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We show that the Politzer theorem on the equations of motion implies approximate constraints on the 
quark correlator. These, in turn, restrict considerably, for sufficiently large Q

2
, the number of 

independent distribution functions that characterize the internal structure of the nucleon, and of 

independent fragmentation functions. This result leads us to suggesting an alternative method for 
determining transversity. Moreover, our approach implies predictions on the Q

2 -dependence of some 
azimuthal asymmetries, like Sivers, Qiu-Sterman and Collins asymmetry. Lastly, we discuss some 
implications on the Burkhardt-Cottingham sum rule. 
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INTRODUCTION 
 
The problem of calculating inclusive cross-sections at 
high energies and high momentum transfers has be- 
come quite important in the last two decades, during 
which a lot of experimental data on deep inelastic pro- 
cesses have been accumulated. In particular, we refer 
to deep inelastic scattering (DIS) (Ashman et al., 
1988, 1989; Adeva et al., 1998; Anthony et al., 1996a, b, 
2003; Abe et al., 1997a, b, 1998; Airapetian et al., 1998; 
Yun et al., 2003; Zheng et al., 2004), semi-inclusive DIS 
(SIDIS) (Arneodo et al., 1987; Ashman et al., 1991; 
Adams et al., 1993; Airapetian et al., 2000, 2001, 2003, 
2005a, b; Diefenthaler, 2005; Bravar et al., 1999; 
Alexakhin et al., 2005; Ageev et al., 2007; Bressan, 2007; 
Avakian et al., 2005; Alekseev et al., 2010a, b), Drell-
Yan (DY) (Falciano et al., 1986; Guanziroli et al., 1988; 
Conway et al., 1989; McGaughey et al., 1994; Towell et 
al., 2001; Zhu et al., 2007) and e

+
e

- annihilation into 

two back-to-back jets (Abe et al., 2006), while analogous 

experiments have been planned recently (Bunce et al., 
2000; Lenisa and Rathmann, 2005; Lenisa, 2005; 
Afanasev et al., Jefferson, 2007; Hawranek, 2007). One 
of the aims of high energy physicists is to extract data 
from distribution and/or fragmentation functions, especially 
if unknown. Among them, the transversity (Ralston and 
Soper, 1979; Artru and Mekhfi, 1990; Jaffe and J i , 1991a, 
 
 
 
PACS Numbers: 13.85.Ni, 13.88.+e, 11.15.-q. 

1992) is of particular interest, since it is the only twist-2 
distribution function for which very poor information 
(Soffer, 1995; Anselmino et al., 2007) is available till 
now. But also, transverse momentum dependent (TMD) 
functions, especially the T-odd ones, are taken in great 
consideration; for instance, knowledge of the Collins 
(1993) fragmentation function or the Boer-Mulders 
(1998) function could help to extract transversity, which 
is chiral-odd and therefore couples only with chiral-odd 
functions. Moreover, TMD functions are involved in 
several intriguing Azimuthal asymmetries, like the already 
mentioned effects of Collins (1993) and Boer-Mulders 
(1998), or those of Sivers (1990, 1991), Qiu-Sterman 
(1991, 1992, 1998) and Cahn (1978, 1989), which, in 
part, have found experimental confirmation (Airapetian et 
al., 2005a,b; Diefenthaler, 2005; Bravar et al., 1999; 
Alexakhin et al., 2005; Bressan, 2007; Abe et al., 2006) 
and, in any case, have stimulated a great deal of 
articles (Mulders and Tangerman, 1996; Boer et al., 
2000, 2003a, b; Brodsky et al., 2002a,b, 2003; Di Salvo, 
2007a; Collins et al., 2006; Efremov et al., 2006a, b, 2009; 
Avakian et al., 2008a, b; Boffi et al., 2009; Anselmino et 
al., 2009a, b, 2010; Boer, 2009). Lastly, some questions 
remain open, among which the Parton’s interpretation of 
the polarized structure function g2 is given (Anselmino 

et al., 1995; Jaffe and Ji, 1991a). Obviously, all of these 
data and kinds of problems are confronted with the 
QCD theory and in this comparison, the short and long 
distance scales are  included,  so  that  the  factorization  
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theorems (Collins, 1998, 1989; Collins et al., 1988; 
Sterman, 2005) play quite an important role in separating 
the two kinds of effects. Strong contributions in this 
sense have been given by Politzer (1980), Ellis et al. 
(1982, 1983) (EFP), Efremov and Radyushkin (1981), 
Efremov and Teryaev (1984), Collins and Soper (1981, 

1982), Collins et al. (1988) and Levelt and Mulders 
(1994) (LM). 

In the present paper, we propose an approach 
somewhat similar to EFP’s and to LM’s, but we use more 
extensively the Politzer’s (1980) theorem on equations of 
motion (EOM). We consider in particular, the hadronic 
tensor for SIDIS, DY and e

+
e

- → ππX. We also consider 
energies and momentum transfers high enough for 
assuming one photon approximation, but not so large that 
weak interactions became comparable with electro-
magnetic ones. As regards time-like photons, we assume 

to be far from masses of vector resonances, like J/Ψ,  or 

Z0. Lastly, we do not consider the case of active (anti-) 
quarks originating from gluon annihilation. 

Our starting point is the ” Born” (LM) approximation 
for the hadronic tensor, which reads, in the three afore 
mentioned reactions as: 
 

 
                                                                               (1) 

 
Here, C is due to color degree of freedom, C = 1 for 

SIDIS and 1/3 is for DY and e+ e− annihilation. p and p′ 

denote the four-momenta of the active partons, such 
that 

 

                                                (2) 

 
q represents the four momentum of the virtual photon 

and the − sign refers to SIDIS, the + to DY or to e+e− 

annihilation. ΦA and ΦB are correlators, relating the 

active partons to the (initial or final) hadrons hA and 

hB, whose four momenta are PA and PB, respectively. 

We restrict ourselves to spinless and spin-1/2 hadrons. 
a and b are the flavors of the active partons, with a = 

u, d, s, u, d, s and b = a in SIDIS, b = a in DY and e+ e− 

annihilation; ea is the fractional charge of flavor a. In 

DY, ΦA and ΦB encode information on the active quark 

and antiquark distributions inside the initial hadrons. In 
SIDIS ΦB is replaced by the fragmentation correlator 

∆B , describing the fragmentation of the struck quark into 

the final hadron hB. In the case of e
+
e

- annihilation, both 

correlators ΦA and ΦB have to be replaced by ∆A a n d  
∆B, respectively. 

In the approximation considered, we define the 
distribution correlator (commonly  named correlator)  as, 

 
 
 
 

                                                                 (3) 
 
Here, N is a normalization constant to be determined in 
“ Zero order term: the QCD parton model”. ψ is the 

quark† field of a given flavor and |P, S) a state of a 
hadron (of spin 0 or 1/2) with a given four-momentum 
P and Pauli-Lubanski (PL) four-vector S, while p is the 
quark four- momentum. The color  and f lavor indices 
have been omitted in ψ for the sake of simplicity and 
from now on will be forgotten, unless differently stated. 
On the other hand, the fragmentation correlator is 
defined as:  
 

                                                                           (4) 
 

where a(P, S)[a†(P, S)] is the destruction (creation) ope- 
rator for the fragmented hadron, of the given four-
momentum and PL four-vector. 

