
mechanical and anisotropic properties of diamond-like 
materials for y = 0 to 7 in the stoichiometric type C8-y By. 
 
 
COMPUTATIONAL METHODS 
 
The method of calculation applied in this work is based on the 
density functional theory (DFT) (Kohn and Sham, 1965). The 
Quantum Espresso (Giannozzi et al., 2009) software package 
implementation of DFT was adopted. The exchange-correlation 
interaction between the electrons was modeled using the 
Generalized Gradient Approximation as parameterized by Perdew, 
Burke and Ernzerhof (GGA-PBE) (Perdew et al., 1996). The ultra-
soft pseudo-potential method was used to calculate the interaction 
between the electrons and the ion cores. The cut-off energy used 
for the plane-wave functions was 50 Ry, sampling of the k-point 

mesh in the Brillouin zone was 666 Monkhorst Pack (Monkhorst 
and Pack, 1976). The convergence threshold of the self-consistent 
field (SCF) was within 10

-3
 eV/atom. 

The initial structure consisted of eight atoms in a unit with boron 
or carbon atoms placed at diamond lattice positions in a ratio that 
represented a particular stoichiometric value of y. The lattice 
positions and atomic types at each position were stored in matrix 
arrays. A C++ template library for linear algebra called Eigen 
(http://eigen.tuxfamily.org/) was used to randomise the atomic 
placement. Variable-cell dynamics calculations were performed on 
the starting cell to optimize the atomic position geometry and cell 
parameters using the Quantum Espresso (Giannozzi et al., 2009) 
package. This was achieved by performing some relaxation 
operations which allowed the positions of the atoms to adjust in 
accordance with the relative forces between them while allowing 
the unit cell to vary; equilibrium atomic structures were thereby 
achieved. The space-group and symmetry operations of these 
equilibrium configurations were identified using the utility program, 
SGROUP (Yanchitsky and Timoshevskii, 2001). 

The procedure of randomising the atomic placement (using 
Eigen) in the starting cell, variable-cell relaxation (using Quantum 
Espresso) and identification of the final converged configurations 
(using SGROUP), was carried out several times for each value of y 
in C8-y By where y = 0 to 7. The crystal structures that resulted from 
the same value of y had similar stoichiometry and were polymorphs. 
Calculations were carried out on these structure to determine the 
configurations with the lowest value of the Gibbs free energy, G for 
each value of y in C8-y By where y = 0 to 7, at absolute zero of 
temperature. These eight configurations were then subjected to 
dynamical stability tests. 

A material‟s vibrational spectrum needs to be analyzed in order 
to establish its dynamical or vibrational stability. The criterion for 
this aspect of stability is the nonappearance of imaginary phonons, 
that is, frequencies of vibration that are not positive in the 
dispersion calculations on phonons or lattice vibrations at reciprocal 
lattice vectors in the Brillouin zone. Phonon dispersion frequencies 
were obtained for specific modes of vibration using the Quantum 
Espresso  implementation of  the  density  functional perturbation or  

http://eigen.tuxfamily.org/
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“linear response” theory (Baroni et al., 1987; Giannozzi et al., 
1991). 

The structures which were found to be dynamically stable were 
constructed and visualized by the Xcrysden software package 
(Kokalj, 2003) after which they were tested for mechanical or elastic 
stability which considers the second order elastic constants of a 
material. Elastic stiffness and compliance constants were calculated 
using the elastic package (Golesorkhtabar et al., 2013). 

Three types of averaging calculations were carried out to 
determine the shear and bulk moduli of the various compounds: the 
Voigt (1928) calculation where the strain is taken to be uniform, 
Reuss and Angew (1929) calculation where the stress is taken to 
be uniform and Hill (1963) values which are the averages of the 
combined Reuss and Voigt values. 
For Voigt bulk, BV and shear, GV moduli values are calculated as:  
 

   3) 

 
and 
 

  (4)  

 
respectively, where Cij are the stiffness constants. 
For Voigt bulk, BR and shear, GR moduli values are calculated as:  
 

  (5)                                   

 
and 
 

(6) 

 
respectively, where Sij are the compliances. 
The bulk and shear values are averaged to give the Hill values as: 
 

                (7) 

 
and 
 

.     

                                              (8) 
 

The respective Hill values of the Young modulus, EH and Poisson 

ratio, H are obtained from the expressions: 
 

        

                                              (9) 
 
and 
 

.     

                                            (10) 
 

The elastic constant results presented for all materials in this work 
are Hill-averaged, unless indicated otherwise. 

