
 

 

 

 
Vol. 9(23), pp. 520-524, 16 December, 2014 

DOI: 10.5897/IJPS2014.4224 

ISSN 1992 - 1950  

Article Number: 4318E8F49047 

Copyright © 2014  

Author(s) retain the copyright of this article 

http://www.academicjournals.org/IJPS 

International Journal of Physical  
Sciences 

 
 
 
 
 
 

Full Length Research Paper 

 

Construction of some new exact structures for the 
nonlinear lattice equation 

 

W. Djoudi and A. Zerarka* 
 

Laboratory of Applied Mathematics, University Med Khider, BP145, 07000 Biskra; Algeria. 
 

Received 23 October, 2014; Accepted 13 November, 2014 

 

In the present work we examine a generalized coth and csch functions method to construct new exact 
travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance 
method is used to handle the appropriated solutions. Some exact solutions obtained are new. 
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INTRODUCTION  
 
Several methods have been developed for analytic 
solving of nonlinear partial differential equations. 
Specially, almost all of these nonlinear model equations 
were appeared (Wang and Li, 2008; Korteweg and Vries, 
1995; Khelil et al., 2006) to give different structures to the 
solutions. Besides traditional methods such as auto-
Backlund transformation, Lie Groups, inverse scattering 
transformation and Miura's transformation, a vast variety 
of the direct methods for obtaining explicit travelling 
solitary wave solutions have been found (Zerarka and 
Foester, 2005; Ibrahim and El-Kalaawy, 2007; Lü, 
2014a,b). The availability of symbolic computation 
packages can be facilitating many direct approaches to 
establish solutions to non-linear wave equations (Xu and 
Zhang, 2007; Özis and Yıldırım, 2008). Various extension 
forms of the sine-cosine and tanh methods proposed by 
Malfliet and Wazwaz have been applied to solve a large 
class of nonlinear equations (Malfliet 1996a,b; Wazwaz 
2004; He and Wu, 2006a,b). More importantly, another 
mathematical treatment is  established  and  used  in  the 

analysis of these nonlinear problems, such as Jacobian 
elliptic function expansion method, the variational 
iteration method, pseudo spectral method, the averaging 
method, and many others powerful methods (Odibat and 
Momani, 2006; Rafei and Ganji, 2006; Yu, 2007; Zhu, 
2007a,b; Lü and Peng, 2013a,b,c; Lü, 2013; Lü et al., 
2010; Jia et al., 2014; Liu and Qian, 2011). The aim of 
this work is to propose an efficient approach to examine 
new developments in a direct manner without requiring 
any additional condition on the investigation of exact 
solutions with the coth and csch functions method for a 
lattice system. We expect that the presented method 
could lead to construct successfully many other solutions 
for a large variety of other nonlinear evolution equations. 
 
 
ANALYSIS OF THE PROBLEM  
 
We consider the following nonlinear problem for the 
lattice equation as: 
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Here the subscripts represent partial derivatives, and  

,...),,,( zyxtu   is an unknown function to be determined. 

We take the following transformation for the new wave 
variable as:  
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i   are distinct variables, and when  1p  ,  

  1100   , the quantities  10 ,   are called 

the wave pulsation  and the wave number k  

respectively if 10,  are the variables t  and x   

respectively. In the discrete case for the position x  and 

with continuous variable for the time t  ,    becomes with 

some modifications   ctndn  and n  is the 

discrete variable. d  and   are arbitrary constants and 

c  is the velocity. We use the traveling wave reduction 

transformation for Equation (1) as: 
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Upon using Equations (3) and (4), the nonlinear problem 
(1) becomes an ODE like 
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APPLICATIONS  
 
The one-dimensional lattice equation (Zhu, 2007, 2008) 
is written as: 
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We first combine the independent variables, into a wave 

variable using n  as 

 

  ctndn                        (7) 

   
and we take the travelling wave  solutions  of  the  system  
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(6) using Equation (7) as  )(),( nUtnu  . By using the 

chain rule (4), the system (6) can be obtained as follows: 
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Where subscript denotes the differential with respect to 

n . 