The hadronic tensor (1) is not a color gauge 
invariant. Introducing a gauge link is not sufficient to 
fulfill this condition, but EOM suggests adding suitable 
contributions of higher correlators, involving two quarks 
and a number of gluons, so as to construct a gauge 
invariant hadronic tensor. 

We adopt an axial gauge for the correlator of a gM/Q 
expansion, where g is the coupling, M the rest mass of 

the hadron and Q the QCD ”hard” energy scale, †. For 
an antiquark, Equations (3) and (4) were slightly 
modified, as seen in “ gauge invariant correlator” and 

“fragmentation correlator”, which are generally assumed 

to be equal to q|q2|.  We examine in detail the first two 
terms of the expansion. The zero order term corresponds 
to the QCD parton model approximation. As regards the 
second term, it concerns the T-odd functions; in 
particular, we discuss an interesting approximation, 
already proposed by Collins (2002). In both cases we 
obtain several approximate relations among ”soft” 
functions, which survive perturbative QCD evolution, as 
a consequence of EOM. Our approach allows also to 

determine the Q-dependence of some important 

azimuthal asymmetries and to draw conclusions about 
the Burkhardt-Cottingham (1970) sum rule. 

In this paper, the gauge invariant correlator (more 
appropriate than the distribution correlator), whose 
properties are deduced with the help of EOM was dis-
cussed in detail. In particular, we derived an expansion 

in the powers of gM/Q, whose terms can be interpreted 

as Feynman-Cutkosky graphs. A prescription for writing 

a gauge invariant sector of the hadronic tensor which is 

of interest for interactions at high Q was given. Furthermore, 



 
 
 
 
we study in detail the zero order term and the first order 
correction of the expansion, deducing approximate 
relations among functions which appear in the usual 
parameterizations of the correlator (Mulders and 
Tangerman, 1996; Goeke et al., 2005). Then, the 
fragmentation correlator was discussed. The azimuthal 
asymmetries involved in the three different deep 
inelastic processes were illustrated. Lastly, a summary 
of the main results was presented. 
 
 
GAUGE INVARIANT CORRELATOR 
 
The correlator (3) can be made gauge invariant, by 
inserting a link operator between the quark fields 
(Collins and Soper, 1981, 1982; Mulders and 
Tangerman, 1996), in the following way: 
 

                                                                                (5) 
 
Here, 
 

                                                                                (6)  
 

is the gauge link operator, “P” denotes the path-
ordered product along a given integration contour I, 

and λa and   
  denotes the Gell-Mann matrices and 

the gluon fields respectively. The link operator depends 
on the choice of I, which has to be fixed so as to 
make a physical sense. According to previous treatments 
(Mulders and Tangerman, 1996; Collins, 2002; Boer et 
al., 2003b; Bomhof et al., 2004), we define two 
different contours, I±, as sets of three pieces of straight 

lines, from the origin to x1∞ ≡ (±∞, 0, 0⊥), from x1∞ to 

x2∞ ≡ (±∞, x+, x⊥) and from x2∞ to x ≡ (x−, x+ , x⊥), 

having adopted a frame, whose z-axis is taken along the 
hadron momentum, with x± = 1/√2(t ± z). We remark that 
the choice of the path is important for the so-called T-

odd‡ functions (Boer and Mulders, 1998): the path I+ is 

suitable for DIS distribution functions, while I− has to 

be employed in DY (Boer et al., 2003b; Bomhof et al., 
2004). For an antiquark, the signs of correlator (5) and 
of the four-momentum p have to be changed. 

Subsequently, we investigate some properties of the 
correlator. 
 
 
T-even and T-odd correlator 
 

We set (Boer et al., 2003b) 
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                                  (7) 

 

where Φ± corresponds to the contour I± in Equation 

(6), while ΦE and ΦO select the T-even and the T-odd 

“soft” functions respectively. These two correlators 
contain the link operators LE (x) and LO (x), respectively 

where 
 

    (8) 

 
and ΛI± (x) are defined by the second Equation (6). 

Equations (7) and (8) imply that the T-even functions 
are independent of the contour (I+ or I−), while the T-

odd ones change sign according to whether they are 
involved in DIS or in DY (Collins, 2002; Boer et al., 
2003b). In this sense, such functions are not strictly 
universal (Collins, 2002), as already stressed. It is 
convenient to consider an axial gauge, 
 

A
+ 

= 0,                                                                   (9) 
 

More precisely, one should speak of ”naive T”, consist- 
ing of reversing all momenta and angular momenta 
involved in the process, without interchanging initial and 
final states (DeRujula, 1971; Bilal et al., 1991; Sivers, 
2006) with antisymmetric boundary conditions (Mulders 
and Tangerman, 1996): 
 

                  (10) 
 

Here, we have adopted the shorthand notation Aµ for 

λa  
  . In this gauge, it was proposed for the first time by 

Kogut and Soper (1970) and named KS gauge in the 
following: 
 

                         (11) 

 
where xi is a shorthand notation for xi,+∞, i = 1, 2. 

Therefore, in the KS gauge,  
 

      (12) 
 
and the T-even (T-odd) part of the correlator consists of 
a series of even (odd) powers of g, each term being 
endowed with an even (odd) number of gluon legs. As a 
consequence, the zero order term is T-even, while the 
first order correction is T-odd. This confirms that no T  
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odd terms occur without interactions among partons, 
as claimed also by other authors (Brodsky et al., 
2002a, b, 2003; Collins, 2002). Gauge invariance of the 
correlator implies that these conclusions hold true in any 
axial gauge, such that condition (9) is fulfilled. From now 
on we shall work in such a type of gauge (Ji and Yuan, 
2002; Belitsky et al., 2003). 
 
 
Power expansion of the correlator 
 
We consider Φ+, which is explained before as DIS. As 

regards DY, the T-odd terms will change sign, as seen 
from the choice of the path - I− instead of I+ - and from 

the first Equation (11) and second Equation (12). We 
rewrite L(x) as 
 

                                      (13) 
 
Here, Λ0(x) = 1, while for n ≥ 1 we have the following 

equation in the KS gauge: 
 

    (14) 

 

where zi ≡ (∞, z
+

, zi⊥), i = 1, 2, ...n, are points in the 

space-time along the line through x1 and x2. 

Substituting Equation (13) into Equation (5), we have 
the following expansion of Φ in powers of g:  
 

                                                    (15) 
 
with 
 

                  (16) 

 
As noticed already, Γn is T-even for even n and T-odd 

for odd n. 
Now, we invoke the Politzer’s (1980) theorem, 

concerning EOM. This states that if we consider the 
matrix element between two hadronic states of a given 
composite operator, constituted by quark and/or gluon 
fields, each of such field fulfils EOM, despite the fact 
that the parton is off-shell and/or renormalized. We show 
in Appendix A that owing to the Politzer theorem, the 
term Γ0 fulfils the Dirac homogeneous equation, 

 

                                                     (17) 

 
where m is the quark rest mass. The corresponding 
Feynman-Cutkosky graph is represented in Figure 1. For 
n ≥ 1 we have instead 

 
 
 
 

 
 

Figure 1. Feynman-Cutkosky graph for zero order 
term of expansion (15). 