The bulk modulus for crystals that exhibit cubic symmetry is the 
same in all directions. Cubic elastic anisotropy is therefore 
determined by the shear anisotropy alone. There are both bulk and 
shear anisotropic contributions in crystals that are not cubic. An 
appropriate way to quantify the combined bulk and shear degree of 
anisotropy is by using the universal elastic anisotropy index, AU 
(Ranganathan  and  Ostoja-Starzewski,  2008)  which  is  given  by, 

 
 
 
 

.           (11) 

 
If a single crystal is isotropic in both bulk and shear then, BV = BR 
and GV = GR, making AU equal to zero. In cubic crystals BV = BR but 

GV  GR. The degree of anisotropy is determined by the extent of 
the departure of AU from zero. 

 
 
RESULTS 
 
The crystal structures that resulted from the same value 
of y had similar stoichiometry and were polymorphs. 
Calculations were carried out on these structure to 
determine the configurations with the lowest value of the 
Gibbs free energy, G for each value of y in C8-y By where 
y = 0 to 7, at absolute zero of temperature. The resulting 
eight configurations are listed in Table 1. The structures 
were then tested for dynamical stability. Our phonon 
calculation results at the Brillouin zone center (the Г 
point) are also presented in Table 1. The value, y = 0 
represents a diamond standard, used as a stable 
comparison. 

The calculations of the results shown in Table 1 
covered 24 frequencies for each material but the table 
only shows the lowest and highest 6 results, all other 
frequencies were positive. This table shows that the 
materials with y = 0 to 3, that is, diamond (C), C7B, C3B 
(or C6B2) and C5B3 have no negative phonon frequencies 

at the  point of the Brillouin zones, indicating possible 
dynamical stability. All the other structures showed some 
negative frequencies indicating dynamical instability. 
Further phonon calculations, to complete the test for 
dynamical stability, were therefore only carried out on 
C7B, C3B and C5B3. Further phonon calculations for 
diamond are not included here since the stability of 
diamond is well established. 

Figure 1 shows some high symmetry lines and points in 
the first Brillouin zone of the orthorhombic lattice 
structure.  

Phonon calculations were carried out at all the eight 
high symmetry points as shown in Figure 1, for the 
orthorhombic C5B3 structure, the results are presented in 
Table 2. The calculations in Table 2 covered 24 
frequencies for each symmetry point, but as in Table 1, 
we only picked the lowest and highest 6 results, all other 
frequencies were positive. Each frequency is presented 
in units of both THz (the upper value) and cm

-1 
(the lower 

value). The k-space coordinates of the Brillouin zone 
indicated in Table 2 are in integral units of a reciprocal 

lattice multiplying factor of  divided by the corresponding 
lattice parameters. It is seen in Table 2 that there are no 
negative phonon frequencies at any of the eight high 
symmetry points of the Brillouin zone; this structure is 
therefore dynamically stable. In Table 2, acoustic mode 
vibrations correspond to the low frequencies while the 
higher frequencies indicate vibrations in the optical mode. 
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Table 1. Results of phonon calculations for low Gibbs free energy, C8-yBy compounds.  
 

Material and 
crystal 

structure 

C 

Cubic 

(Fd3 m) 

C7B 

Cubic 

(P 4 3m) 

C3B 
(Rhombohedral 

(R3m) 

C5B3 

Orthorhombic 
(Pnma) 

CB 
Orthorhombic 

(Pnma) 

C3B5 

Orthorhombic 
(Pnma) 

CB3 

Rhombohedral 
(R3m) 

CB7 

Cubic 

(P4 3m) 

Frequency 
number 

cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 

1 186 148 26 46 -1675 -181 -297 -182 

2 186 148 48 52 -171 -80 -297 -182 

3 806 148 48 87 -138 -48 -113 -182 

4 806 671 505 361 -63 98 -61 87 

5 806 671 590 429 73 310 -61 87 

6 806 671 590 450 80 380 195 87 

         

19 1207 1054 1066 989 800 871 951 649 

20 1207 1054 1066 1000 813 955 951 649 

21 1207 1093 1084 1067 1032 985 1006 927 

22 1303 1093 1096 1077 1120 995 1061 1014 

23 1303 1093 1102 1081 1154 1110 1061 1014 

24 1303 1115 1102 1083 1221 1139 1156 1014 
 

y = 0 to 7, at the  point of the Brillouin zones. Only 12 out of 24 frequencies studies for each material are shown in the table, all other frequencies 
were positive. 

 
 
 

 
 

Figure. 1. First Brillouin zone of the orthorhombic lattice showing 
some high symmetry lines and points. 