 
 
THE COTH FUNCTION METHOD 
 
Suppose that Equation (8) has the following solution: 
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Where M  is an undetermined integer and jA  are 

coefficients to be determined later. In order to determine 

values of the parameter M , we balance the linear term of 
highest order in Equation (8) with the highest order 
nonlinear term. By simple calculation, we have 

12 MM  and the solution (9) takes the form 
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Substituting the solution (10) into Equation (8), and 
equating to zero the coefficients of all powers of 

)(coth n

j    yields a set of algebraic equations for 0A  , 

1A  and c  as: 
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 Solving the system of algebraic equations with the aid of 
Mathematical, we obtain 
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and the two travelling wave solutions of the problem of 
interest follow 
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where d  and   are arbitrary constants. 

The Figures fig1(a) and Figure fig1(b) show the physical waves )(),( nUtnu    and  )(),( nUtnu      

in Equations (13). 

 

 

 

 

 

 

4. The coth-csch function method 

 
The solutions of Equation  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1: The graphs show the wave solutions of  )(),( nUtnu     in Equation (13): (a) solution  )(),( nUtnu   , (b) solution  

)(),( nUtnu    . For both curves:  0,1,3,2  dba  . 

 

 
 

Figure 1. The graphs show the wave solutions of  )(),( nUtnu     in Equation (13): (a) solution  )(),( nUtnu   , 

(b) solution  )(),( nUtnu    . For both curves:  0,1,3,2  dba . 

 
 
 

Where d  and   are arbitrary constants. 

Figure 1(a) and (b) show the physical waves 

)(),( nUtnu    and  )(),( nUtnu   in Equations 

(13). 
 
 
THE COTH-CSCH FUNCTION METHOD 
 
The solutions of Equation (8) can be expressed in the 
form 
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Where  , jA  and jB  are parameters to be determined. 

The parameter M  is found by balancing the highest-
order linear term with the nonlinear terms, we 

obtain 1M  , and )( nU   becomes 
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Substituting Equation (15) into the relevant nonlinear 
differential Equation (8) and with the help of Mathematical 
we get a system of algebraic equations with respect to c , 

 , A  and B .  
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After some algebra, and with the help of Mathematical, 

the following values for the parameters c ,  , A , and  

B  are obtained: 
 
 

First set 
 

 

,0

),tanh(4
2

1

,
2

),tanh(4
2

1

2

2









B

dabA

b

dbac

           (17) 

 
and the travelling solutions of Equation (17) are obtained 
as: 
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Equation (13). 
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where   tband
d

n )4( 2

2

)sinh(
 . The portraits of solutions (20) for )( nU   are displayed in Figures 

fig2(a) and (b). 
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3. Third set 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2: The graphs show the wave solution of  )( nU   in (20): (a) solution )(),( nUtnu    , (b) solution  )(),( nUtnu   . For 

both curves:  0,1,3,2  dba  . 
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and the travelling solutions of Equation (19) are obtained 
as 
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solutions (20) for )( nU  are displayed in Figure 2(a) and 
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Finally, third set admits the following two types: 
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and 
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Where     tband d
n )tanh(4

2

2
. The behaviors 

of solutions (22) and (23) for )(1 nU   and  )(2 nU   are 

shown in Figure 3(a) and (b) respectively. The solutions 
given for the second and the third sets appear to be new. 
 
 
CONCLUSION 
 
The basic goal of this work, is to provide a new trial 
travelling solution to build the exact solutions to the 
nonlinear lattice equation. Two types of functions are 
used to find the exact solutions, which are named the 
coth-function and the coth-csch function methods. Eight 
variants of travelling wave solutions are obtained. The 
present method provides a reliable technique that 
requires less work if compared with the difficulties arising 
from computational aspect. The main advantage of this 
method is the flexibility to give exact solutions to 
nonlinear problems without linearization. We may 
conclude that, this method can also be extended to other 
high-dimensional nonlinear phenomena. It will be then 
interesting to study more general systems. These points 
will be investigated in a future research. 
 
 
Conflict of Interest 
 
The authors have not declared any conflict of interest. 
 
 
ACKNOWLEDGEMENTS  
 
Authors want to thank Pr W. Higg and Dr J. Karim for 
their valuable comments. The project is supported by 
Ministère de l'Enseignement et de la Recherche 
Scientifique (M.E.R.S): PNR n° 30/15/2011. 



524          Int. J. Phys. Sci. 
 
 
 

)(2 nU   are shown in Figure fig3(a) and Figure fig3(b) respectively. The solutions given for the 

second and the third sets appear to be new. 

 

 

 

 

 

 

4. Conclusion 

The basic goal of this work, is  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3: The graphs show the wave solution of  )(1 nU   and )(2 nU   in (22) and (23) respectively: (a) solution  
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