 
 
 

     (18) 
 
Here, we have a  set of equations:  
 

                                                (19) 
 

     (20)                                            
 

                                                   (21) 
 

The kr (r = 1, 2, ...n) are the four-momenta of the n gluons 

involved in the quark-gluon correlator . This is 
defined as 
 

   (22) 
 

with 
 

                       (23) 
 

                                 (24) 

       (25)
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Figure 2. Feynman-Cutkosky graph for first order correction in the coupling.  

 
 
 

 
 

Figure 3. Feynman-Cutkosky graph for second order correction. 
 
 
 

Moreover the operator product P′ is defined according 
to the following rules: 
 

- any Â µ(k) is at the left of any Ã µ(k); 

- the Ã µ (k) are ordered as Ã µ1 (k1)Ã µ2 (k2 )...Ã
 
µl (kl ); 

- the Â µ (k) are ordered as Â µm (km)...Â µ2 (k2)Â µ1 (k1). 

 

Lastly, the quark-gluon correlators fulfill the 
following homogeneous equation: 
 

        (26) 
 

Each term of expansion (15) – which is somewhat 
similar to the one obtained by Collins and Soper (1981, 
1982) - may be interpreted as a Feynman-Cutkosky 
graph. It corresponds to an interference term between 
the amplitude 
 

”nucleon → quark + spectator partons”           (27) 
 
without any rescattering, and an analogous one, where 
n gluons are exchanged between the active quark and 

the spectator partons. In particular, the interference term 
is such that the gluons (for n > 0) are attached to the left 
quark leg (Figures 2a and 3a). An important result, 
deduced at the end of Appendix A, is that such a term 
turns out to correspond to any interference term between 
two amplitudes, such that k and n − k gluons are 
respectively exchanged between the active quark and the 
spectator partons, with 0 ≤ k ≤ n. The situation is 
illustrated in Figures 2 and 3 for n = 1 and 2. 

It is worth noting that a radiation ordering similar to 
the one established here is found in semiinclusive pro-
cesses at large x (Catani et al., 1991a) and in totally 
inclusive DIS at small x (Catani et al., 1991b).  

Moreover, the terms (22) consist of quark-gluon-quark 
correlations, analogous to the one introduced by 
Efremov and Teryaev (1984) and by Qiu and Sterman 
(1991, 1992, 1998). 

As a consequence of the Politzer’s theorem, formulae 
(15) to (22) hold for renormalized fields, provided we 
take into account the scale dependence of the coupling 

of the quark mass m and of 
the correlators 

 (Rogers, 2007). Moreover one has 
to observe that the four-momenta appearing in the 
propagators are highly off-shell: p

2
 and (p − kr )

2
 are of

(a) (b) 

(a) (b) 

(c) 
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Figure 4. Graphs for ”hard” amplitudes interfering coherently, first order correction in the coupling. 

 
 
 

order Q2 (Collins and Soper, 1982; Levelt and Mulders, 
1994), because the un-certainty principle demands hard 
interactions to occur in a very limited space-time 
interval, corresponding to the condition 
 

                                                           (28)  
 
Therefore we have p

2
 ≈ 2p

+
p

−
 and p

+
 = O(Q), whence 

 

                                                       (29) 
 

and it follows that the coefficients Γn are of order Q−n , 

up to QCD corrections, consisting of terms of the type 

g2k (lnQ)m , with k and m integers and k ≥ m (Dokshitzer 
et al., 1980). For the same reason, the coupling g, 
which appears in expansion (15), assumes small 
values, corresponding to short distances and times. 
   To summarize, we have found that the T-even and 
the T-odd correlators, given by equations (7), may be 
written as expansions in gM/Q, 
 

         (30) 
 

where  has a relatively weak Q-
dependence, as told above. Moreover, as already 
explained, ΦO changes sign when involved in DY. 

Stated differently, T-odd terms present an odd number of 
quark propagators. See equation (20) for odd n: in the 
limit of negligible quark mass, quark four-momenta in 
DIS are space like, whereas in DY they are time like 
(Boer et al., 2003b). 
   The first two terms of expansion (15) will be studied 
in detail in ”Zero order term: the QCD parton model” and 
“First Order Correction” respectively. 
 
 
HADRONIC TENSOR 
 
Here, we refer indifferently to the hadronic tensor of one 
of the three processes introduced. To be precise, among 

these, only DY involves two correlators of the type 

illustrated in asymmetries, whereas SIDIS and e+e− 

annihilation include respectively one and two 

fragmentation correlators. However, as we shall see in 
fragmentation correlator, this object requires only minor 
modifications with respect to correlator (5). 

If we substitute this correlator into the hadronic tensor 
(1), this latter does not fulfill the requirement of 
electromagnetic gauge invariance: only the term of zero 
order in the coupling satisfies this condition. In order to 
get a complete gauge invariance at any order, we have 
to recall the interpretation given above of the correlator. 
For example, at first order in the coupling in SIDIS, we 

see that the ”hard” scattering amplitude qγ∗ → q′g̃- 

where we have denoted by q and q′  the initial and final 
quark and by g̃ a gluon - consists not only of the graph 
of Figure 4a, encoded in the first order term of the 
correlator, but also of the one represented in Figure 4b, 
which interferes coherently with it. This guarantees 
electromagnetic gauge invariance for the first order 
graph (Berger and Brodsky, 1979). Furthermore, 
convoluting ” hard” graphs with the ”soft” factors, these 
two amplitudes give rise, among other objects, to 
asymmetric Feynman-Cutkosky graphs (Figure 5), 
related to interference terms. These are observables - 
necessarily gauge invariant - and therefore assume real 
values. This procedure, already suggested by LM, can 
be generalized to the three kinds of hadronic tensors 
considered in the present article, at any order in g, so 

as to obtain sets of graphs corresponding to observable, 

and therefore gauge invariant, quantities.  We show how 
to construct them at any order n, corresponding to the 
overall number of gluons exchanged between active 
quarks and spectator partons. The procedure consists in 
the following steps, for a given n:  
 

-Consider the n + 1 possible combinations of gluons 
occurring in the hadronic tensor (1), say, s for hadron A 
and n − s for hadron B, with s = 0, 1 ... n.  
-For a given s (n−s), consider all possible correlators, 
according to the definition given in “Power Expansion of 
the Correlator” as seen in the summary of this study, 
where s+1 (n−s+1) correlators equal to Γs (Γn−s 

). 

(a) (b) 
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Figure 5. Feynman-Cutkosky graphs corresponding to ”hard” amplitudes of Figure 4. Also the 
complex conjugate graphs, which amount to mirror images of these two, contribute to first order 
corrections. 

 
 
 

-Add each of such correlator to those graphs whose 
”hard” parts interfere coherently with it, as shown in 
Figure 5. In practice, one has to do this for the correlator 
gluons are attached to the ”left” quark leg and to multiply 
by the number of gluons of each correlator. 

Then we have, up to QCD corrections at each order 
of the expansion, 
 

                                (31) 
 

            (32) 
 
with 
 

  (33) 

                                      

Γ

                               (34) 

 
Here we have used the following shorthand notations: 

 

    (35) 

 

 
and

  are defined 

analogously to Equations (20) and (22): the matrix 
product starts from µr+1 and from µs+1 respectively, 

rather than from µ1. In particular, Φn,0 coincides with 

the definition (20). Last, we have set . 