 
 
 
If all sides of the first Brillouin zone of the orthorhombic 
lattice were drawn with equal lengths then Figure 1 would 
represent the Brillouin zone of a cubic lattice. Phonon 
calculations were carried out at all the eight high 
symmetry points as shown in Figure 1, for the cubic C7B 
structure, the results are presented in Table 3. The 
results  in   Table   3   show   the  lowest   and   highest  6 

frequencies, with all other frequencies being positive, as 
explained in the case of C5B3. 

It is seen in Table 3 that there are no negative phonon 
frequencies at any of the eight high symmetry points of 
the Brillouin zone; this structure is therefore also 
dynamically stable. 

Phonon calculations for C3B were carried out at eight k- 
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Table 2. Results of phonon calculations for the orthorhombic C5B3 structure at , Z, T, Y, S, X, U and R high symmetry points of the 
Brillouin zone.  
 

 - point 

k-space 

coordinates: 

(0.0,0.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

Z - point 

k-space 

coordinates: 

(0.0,0.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

T - point 

k-space 

coordinates: 

(0.0,1.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

Y - point 

k-space 

coordinates: 

(0.0,1.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

S - point 

k-space 

coordinates: 

(1.0,1.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

X - point 

k-space 

coordinates: 

(1.0,0.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

U - point 

k-space 

coordinates: 

(1.0,0.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

R - point 

k-space 

coordinates: 

(1.0,1.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

1.387391 

46.27836 

2.105485 

70.23140 

4.168883 

139.0589 

4.015138 

133.9305 

4.168997 

139.0627 

2.106805 

70.27546 

2.599211 

86.70033 

4.579857 

152.7675 

1.567703 

52.29293 

2.997539 

99.98714 

4.723377 

157.5549 

4.028546 

134.3778 

4.723421 

157.5563 

2.997709 

99.99282 

3.421805 

114.1391 

5.236349 

174.6657 

2.616957 

87.29229 

3.007458 

100.3179 

5.875216 

195.9761 

5.586029 

186.3298 

5.874522 

195.9529 

3.007610 

100.3230 

3.971454 

132.4734 

5.947808 

198.3975 

10.810605 

360.60295 

11.435570 

381.44954 

11.599394 

386.91413 

10.867298 

362.49403 

11.599428 

386.91528 

11.435565 

381.44940 

11.979791 

399.60280 

12.304007 

410.41749 

12.850011 

428.63021 

12.391740 

413.34394 

12.617579 

420.87714 

13.150957 

438.66871 

12.617377 

420.87038 

12.391738 

413.34389 

13.375969 

446.17431 

13.359577 

445.62751 

13.488162 

449.91665 

14.429497 

481.31620 

14.535573 

484.85451 

13.479501 

449.62775 

14.535595 

484.85526 

14.429499 

481.31626 

15.117790 

504.27519 

15.251466 

508.73416 

        

29.646463 

988.89957 

29.750770 

992.37887 

29.679222 

989.99229 

29.574427 

986.49669 

29.679126 

989.98906 

29.750771 

992.37889 

29.829252 

994.99674 

29.766395 

992.90005 

29.971169 

999.73059 

30.092797 

1003.7876 

29.985140 

1000.1966 

29.860217 

996.02961 

29.985186 

1000.1981 

30.092779 

1003.7870 

30.053687 

1002.4830 

29.979707 

1000.0153 

31.986568 

1066.9570 

31.912550 

1064.4880 

31.818506 

1061.3511 

31.869566 

1063.0543 

31.818578 

1061.3535 

31.912623 

1064.4905 

31.781355 

1060.1118 

31.693800 

1057.1913 

32.277680 

1076.6674 

32.368624 

1079.7010 

32.198484 

1074.0258 

32.040780 

1068.7653 

32.198575 

1074.0288 

32.368623 

1079.7010 

32.405758 

1080.9397 

32.257897 

1076.0076 

32.412637 

1081.1691 

32.414004 

1081.2147 

32.307504 

1077.6623 

32.245813 

1075.6045 

32.307195 

1077.6520 

32.413976 

1081.2138 

32.506030 

1084.2844 

32.387860 

1080.3427 

32.451446 

1082.4637 

32.486772 

1083.6420 

32.331805 

1078.4729 

32.296109 

1077.2822 

32.331709 

1078.4697 

32.486784 

1083.6424 

32.620144 

1088.0908 

32.467848 

1083.0108 
 

The k-space coordinates indicated in the table are in units of  divided by the corresponding lattice parameters. 