For each term of expansion (31) we have to take into 
account three kinds of effects: 
a) gluon radiation by scattered partons; 

b) perturbative QCD corrections; 
c) higher correlators, such that the active quarks 
exchange gluons with quark- antiquark pairs or gluon 
pairs or triplets belonging to spectator partons. 

The first two effects may be calculated according to 
the algorithm suggested by Collins and Soper (1981, 
1982). As to the contributions c), they can be included in 
the basic term of expansion (31), since they have the 
same (T-even or T-odd) behavior. Lastly, we recall that 
unless we integrate over some final transverse 

momentum [of the lepton pair in the case of DY, of a 

final hadron in SIDIS or e+e− annihilation], the phase 
space of the final gluons emitted undergoes a restriction 
(Dokshitzer et al., 1980), expressed by a doubly 
logarithmic form factor; this is more and more sizable 
at increasing energy, resulting in the well-known 

Sudakov-like damping (Collins and Soper, 1981; Boer, 
1999). 
 
 

ZERO ORDER TERM: THE QCD PARTON MODEL 
 

Here and subsequently, we elaborated the first two 
terms of the expansion of the hadronic tensor. To this 
end, we defined a suitable reference frame, such that 
the momentum PB of the hadron B has an opposite 

direction to the momentum PA of the hadron A, |PA | 

and |PB | are of order Q and the z-axis is along PA. 
Moreover we focus on the hadronic tensor for DY 
process. 

However, as shown previously, our results can be 

trivially extended to SIDIS and e+e− annihilation; the 
main difference, concerning the fragmentation function, 
will be discussed in “ fragmentation correlator”. 
 Let us consider the hadronic tensor (32) at zero order, 
 

     (36) 

(a) (b) 
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Here the Γ0 ’s are given by Equation (16), for n = 0, and 
fulfil the homogeneous Dirac equation (17). Incidentally, 
they are T-even and gauge invariant at zero order in g. 
Moreover p′ is defined by Equation (2). The tensor (36), 
T-even itself, can be calculated, once we know the ”soft” 
functions involved in the parameterizations of the 
correlators Γ0’s. We show in Appendix B that 
  

                                                              (37) 

 
Here f1(p), g1L (p) and h1T (p) are functions of the four-

momentum p of the active quark, which, in this case, is 

on shell: p ≡ (E, p), with  

are the components of the quark PL vector, respectively 
parallel and perpend-icular to the hadron momentum. 
Moreover we have set 
 

                                                         (38)
 

 
having defined the dimensionless, light-like four-vectors 
n± in such a way that 

 

                                                         (39) 
 
and such that their spatial components are along (+) or 
opposite (-) to the hadron momentum. It is important to 

notice that, if integrated over p−, the expression 
obtained for the zero order correlator turns out to be 
proportional to the density matrix of a quark confined 
in a finite volume, but free of interactions with other 
partons (Di Salvo, 2007b). Therefore we fix the normali-

zation constant N so as to obtain, after integration, just 

the density matrix, 
 

                                                          (40) 
 

Lastly, it is convenient to express  in terms of 
the components of the PL vector of the hadron. As shown 
in Appendix B, one has 
 

        
(41) 

 
Here 
 

    
                 (42)

 

 

                     (43) 
 

                                    (44) 

 
 
 
 
and p⊥ is the transverse momentum of the active quark 

with respect to the hadron momentum. Equation (37) 
has important consequences on TMD T-even functions, 
as will be illustrated in Twist-2, T-even Correlator and 
Twist-3, ”Hybrid” Correlator. To this end, we compare that 
equation with the naive parameterization of the TMD 
correlator in terms of Dirac components, without 
introducing any dynamic conditions (Mulders and 
Tangerman, 1996; Boer et al., 2000; Goeke et al., 
2005). We give such a parameterization in Appendix C, 
up to and including twist-3 terms. The twist-2, T-even 
sector corresponds to quark distribution functions which 
survive when interactions with gluons are turned off. 

 As regards the twist-3 functions, we distinguish among 
the T- even, the T-odd and the ”hybrid” ones, these last 
deriving contributions both from T-even and T-odd 
terms. 
 
 
Twist-2, T-even Correlator 
 
If quark-gluon interactions are neglected, the correlator 
includes just twist-2, T-even terms. We show in Appendix 
C that it can be parameterized as 
 

                                                               (45) 
 
Here we have adopted the usual notations for the non-
perturbative functions (Kotzinian, 1995; Tangerman a n d  
Mulders, 1995); the indices f and E of Φ denote 
respectively the feature of ”free” and ”T-even”. The Dirac 
operators considered are purely T-even, as can be 
checked; moreover 
 

                               
(46) 

 
and µ0 is an undetermined energy scale, introduced for 

dimensional reasons, in such a way that all functions 
embodied in the parameterization of Φ have the 
dimensions of a probability density. This scale (Kotzinian, 
1995) determines the normalization of the functions 
which depend on η⊥. In particular, as is well-known, the 

6 twist-2 functions, which appear in the para-
meterization (45), are interpreted as TMD probability 

densities: f1 is the unpolarized quark density,   the 

longitudinally polarized density in a longitudinally 

polarized (spin 1/2) hadron,   the longitudinally 

polarized density in a transversely polarized hadron,  
the transversity in a longitudinally polarized hadron and 

 
                                          (47) 

 



 
 
 
 
is the TMD transversity in a transversely polarized 
hadron. 

Now we compare the parameterization (45) with the 
correlator (37). To this end we consider projections of 
both matrices over the various Dirac components, for a 
given Dirac operator Γ, 
 

                                                      (48) 
 
taking into account Equation (41) wherever necessary. 

The function  is known as ”pretzelosity” (Avakian 

et al., 2008b). First of all,  are 
approximately in the limit of 
 

.   (49) 
 

These relations hold up to terms of order (gM/Q)
2, since, 

as we have seen, the T-even Dirac components of Φ 
derive contributions only from even powers of gM/Q. 
Moreover, the Politzer theorem implies that the relations 
are not modified by renormalization effects, and 
therefore hold also taking into account QCD evolution. 
   In order to determine µ0, we observe that the 

functions involved in both sides of Equation (49) are 
independent of P. Therefore we must set µ0 = C0 P, C 0  
being a dimensionless numerical constant, independent 
of momentum. But since these functions are quark 
densities, they should be normalized adequately, 
setting C0 = 1. Then, neglecting the quark mass, 

 

 
                                   (50) 

 
This result differs from the treatments of previous 
authors (Mulders and Tangerman, 1996; Goeke et al., 
2005), who assume µ0 = M.  Some mismatches have 

been shown, as consequences of this choice (Bacchetta 
et al., 2008); these could be eliminated by taking into 
account result (50). 

By comparing CLAS (Avakian et al., 2005) and 
HERMES (Airapetian et al., 2005b) results, at not too 

high values of Q2 (1.5 to 3 GeV ) the first relation (49), 
together with equation (50), is verified for x < 0.35 (Di 
Salvo, 2007b), discrepancies at larger x being attributed 
to higher twist contributions. 
 
 
Twist-3, ”Hybrid” Correlator 
 
Now we consider a sector of the correlator which, as 
explained in the foregoing, has both T-even and T-odd  
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contributions. In particular, here we focus on that part of 
”hybrid” correlator which comes from the so-called 
”kinematic” twist-3 terms. In Appendix C we find, 
according to the usual notations (Mulders and Tangerman, 
1996; Goeke et al., 2005), 
 

                                                               (51)
 

 
Comparing the operator (51) with the correlator (37), 
and considering, in particular, the projections over Γ = 

 (i = 1, 2) of such operators, the approximate 
relation is yielded:  
 

                                                              (52) 
 
which corresponds to the Cahn (1978, 1989) effect and 

is approximately verified for sufficiently large Q2 and 
small x (Anselmino et al., 2007). Also, this equation, like 

Equations 49, survives QCD evolution. As we shall 

observe in the “First Order Correction”, Equation 52 

holds the terms of order gM/Q, since f ⊥ derives also T-
odd contributions from one-gluon exchange. The 
projections of the same operators over Γ =  (i = 1, 

2) yield (after integration over p⊥) 

 

                                           (53)
 

 
Here 
 

                                        (54)
 

 
and 
 

     (55) 

 
This last equation has been obtained from equation 
( 47). The contribution of the QCD parton model to 

 is very small: m is negligible for u- and d-

quarks, while for s- quarks h1 is presumably small, 

because the sea is produced mainly by annihilation of 
gluons, whose transversity is zero in a nucleon. 
Therefore the contribution of quark-gluon interactions, 
neglected in the approximation considered, becomes 

prevalent in this case, as well as for Γ = 1 and , 

corresponding respectively to the functions e and hL in  
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equation (51). The effect of such interactions will be 

discussed in “First Order Correction”. 
 
 
Remarks 
 
To conclude the analysis of the “Zero order term: the 
QCD parton model”, we sketch some consequences of 
our theoretical results.  
 

A) In expression (47) or (55) for transversity, the 
second term is due to a relativistic effect. To illustrate 
this, consider a transversely polarized hadron. The 
longitudinal polarization of the quark, due in this case 
to the transverse momentum, is magnified by the boost 
from the quark rest frame. This additional polarization, 
along the quark momentum, has again a transverse 
component with respect to the nucleon momentum. 
B) Equation 55, together with the last two equations 
(49), suggests a method for determining approximately 
the nucleon transversity. Indeed, g1T can be conven-

iently extracted from double spin asymmetry (Kotzinian 
and Mulders, 1996; Di Salvo, 2002, 2003) in SIDIS with 
a transversely polarized target. This asymmetry is 
expressed as a convolution of the unknown function with 
the usual, well-known fragmentation function of the pion. 
Therefore, the method appears complementary to the 
one usually proposed (Airapetian et al., 2000; 
Anselmino et al., 2007), based on the Collins (1993) 
effect in single spin SIDIS asymmetry; in this latter 

case one is faced with the convolutive product of h1T  
with the Collins function, which is poorly known 
(Efremov et al., 2006a,b). 
C) Equation 53 establishes a relation between trans-
versity and transverse spin. Indeed, the two quantities 
are related to each other. But, unlike transversity, the 
transverse spin operator is chiral even and does not 
commute with the free Hamiltonian of a quark (Jaffe 
and Ji, 1991a): in QCD parton model it is proportional 
to the quark rest mass, which causes chirality flip. 

D) We note that  are associated with 
” twist-2” Dirac operators (Jaffe and Ji, 1991a, 1992), 
and yet, in our treatment, they are multiplied by inverse 
powers of Q, as results from Equations (45) and (50): 

Q−1 for the first two functions, Q−2 for the third one. 
This would be unacceptable for common distribution 
functions; but, when transverse momentum is involved, 
also the orbital angular momentum plays a role. To 
illustrate this point, we recall that the quark distribution 
functions may be regarded as the absorptive parts of u-
channel quark-hadron amplitudes (Soffer, 1995). 

For example,   corresponds to an amplitude of the 

type (+ + | − +), denoting by |Λλ) a state in which the 
nucleon and quark helicities are, respectively, Λ and λ. 
The amplitudes corresponding to the functions in 

question involve a change ∆L = 1 (for   and  ) or  

 
 
 
 

∆L = 2 (for  ) in the orbital angular momentum; 

therefore they are of the type 
 

                         (56) 
 
where θ = arcsin|p⊥|/|p| is the angle between the nucleon 

momentum and the quark momentum, while A is weakly 
energy dependent. But |p| is of order Q and |p⊥| of 

order M.  Therefore Equation 56 reproduces the Q-
dependence of the coefficients relative to the above 
mentioned functions. 
 
 
FIRST ORDER CORRECTION 
 
The first order correction was done in g of the hadronic 
tensor (Equations 32 and 33). 
 

                (57)
 

 
Here we have set 
 

 

                                                                          (58) 
 

and 
 

                                                                                                    (59) 
 

Furthermore, the  are given by Equation (22) for n 

= 1 and fulfill the homogeneousDirac equation 
 

                              (60) 
 

Therefore, in the gauge adopted, this function is 
parameterized as 
 

   (61) 
 

Here we have set 
 

 with 
 

               
(62) 

 

and 
 

                                                               (63)
 

 
This observation is the fruit of a stimulating discussion 
with Nello Paver. 



 
 
 
 
This is a consequence of the Politzer theorem, as shown 

in Appendix B. The quantities Cµ , ∆Cµ ,  
are correlation functions of p and k. In particular, we 
have (Appendix B.2): 
 

                                                             (64) 
 

                                        (65) 
 

                                        (66) 
 

                                        (67) 
 

Here the  (i = 1,2,3) are unpolarized. ∆C (
)
 is 

a longitudinally (transversely) polarized function in a 

longitudinally (transversely) polarized nucleon.   

is a transversely polarized correlation function in an 
unpolarized nucleon: it is connected to quark-gluon 
interaction, for example, to a spin-orbit coupling 
(Brodsky et al., 2002a,b, 2003). 

Last, we have set in Equation (63) 
 

              (68) 
 

                   (69) 
 

Here  while ϕ and a are defined in 
Appendix B. 

 
 
Approximate factorization 

 
The second term of Equation 59 is not factorizable, in 
agreement with the observations of various authors 
(Brodsky et al., 2002a,b, 2003; Peigné, 2002; Collins 
and Qiu, 2007), who have shown failures of universality 
(Peigné, 2002; Collins and Qiu, 2007) at large 
tranverse momentum.  However, for sufficiently large Q, 
and adopting an axial gauge, this term is negligibly 
small (Berger and Brodsky, 1979) in comparison with 
the first one, which instead is factorizable. In fact, the 
gluon corresponding to the first term has a smaller 
offshellness than the one involved in the second term.  
This approximation is especially acceptable, even for 

relatively small Q, provided we limit ourselves to small 

transverse momenta (Collins, 2002) of the initial 
hadrons with respect to the direction of the momentum 
of the virtual photon in the center of mass of the DY 
pair. However, as already explained in “Gauge Invariant  

Salvo          877 
 
 
 
Correlator”, also in the case when factorization is 
approximately satisfied, the T-odd distribution functions 
change sign from SIDIS to DY. We shall illustrate 
phenomenological implications of this change of sign in 
“Asymmetries”. 