 
 
 
point coordinates in the Brillouin zone of the 
rhombohedral structure of the trigonal system, in a similar 
way as was done for C5B3 and C7B. The results are 
shown in Table 4. Table 4 shows that rhombohedral C3B 
is dynamically stable. The details of the crystal systems 
for the materials that were found to be dynamically stable 
are shown in the following. 

Firstly, the carbon-cubic diamond structure which has 
the Hermann Mauguin Space Group, Fd 3 m [SG number 

index, 227]. This structure has a face-centred cubic 
Bravais lattice with a Point Group, m 3 m. The „F‟ in the 

space group signifies that it is a face-centred lattice type. 
Diamond is already well studied and is only being used 
here as a standard to which the other materials will be 
compared. 

Secondly, a C7B structure with the Hermann Mauguin 
Space Group, P 4 3m  [space  group  number  index, 215], 

which has a primitive cubic Bravais lattice with the Point 

Group, 4 3m. The „P‟ in the space group signifies that it is 
a primitive lattice type. We will refer to this cubic material 
as c-C7B, in short. 

Thirdly, a C3B (C6B2) structure with the Hermann 
Mauguin Space Group, R3m [space group number index, 
160], which has a rhombohedral structure of the trigonal 
Bravais lattice crystal system with the Point Group, 3m. 
The „R‟ in the space group signifies that it is a 
rhombohedral lattice type. We will refer to this 
rhombohedral material as being r-C3B. 

Fourthly, a C5B3 structure with the Hermann Mauguin 
Space Group, Imm2 [space group number index, 44], 
which has a body-centred orthorhombic Bravais lattice 
with the Point Group, mm2. The „I‟ in the space group 
signifies that it is a body-centred lattice type. We will refer 
to this orthorhombic material as being o-C5B3. 
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Table 3. Results of phonon calculations for the cubic C7B structure at , Z, T, Y, S, X, U and R high symmetry points of the Brillouin zone.  
 

 - point 

k-space 

coordinates: 

(0.0,0.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

Z - point 

k-space 

coordinates: 

(0.0,0.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

T - point 

k-space 

coordinates: 

(0.0,1.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

Y - point 

k-space 

coordinates: 

(0.0,1.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

S - point 

k-space 

coordinates: 

(1.0,1.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

X - point 

k-space 

coordinates: 

(1.0,0.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

U - point 

k-space 

coordinates: 

(1.0,0.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

R - point 

k-space 

coordinates: 

(1.0,1.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

4.427654 

147.6906 

4.605549 

153.6245 

4.605577 

153.6254 

4.605549 

153.6245 

4.605590 

153.6259 

4.605549 

153.6245 

4.605549 

153.6245 

4.667695 

155.6975 

4.427654 

147.6906 

4.605549 

153.6245 

4.607911 

153.7033 

4.605549 

153.6245 

4.608187 

153.7125 

4.605549 

153.6245 

4.607935 

153.7041 

4.667695 

155.6975 

4.427654 

147.6906 

4.605549 

153.6245 

4.831492 

161.1612 

4.605549 

153.6245 

4.831661 

161.1668 

4.605549 

153.6245 

4.831351 

161.1565 

4.949015 

165.0813 

20.12885 

671.4264 

19.74729 

658.6988 

20.75952 

692.4631 

19.74731 

658.6993 

20.75909 

692.4487 

19.74731 

658.6995 

20.75948 

692.4617 

21.62326 

721.2743 

20.12885 

671.4264 

19.74731 

658.6993 

20.95735 

699.0621 

19.74731 

658.6993 

20.95736 

699.0624 

19.74731 

658.6995 

20.95730 

699.0605 

21.72804 

724.7696 

20.12885 

671.4264 

19.74731 

658.6993 

21.31270 

710.9153 

19.74731 

658.6993 

21.31275 

710.9169 

19.74731 

658.6995 

21.31279 

710.9182 

21.72804 

724.7696 

        