 In this approximation the tensor (57) amounts to 
 

   (70) 

 
where 
 

               (71)
 

 

and  is given by Equation(37). Then the tensor   

assumes a form similar to  giving rise to an 
approximate (Brodsky et al., 2002a) factorization of T-odd 
functions. Our conclusion is quite analogous to the one 
drawn by Collins (2002) and presents some similarity 
with the Qiu-Sterman (1991) assumption about the 
quark-gluon-quark correlation functions. In particular, as 

regards the factors Γ1(p), defined by Equation(71), we 

have to take into account Equations (61) to (67), 
together with eqns. (41). These induce for Γ1 the 

following parameterization, at twist-3 approximation: 
 

                                                                            (72) 
 
Here we have defined 
 

                                   
                                                                              (73) 
 

          (74) 
 
Moreover 
 

                      (75) 

 

 and 

       

(76)

 
 
Lastly p1 is defined by Equations (62) and  

 

 
                                                     (77) 
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The notations for the functions are somewhat similar to 

those introduced by Mulders and Tangerman (1996) and 

Goeke et al.  (2005). The suffix ”o” in 

 
denotes T-odd contribution to 

these three functions. They have T-even counterparts, 
as explained in “ Zero order term: the QCD parton 
model”, Equation (51), where we introduced ”hybrid” 
functions. The T-odd functions are normalized 
coherently with their T-even counterparts, as can be 
seen from the factor in front of Γ1 , Equation (72): 

indeed, considering the case of an approximately on-
shell quark, we have 
 

        (78)  
 
Furthermore the (−i)-factor in (78) is compensated by 

the i−factor present in the term with n = 1 in expansion 

(15), but absent in the term with n = 0; therefore also 
the phase of the T-odd functions is in agreement with 
the one of the T-even counterparts. It follows from such 
observations that the factor (78) in expression (72) 
automatically fixes also the normalization and the 
phase of the remaining functions included in Γ1. 

Lastly, as already noticed in connection with 

correlation functions, the function h′
 describes a quark 

transverse polarization induced by quark-gluon interact-
ions: this polarization, present also in spinless or 
unpolarized hadrons, is somewhat similar to the Boer-
Mulders (1998) function, although it is twist-3 and not 
twist-2. 
 
 
Twist-3, T-odd correlator 
 
As explained in “Approximate Factorization”, Γ1(p), 

Equation 72, yields, in the approximation discussed 
above, the contribution to the quark correlator of quark-

gluon interactions, at Q−1 approximation. We compare 
this expression with the purely kinematic parameteri-
zation of the twist-3, interaction dependent correlator, as 
given in appendix C. In this way we obtain several 
approximate relations among the ”soft” functions involved 
in that parameterization. This last reads 
 

                                             (79) 
 
Here

 
 is obtained from Equation 51, by substituting 

 
according to the 

rule just stated at the end of “Approximate Factorization”. 
On     the    other   hand,    from    Appendix  C   we     get  

 
 
 
 

                                                                            (80) 
 
Comparison between parameterization (79) and result 
(72), component by component, yields the following 
approximate relations: 
 

                               (81) 
 

                                    (82) 
 

                                    

(83) 

 

                             (84) 
 
Also these equations survive QCD evolution, like 
Equations (49) and (52). Aside from that, it is important 
to notice that the second Equation (81) implies, 
together with the second Equation (73) and with the 
third Equation (74), 
 
a) that ∆C = 0; 
b) that Γ1 includes 5 independent functions in all. 

 
 
Remarks 
 
A) Some of the functions, which appear in the 
equalities (81) to (83), are longitudinally 

 
or 

transversely  polarized in an unpolarized 

nucleon. Conversely, other functions are unpolarized in a 

longitudinally
  or transversely  

polarized nucleon. This is a consequence of the spin-
orbit coupling (Brodsky et al., 2002a) in gluon-quark 
interactions.  Furthermore, unlike previous authors (Boer 
and Mulders, 1998; Boer et al., 2000; Goeke et al., 

2005), we kfT  is known as the Sivers (1990, 1991) 

function find that such functions are are associated to 
the same inverse power of Q, independent of the kind 
of polarization (longitudinal or transverse) of the quark 
or of the nucleon. 
B) Among Equations (81) to (84), those which concern 

only T-odd functions hold up to terms of order (gM/Q)2. 
On the contrary, those which involve ”hybrid” functions - 
including Equation(52) - hold up to terms of order gM/Q. 

Analogous approximate relations of this latter type have 
been found by Avakian et al. (2008a) and by Efremov 
et al.(2009). 
C) By integrating the correlator (72) over  the  transverse  



 
 
 
 
momentum of the quark, we obtain interesting results as 
regards twist-3 common functions. First of all, the fourth 
equation (equation 84) implies that e(x) derives just 

T-even contributions, and therefore, apart from the 

(negligible) term illustrated in “ Zero order term: the QCD 

parton model”, it is essentially of order (gM/Q)2. On the 

contrary, the main contributions to   and  are of 
order gM/Q and are T-odd; therefore they change sign 
according as to whether they are involved in DIS or DY 
reaction. These last predictions could be tested by 
confronting the DIS double spin asymmetry (Anthony et 
al., 1996a,b, 2003) with the DY one (Di Salvo, 2001; 
Soffer and Taxil, 1980). In the case of DY one has to 
integrate over the transverse momentum of the virtual 
photon; moreover, if possible, it may be more 

promising to detect  pairs, whose polarization is 

perhaps less problematic to determine (Kodaira and 
Yokoya, 2003). 

D) Lastly, the twist-2 T-odd functions 
,
 cor-

responding to transverse polarization in an unpolarized 

nucleon, and the unpolarized distribution function
  

(Boer and Mulders, 1998) in a transversely polarized 
nucleon find no place in parameterization (72). 
 
 

Consequences of g1 and g2 
 

Now we examine some consequences of our results 
on the DIS structure functions g1(x) and g2(x), whose 

properties have been studied by various authors 
(Anselmino et al., 1995; Jaffe and Ji, 1991b; Bluemlein 
and Tkablaze, 1999). To this end, here, we re-introduce 
the flavor indices, dropped out in formula (1), in order 
to recover the usual definitions of those functions. 
Moreover, we recall that 
 

    (85) 
 

where ea is the fractional charge of the flavour a and 

the barred quantities refer to antiquarks. On the other 
hand, 
 

                 (86)  
 

Here we have defined 
 

                                                                (87) 
 

But Equation (53) implies 
 

  (88) 
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As discussed in “Twist-3, Hybrid Correlator”, 
 
is 

negligibly small for a nucleon. Therefore our result is in 
contrast with the Burkhardt-Cottigham (1970) (BC) sum 
rule that is, 
 

                                     (89) 

 
Indeed, integrating both sides of Equation (86) between 
0 and 1, and assuming relation (89), implies 
 

                                     (90) 
 
But this result is unacceptable, since a twist-2, T-even 

function like g1 (x) has a priori relation with , which 

is twist-3 and T-odd. 
Furthermore, Equation 89 implies, together with the 

operator product expansion (Anselmino et al., 1995), 
 

                         (91)
 

 

where
 

 is the twist-3 contribution to   

(Anselmino et al., 1995), to be identified, according to 

our results, with . Then Equation 86 would yield 

 

                       (92) 
 

which appears in contrast with the data of g1 (x) 

(Ashman et al., 1988, 1989; Airapetian et al., 1998), 
enforcing arguments against the BC rule (See 
Anselmino et al. (1995) and articles cited therein). An 
experimental confirmation of the violation of the BC rule 
was found years ago in a precision measurement of 
g2(x) (Anthony et al., 2003). 

Also the Efremov-Leader-Teryaev (ELT) sum rule, 
according to the version given by Anselmino et al. 
(1995) that is, 
 

                                     

(93) 

 

is in contrast with our result. Indeed, it gives rise, 
together with Equations (86) and (88), to the 
approximate relation 
 

                     (94) 
 
which, again, relates a T-even function to a T-odd one.  
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However, it is worth noting that the ELT sum rule was 
successively reformulated (Efremov et al., 1997) by 
suitably redefining g1 and g2. 
 
 
FRAGMENTATION CORRELATOR 
 
Fragmentation correlator (4) can be made gauge 
invariant analogously to the distribution correlator that is 
for a quark, 
 

                                                               (95) 
 
where L(x) is given by Equation (6).  

The object (95) may be treated analogously to the 
distribution correlator, described previously. Indeed, also 
in this case, for an antiquark one has to change the four-
momentum from p to −p and to put a minus sign in front 
of the correlator. Moreover one has to choose the path I+ 
for quark fragmentation from e

+
e

−
 annihilation, whereas 

the path I− refers to fragmentation in SIDIS. The only 
important difference with the distribution correlator is that 
one has to take into account also the nonperturbative 
interactions among the final hadrons produced. However, 
as we shall see in a moment, this does not involve any 
change in the parameterization. 

We treat only the case of pions, adopting for T-odd 
terms an approximation analogous to the one discussed 
in “Approximate Factorization”, valid for small transverse 
momenta of the final hadron with respect to the 
fragmenting quark. Under this condition, we have 
 

                                                             (96) 
 

                                        (97)
 

 

                              (98)
 

 

Here 
  is the common fragmentation function of 

the pion; , defined according to Mulders and 

Tangerman (1996), is the analog of ; last, H′ 

assumes the role of the Collins (1993) function, 
describing the asymmetry of a pion fragmented from a 
transversely polarized quark, the so-called Collins 
asymmetry (see also Leader, 2004). 

Final state interactions give rise to terms which 
decrease as inverse powers of Q, independent of the 
nature of the interactions themselves.  As an example, 
we re-consider the interactions which produce the 
aforementioned Collins asymmetry from a different point  

 
 
 
 
of view. Analogously to the distribution functions 
illustrated in remark D, such an asymmetry may be 
connected to the absorptive part of an amplitude of the 
type (+|−), where ± denotes the helicity of the 

fragmenting quark. This kind of amplitude - a typical 

helicity flip one - behaves as 
 

                                             (99) 
  
where B is a given function, weakly dependent on the 
quark momentum.  Then, similarly to Equation (56), we 
conclude that the effect of the final state interaction 
between the fragmenting quark and the fragmented 

hadron decreases like Q−1 . This confirms our previous 
result, but independent of the nature of the interaction. 

More generally, we examine the interactions that the 
fragmented hadron, say hadron B, undergoes with other 
final hadrons. These cause in the momentum PB of B a 
change ∆PB which depends weakly on Q, since the 
multiplicity of the hadrons produced in inclusive reactions 
increases only logarithmically with energy. Moreover, for 
sufficiently large Q and not too small fractional momenta 
z of B with respect to the fragmenting quark, the ratio 
 

                                                 (100) 
 

is quite small. Then, under such conditions, R decreases 
approximately like Q

−1
. Our result agrees with the 

approach by Collins and Soper (1981), who do not 
include ”soft” final state interaction in the leading term of 
(almost) back-to-back fragmentation in e

+
e

−
 annihilation. 

 
 

ASYMMETRIES 
 

Here, we consider some important azimuthal and single 
spin asymmetries, which, as is well known, may be 
produced by coupling two chiral-even or two chiral-odd 
TMD distribution or fragmentation functions. More 
precisely, the terms of the hadronic tensor which give rise 
to asymmetries are written as convolutive products of two 
”soft” functions times a suitable weight function (Boer et 
al., 2000; Di Salvo, 2007a) which changes from 
asymmetry to asymmetry. These last depend on some 
azimuthal angle φ, relative to the final hadron (for SIDIS 
and e

+
e

−
 annihilation), or to the final muon pair (for DY). 

Some of these asymmetries arise from the first order 
correction of the hadronic tensor, while others belong to 
the second order one, whose complete parameterization 
is not considered in this paper. 
 
 
Cahn effect 
 
This effect, pointed out for the first time by Cahn (1978), 
has been exhibited by Anselmino et al. (2007) examining 



 
 
 
 
some SIDIS data (Arneodo et al., 1987; Ashman et al., 
1991; Adams et al., 1993) (see also Anselmino et al., 
2006). We consider the asymmetry corresponding to the 
”product” 
 

                       (101) 
 

This asymmetry is proportional to cosφ and decreases 

like Q
−1

. To the extent that f⊥ and  can be 
approximated by f1 and Dπ respectively, one speaks 

properly of Cahn effect (Anselmino et al., 2007): this 
amounts to neglecting quark-gluon interactions, see 
Equation (52) for distribution functions, an analogous 
equation holding for unpolarized fragmentation functions. 
This approximation is acceptable for relatively large Q 
and at small x, as shown by Anselmino et al. (2007). 

However, one has to observe that both  and are 

”hybrid” functions and in general their T-odd 
contributions cannot be neglected. It is worth considering 
also the ”product” 
 

                       (102) 
 

which generates a cos2φ asymmetry decreasing like 

Q−2 , hardly distinguishable from another one, arising 
from the ”product” of two chiral-odd functions, as we 
shall see in a moment. Under the approximation just 
discussed, we predict a sort of ”second order” Cahn 
effect. 
 
 

Qiu-Sterman effect 
 

An important transverse single spin asymmetry is the 
one predicted by Qiu and Sterman (1991, 1992, 1998) 
(QS) (Efremov and Teryaev, 198 4 , 1985; Boer et al., 
1998, 2003b). This can be observed both in SIDIS and 
in DY, by integrating over the transverse momentum of 
the final hadron detected (SIDIS) or of the final pair 
(DY). This is described by the ”products” 
 

 and     (103)                 
                                      
the ”bar” indicating the antiquark function and c.c. 

”charge conjugated”. A similar effect could be observed in 

e+e− annihilation, if one of the final hadrons observed 

is spinning. This asymmetry decreases like Q
−1

. 

Moreover, since is prevalently T-odd, while  
and Dπ are T-even, the asymmetry is expected to 
assume an opposite sign in SIDIS and DY. 
 
 

Sivers effect 
 

The Sivers  (1990, 1991) single transverse spin  
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asymmetry is described by the ”product” 
 

        
                                                                        (104) 
 
This asymmetry was detected by HERMES (Airapetian et 
al., 2005b; Diefenthaler, 2005) and COMPASS 
(Alexakhin et al., 2005) experiments. It is T-odd, since it 
consists of the ”product” of a T-odd function (fT) times a 

T-even function ( ). Therefore the 

asymmetry is predicted to change sign (Collins, 2002; 
Collins et al., 2006; Anselmino et al., 2009), according 
as to whether it is observed in SIDIS or DY, similar to 
the QS effect. However the T-odd character of fT leads 

us to conclude that the Sivers asymmetry decreases like 
Q

−1
, in disagreement with the current literature (Boer 

and Mulders, 1998; Efremov et al., 2006b; Anselmino et 
al., 2007). 