31.60167 

1054.118 

31.46595 

1049.591 

31.58675 

1053.620 

31.46594 

1049.591 

31.58666 

1053.617 

31.46595 

1049.591 

31.58665 

1053.617 

31.61542 

1054.577 

31.60167 

1054.118 

31.46595 

1049.591 

31.60149 

1054.112 

31.46595 

1049.591 

31.60147 

1054.111 

31.46595 

1049.591 

31.60147 

1054.111 

31.61542 

1054.577 

32.76656 

1092.975 

32.50473 

1084.241 

32.78057 

1093.442 

32.50466 

1084.238 

32.78056 

1093.442 

32.50473 

1084.241 

32.78059 

1093.442 

32.82877 

1095.050 

32.76656 

1092.975 

32.50473 

1084.241 

32.80772 

1094.347 

32.50466 

1084.238 

32.80773 

1094.348 

32.50473 

1084.241 

32.80778 

1094.349 

32.83906 

1095.393 

32.76656 

1092.975 

32.50473 

1084.241 

32.80792 

1094.354 

32.50466 

1084.238 

32.80836 

1094.369 

32.50473 

1084.241 

32.80821 

1094.364 

32.83906 

1095.393 

33.42854 

1115.056 

33.44330 

1115.548 

33.44332 

1115.549 

33.44330 

1115.548 

33.44330 

1115.548 

33.44330 

1115.548 

33.44331 

1115.549 

33.46691 

1116.336 
 

The k-space coordinates indicated are in units of  divided by the corresponding lattice parameters. 

 
 
 
Crystal diagrams of these four structures were 
constructed and visualized by the Xcrysden software 
package (Kokalj, 2003); they are as shown in Figure 2a 
and b followed by Figure 3a and b, respectively.  

Previous theoretical studies (Sun et al., 2001; Nozaki 
and Itoh, 1996), on covalent bonding dominated 
compound structures of the ternary B-C-N system (which 
includes the binary B-C system), indicated that no B-B 
bonds were expected to exist in the crystal structures. 
This is because B-B bonds would effectively increase the 
total energy of the system hence making the structures 
less stable. It can be seen in Figures 2 and 3 that our 
diagrams are consistent with the results of these previous 
studies. 

Elastic stiffness and compliance constants were 
calculated using the Elastic package (Golesorkhtabar et 
al., 2013) for the  four  materials  that  were  identified  as 

being dynamically stable; the results are shown in Table 
5.  

The materials in Table 5 were determined to be 
mechanically stable, as discussed subsequently. This 
qualified these materials for the determination of their 
bulk and other moduli, Hill values of these moduli are 
shown in Table 6. The table also shows the B/G ratio and 
the Poison ratio. 

Table 7 presents the Voigt and Reuss bulk and shear 
moduli together with the universal elastic anisotropy 
index, calculated using Equation 11. 

Table 7 shows that of the three predicted materials, 
that is, c-C7B, r-C3B and o-C5B3, it is C7B that seems to 
be the most promising in terms of hardness. The 
electronic energy band structure of cubic C7B was 
calculated in order to characterize some of its electronic 
properties.  
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Table 4. Results of phonon calculations for the rhombohedral C3B structure at eight high symmetry points of the Brillouin zone.  
 

 - point 

k-space 

coordinates: 

(0.0,0.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(0.0,0.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(0.0,1.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(0.0,1.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(1.0,1.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(1.0,0.0,0.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(1.0,0.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

k-space 

coordinates: 

(1.0,1.0,1.0) 

Frequency: 

(TH z/cm
-1

) 

0.789661 

26.34026 

1.559110 

52.00630 

2.051128 

68.41825 

1.558858 

51.99789 

2.055059 

68.54939 

1.558965 

52.00146 

2.443306 

81.49990 

2.497398 

83.30423 

1.433620 

47.82041 

2.144885 

71.54566 

2.829444 

94.38008 

2.139334 

71.36049 

2.827949 

94.33022 

2.139408 

71.36298 

2.482183 

82.79669 

3.126913 

104.3025 

1.433620 

47.82041 

2.802328 

93.47559 

3.940311 

131.4346 

2.804190 

93.53771 

3.941992 

131.4906 

2.802733 

93.48909 

3.345743 

111.6019 

4.436604 

147.9891 

15.126597 

504.56896 

15.923090 

531.13712 

15.818824 

527.65917 

15.923059 

531.13606 

15.818791 

527.65806 

15.923051 

531.13580 

16.311675 

544.09891 

16.666607 

555.93816 

17.698805 

590.36858 

17.818545 

594.36267 

17.874093 

596.21558 

17.818326 

594.35537 

17.874096 

596.21567 

17.818342 

594.35591 

17.914171 

597.55243 

17.954558 

598.89958 

17.698805 

590.36858 

17.968709 

599.37160 

18.180780 

606.44555 

17.968704 

599.37144 

18.180814 

606.44668 

17.968693 

599.37107 

17.991200 

600.12182 

18.298631 

610.37663 

        

31.942236 

1065.4783 

32.109788 

1071.0672 

31.856979 

1062.6344 

32.109853 

1071.0693 

31.856831 

1062.6294 

32.109910 

1071.0712 

31.968891 

1066.3674 

31.911427 

1064.4506 

31.942236 

1065.4783 

32.166117 

1072.9461 

32.168713 

1073.0327 

32.166141 

1072.9469 

32.168789 

1073.0353 

32.166128 

1072.9465 

32.096968 

1070.6396 

32.197890 

1074.0059 

32.504106 

1084.2202 

32.532951 

1085.1824 

32.565338 

1086.2627 

32.532939 

1085.1820 

32.565386 

1086.2643 

32.532974 

1085.1832 

32.519228 

1084.7246 

32.540792 

1085.4439 

32.855045 

1095.9263 

33.012073 

1101.1642 

33.091105 

1103.8004 

33.012070 

1101.1641 

33.090855 

1103.7921 

33.012107 

1101.1653 

33.023181 

1101.5347 

33.128682 

1105.0538 

33.028584 

1101.7149 

33.092285 

1103.8398 

33.213691 

1107.8894 

33.091922 

1103.8276 

33.214608 

1107.9200 

33.092021 

1103.8310 

33.133005 

1105.1980 

33.270926 

1109.7986 

33.028584 

1101.7149 

33.155657 

1105.9536 

33.299551 

1110.7534 

33.155638 

1105.9530 

33.299597 

1110.7549 

33.155664 

1105.9539 

33.185767 

1106.9580 

33.366260 

1112.9786 
 

The k-space coordinates indicated are in units of  divided by the corresponding rhombohedral lattice parameters. 

 
 
 
The k-point path used in this calculation, with reference 

to Figure 1, was: XSYTZR  . 

Figure 4 shows the energy band diagram of c-C7B under 
zero applied pressure where the origin of the energy axis 
is placed at the Fermi level, EF.  

The electronic band structure in Figure 4 shows that 
the highest valence energy band of the material crosses 
over the Fermi level up to about 1.7 eV above it. On the 
other hand, Figure 4 also shows a band gap between the 
top of the valence band and the bottom of the conduction 
band. This type of band structure configuration is 
indicative of hole-type conductivity. The material, c-C7B is 
therefore a hole-type conductor.  

The evolution of the Fermi energy, EF at varying 
applied hydrostatic pressures from 0 to 2500 kbars was 
calculated relative to the Fermi energy at zero pressure, 

)0(

FE  and plotted as a function of the applied pressure, as 

presented in Figure 5.  
It is seen in Figure 5 that the relative Fermi energy 

increases monotonically with increased applied pressure. 
However, the curvature in the graph suggests that 
saturation would eventually be arrived at with further 
increase in applied pressure. An increase in Fermi 
energy with applied pressure has been associated with 
increased conductivity (Ghosh et al., 2016). 
 
 
DISCUSSION  
 
Materials with super-hard characteristics are known to 
have a value of the bulk modulus that exceeds 250 GPa 
(Lowther, 2000). Table 6 indicates that our materials with 
y = 0 to 3 could potentially have super-hard 
characteristics.  

The  original  conditions  for  mechanical  stability  were 
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                               (a)                                                                                 (b) 

    
 

Figure 2. (a) The carbon-cubic diamond structure with Hermann Mauguin Space Group, Fd 3 m [SG 

number index, 227]. This was used as a standard for comparison. (b) The cubic C7B structure with the 
Hermann Mauguin Space Group, P 4 3m [SG index, 215] and Point Group, 4 3m.  

 
 

 
                                    (a)                                                                         (b) 

    
 

Figure 3. (a) The C3B (C6B2) structure with the Space Group, R3m [space group number index, 160], 
which has a rhombohedral structure of the trigonal Bravais lattice crystal system with the Point Group, 
3m. (b) The orthorhombic structure with the Hermann Mauguin Space Group, Imm2 [SG index, 44] and 
Point, Group, mm2. 

 
 
 
proposed by Born-Huang (1954). In the current work, we 
adopt the modified conditions of Mouhat and Coudert 
(2014). A necessary although insufficient Born condition 
is that there should be no negative diagonal elements, 

that is, . It is seen in Table 5 that all the 

diagonal  elements   are   positive   for    the   compounds 

studied. 
A second condition which is necessary but insufficient 

for Born stability is, 
 

.                            (12)  
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Table 5. Independent stiffness constants, Cij and compliances, Sij for C8-yBy materials where y = 0 to 3.  
 

Material 
Crystal 

Structure 

Stiffness matrix elements, Cij (GPa) and  compliances, Sij (10
-5

 GPa
-1

) 

C11 

S11 

C12 

S12 

C13 

S13 

C14 

S14 

C22 

S22 

C23 

S23 

C33 

S33 

C44 

S44 

C55 

S55 

C66 

S66 

Diamond C 

Cubic  1064 133 - - - - - 561 - - 

(Fd3 m) 97 -11 - - - - - 178 - - 

            

C7B 
Cubic  689 237 - - - - - 476 - - 

(P 4 3m) 176 -45 - - - - - 210 - - 

            

C3B 
Rhombohedral  612 193 194 -72 - - 612 358 - - 

(R3m) 201 -55 -46 51 - - 193 300 - - 

            

C5B3 

Orthorhombic  455 264 98 - 604 285 547 334 303 334 

(Imm2) 296 -139 19 - 284 -123 243 300 330 300 

 
 
 

Table 6. Hill bulk moduli, B, shear moduli, G and Young moduli, E for the four dynamically stable materials. 
  

Material 
Crystal 

Structure 

Bulk Modulus 

(GPa) 

Shear Modulus 

(GPa) 

Young Modulus 
(GPa) 

B/G 
Poison Ratio, 

 

Diamond C Cubic F (Fd3 m) 443 521 1122 0.850 0.08 

C7B Cubic  (P 4 3m) 388 353 812 1.099 0.15 

C3B Rhombohedral  333 253 606 1.316 0.20 

C5B3 Orthorhombic 309 235 563 1.315 0.20 
 

The B/G ratio and Poison ratio are also presented. 

 
 
 
Table 7. The Voigt and Reuss bulk and shear moduli together with the universal elastic anisotropy index for the materials. 
 

Material 
Crystal 

Structure 

BV 

(GPa) 

BR 

(GPa) 

GV 

(GPa) 

GR 

(GPa) 

Universal Elastic 
Anisotropy Index, AU 

Percentage 

anisotropy (%) 

Diamond C Cubic (Fd 3 m) 443 443 523 518 0.041 0.4 

C7B Cubic  (P 4 3m) 388 388 376 330 0.699 7.0 

C3B Rhombohedral  333 333 269 238 0.650 6.5 

C5B3 Orthorhombic 322 295 258 213 1.160 11.6 

 
 
 
We find from Tables 5 that all the elastic constants 
obtained for the different materials satisfy the condition 
given by inequality (Equation 12).  

The cubic system only has 3 independent elastic 
constants and as a sufficient condition for mechanical 
stability, these constants have to satisfy the inequalities: 
 

 ;  .          (13) 

 
The inequalities (Equation 13) are satisfied by the 
diamond and C7B results in Tables 5, it follows that these 
two cubic structures are mechanically stable. 

The rhombohedral class has 6 independent elastic 
constants. Sufficient Born conditions for this class as 
modified by Mouhat and Coudert (2014), are given by the 
inequalities: 
 

 
 

                  

                                     (14) 
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Figure 4. The Band Structure for c-C7B at 0 GPa. The origin of the energy axis lies at the 
Fermi level, EF. 
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Figure 5. A graph of the Fermi energy, relative to the Fermi energy at 
p = 0 kbars   0

FF EE  , plotted against the applied pressure, for c-

C7B.  

 
 
 

The inequalities (Equation 14) are satisfied by the C3B (or 
C6B2) results in Tables 5, it follows that this rhombohedral 
structure is mechanically stable. 
The orthorhombic system has 9 independent elastic 
constants. A sufficient Born condition for this system 
(Born and Huang, 1954) is given by the inequality: 

.   15) 
 

The inequality (Equation 15) is satisfied by the C5B3 
results in Table 5, it follows that o-C5B3 is mechanically 
stable. 

Figure 6 is  a  graph  of  the values of the Young, shear  
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Figure 6. Graph for the trend in bulk, shear and Young moduli in C8-yBy 
materials. 

 
 
 

 
 

Figure 7.  (a) Valence electronic pairing of 1s and 2s spins, 
while 2p electron spins are not paired. (b) Hybridization 
resulting in sp

3
 hybrid orbitals having equals energies. 

 
 
 
bulk moduli plotted against the values of y in C8-yBy 
materials. The three moduli are seen to reduce in 
magnitude as the boron content increases.  

The brittleness of a material is reflected by the ratio 
B/G. As reported by Pugh (1954), the critical value of this 
ration is B/G=1.75, for ductile materials B/G>1.75. The 
ratio is less than 1.75 for brittle materials. As seen in 
Table 6, the four materials under study are all brittle with 

diamond being the most brittle. C3B and C5B3 are the 
least brittle with a B/G value of 1.32.  

The Young modulus relates a stress to the resultant 
strain in the direction of the stress. The lateral and axial 
strains are related by the Poison ratio, which gives an 
indication of the stability of a material in relation to 
resistant shear and also the magnitude of the change in 
volume   of   a  crystal  during  uniaxial  deformation.  The  



 

 

 
 
 
 
plasticity of a material increases with an increase in the 
Poisson ratio. The results in Table 6 indicate that the 
plasticity of the materials generally increases with 
increased boron content. 

Table 7 shows that diamond has the lowest degree of 
anisotropy with a Universal Elastic Anisotropy Index of 
only 0.041. C5B3 has the highest anisotropy (AU = 1.160), 
this material is therefore likely to be the most susceptible 
to micro-cracks. The table shows that BV = BR for the two 
cubic structures, C and C7B as expected. Interestingly, 
the same condition is observed for C3B which is not 
cubic, indicating that this material is also isotropic in 
terms of the bulk modulus alone. 

There are a combination of mechanisms responsible 
for the observed reduction in magnitude of the three 
moduli of elasticity as the boron content increases. These 
same  mechanisms   are   responsible   for    the   general 
increase in plasticity and decrease in brittleness with 
increased boron content. The underlying mechanism is 
the sp

3 
hybridization in the orbitals of the carbon atoms. 

The creation of hybrid orbitals in carbon atoms during 
material synthesis is illustrated in Figure 7. Figure 7a 
shows the pairing of 1s and 2s spins, while 2p electron 
spins are not paired and are available for covalent 
bonding. A 2s electron can be excited, during material 
synthesis, to the p level resulting in four similar hybridized 
(mixed) sp

3
 orbitals as shown in Figure 7b. It is these 

orbitals that form the strongest covalent bonds in nature; 
they are highly resistant to plastic and elastic 
deformations. In general, the more the hybrid C-C bonds 
you have in a boron/carbon material, as opposed to C-B 
bonds, the higher the magnitude of the three moduli of 
elasticity (Sun et al., 2001; Nozaki and Itoh, 1996). 
However, there are other factors that may come into play. 
The shorter the bonds and the denser they are the higher 
the magnitude of the three moduli, the crystal structure of 
the materials affects the length and density of the bonds. 
A combination of these factors affects the plasticity and 
brittleness of the materials with increased boron content. 
Factors like the iconicity of the bonds also play a part. 
Some theoretical models have been developed to relate 
these fundamental factors to the hardness of materials 
(Bao et al., 2018, 2020).  
 
 

Conclusion 
 

Low Gibbs free energy polymorphs of diamond-like 
materials of the type C8-y By where y = 0 to 7, were 
identified at  absolute  zero  of  temperature.  It  has been 
determined that the four materials: diamond (C), cubic 
C7B (c-C7B), rhombohedral C3B (r-C3B) and orthorhombic 
C5B3 (o-C5B3) are all both dynamically and mechanically 
stable. The bulk modulus results in Table 6 indicate that 
these compounds are potentially super-hard; the values 
of their bulk moduli being greater than 250 GPa (Lowther, 
2000). Figure 6 suggests that the hardness  reduces  with  
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increasing boron content. As seen in Table 6, the 
materials under study are all brittle with diamond being 
the most brittle. C3B and C5B3 are the least brittle with 
B/G values of 1.32. Table 7 shows that diamond has the 
lowest degree of anisotropy with a Universal Elastic 
Anisotropy Index of only 0.041 while C5B3 has the highest 
anisotropy (AU = 1.160), which makes the latter material 
most susceptible to micro-cracks. Our electronic band 
structure calculations for cubic C7B, which was predicted 
to be the hardest in the C8-y By system after diamond, 
indicate that the highest valence energy band of the 
material crosses over the Fermi level up to about 1.7 eV 
above it. On the other hand, there is a band gap between 
the top of the valence band and the bottom of the 
conduction band. The material, c-BC7 is therefore a hole-
type conductor, similar to heavily boron doped diamond 
(Lee and Pickett, 2004). This is understandable because 
boron is an acceptor with one less electron in the BxCy 
valence matrix, hence functioning as a hole-dopant. 

When carrying out a cost-benefit ratio analysis for the 
industrialization of the materials studied in this article, it 
should be noted that our results and the available 
literature indicates that the synthesis of materials with 
hardness exceeding that of diamond is highly unlikely, if 
not impossible (Solozhenko and Godec, 2019). The 
economical approach should therefore be to synthesize 
or design materials for niche applications, materials that 
are harder than cubic boron nitride and more useful than 
diamond in terms of thermal and chemical stability. Such 
novel materials have great prospects for the creation of 
new technologies required for emerging applications and 
their world market is inexhaustible (Solozhenko and 
Godec, 2019). It is hopeful that the materials studied 
during this project, particularly cubic C7B, will qualify for 
viable niche industrial applications, through experimental 
evaluation. 
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