Furthermore the third Equation (81) that is, fT ≈
 

 

implies, together with Equations (103) and (104), that 
the Sivers and QS asymmetries are related to each 
other, although the weight functions (Boer et al., 2000; 
Di Salvo, 2007a) involved in the two ”products” are 
different. This analogy was already noticed by other 
authors (Boer et al., 2003b; Ji et al., 2006a, b, c; Koike 
et al., 2008). 
 
 
Collins and Boer-Mulders effect 
 
In the framework of chiral-odd functions, an important 
single spin asymmetry is produced by combination of 
two transversities. In particular, single transverse 
polarization gives rise to an asymmetry described by 
the ”product” 
 

                  (105)  

 
or 
 

                           (106) 
 
The asymmetry ACOL- predicted by Collins (1993) and 
exhibited by HERMES data (Airapetian et al., 2005b; 
Diefenthaler, 2005) - decreases like Q

−1
 according to our 

treatment. It has been studied recently by Leader (2004), 
Anselmino (2009, 2010) and Boer (2009). 

We have also the following azimuthal, cos2φ asym-
metries: 
 

                      (107)  
 
or 
 

                              (108)  
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or 
 

      (109) 
 

which decrease like Q−2 . Therefore, as in the case of 

the Sivers asymmetry, we obtain a Q2 dependence of 
asymmetries (105) to (109) which differs from other 
authors (Boer and Mulders, 1998; Efremov et al., 2006a; 
Burkardt and Hannafious, 2008).  Our prediction for the 
Boer-Mulders asymmetry ABM2 is supported (Di Salvo, 
2007a) by DY data (Falciano et al., 1986; Guanziroli et 
al., 1988; Conway et al., 1989). On the other hand, the 

Q2 dependence of the Collins and Sivers asymmetries 
might be tested in new planned experiments at higher 
energies (Afanasev et al., 2007). 
 
 
SUMMARY 
 
In the present paper, we studied the gauge invariant 
quark-quark correlator, which we have expanded in 
powers of the coupling and split into a T-even and a T-
odd part. Working in the KS gauge, the Politzer theorem 
on EOM has allowed us to interpret each term of the 
expansion according to Feynman-Cutkosky graphs, 
involving higher correlators and corresponding to the 
powers of gM/Q. We have also elaborated an algorithm 
for writing a gauge invariant sector of the hadronic tensor 
in deep inelastic processes, like SIDIS, DY and e

+
e

−
 

annihilation. This gives rise to a rather long and 
complicated sum of terms. However, in the gauge 
considered, and especially at small transverse momenta, 
the ”Born” terms of the type (1) prevail over the remaining 
ones, as we have shown explicitly for first order 
correction in gM/Q. 

The zero order term and the first order correction of the 
expansion have been examined in detail. In both cases 
the Politzer theorem produces a considerable reduction 
of independent functions with respect to the naive 
parameterization in terms of Dirac components, giving 
rise to approximate (up to powers of gM/Q) relations 
among ”soft” functions. These relations survive QCD 
evolution. One such relation has been approximately 
verified against experimental data (Airapetian et al., 
2005b; Avakian et al., 2005), another one suggests a 
method for determining approximately transversity, while 
others could be checked in next experiments (Bunce et 
al., 2000; Adams et al., 1993). Also an energy scale, 
introduced in the naive parameterization for dimensional 
reasons, has been determined in our approach, leading 
to predictions on Q2 dependence of various azimuthal 
asymmetries. One of these predictions finds confirmation 
in unpolarized DY data (Falciano et al., 1986; Guanziroli 
et al., 1988; Conway et al., 1989). 

The hierarchy of TMD functions in terms of inverse 
powers of Q is established taking into account not only  

 
 
 
 
the Dirac operators, as in the case of common 
functions (Jaffe and Ji, 1991a, 1992), but also the p⊥ 
dependence, since in this case the orbital angular 
momentum plays a role as well as spin. 

Moreover a relation is found among  , the QS 
asymmetry and the Sivers asymmetry; in particular, 

both   and the two asymmetries are found to 
change their sign according to whether they are 
observed in SIDIS or in DY. We draw also some 

conclusions about the structure of function , and 
in particular against the BC sum rule. 

Quark fragmentation involves ”soft” interactions among 
final hadrons, but this does not imply a substantial 
difference with the distribution correlator. Rather, a 
caveat should be kept in mind for timelike photons, in DY 
and e

+
e

−
 annihilation, when Q approaches the energy of 

a vector boson resonance, like the  or the Z
0
. Since 

such a resonance interferes with the photon, one has to 
take into account its offshellness, quite different from Q

2
. 

Particular attention has to be paid also to the case when 
the active quark (or antiquark) comes from gluon 
annihilation, as seen, for example, in DY from proton to 
proton collisions. This may give rise to T- odd Feynman-
Cutkosky graphs, in which the (anti-)quark propagator is 
only slightly off-shell. These two situations deserve a 
separate treatment. 

As a conclusion, we stress that although other authors, 
like Efremov and Teryaev (1984) have already proposed 
EFP and LT years ago as a decomposition of the 
hadronic tensor in terms of Feynman-Cutkosky graphs, 
our deduction, based on EOM, leads to strong 
constraints on the parameterization of the ”soft” parts of 
the graphs. 
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Appendix A 
 

We deduce a recursion formula for the terms of the 
expansion of the correlator. 

Our starting point is the Politzer (1980) theorem, 
which implies 
 

(A. 1)         
 

Here, |P, S) denotes the state of a hadron (for instance, 
but not necessarily, a nucleon) with four-momentum P 
and PL four-vector S. ψ is the quark field, of which we 
omit the color and flavor index. Dµ = ∂µ − igAµ is the 

covariant derivative, adopting for the gluon field the 

shorthand notation Aµ  for . For the sake of 

simplicity, color and flavor indices of the quark field 
have been omitted. Moreover 
 

                                             (A. 2) 
  

where g is the strong coupling, while  We 

have, for n ≥ 1, in the KS gauge, 
 

                                                                         (A. 3) 
 

Here we have adopted the reference frame and the 
notations and definitions introduced in sect. 2. In 

particular, x2 is related to x: x2 ≡ (±∞, x+ , x⊥), x ≡ (x−, 

x+, x⊥). It is worth observing that 

 

                                         (A. 4)  
 
Substituting expansion (A. 2) into Equation (A. 1), we 
get 
 

                                                                         (A. 5) 
 
with 
 

                           (A. 6) 
 
Equation (A. 5) is an operator equation, to be intended 
in a weak sense: it holds when calculated between 
hadronic states. All equations of this Appendix will be of 
this type from now on. 

Looking for a perturbative solution for the correlator in 
powers of g, we set each term of the series (A. 5) equal 
to zero that is, 
 

                          (A. 7) 
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where 
 

                          (A. 8) 
 
By Fourier transforming both sides of Equation (A. 7), 
and recalling relation (A. 4), we get 
 

                                                                       (A. 9)
 

 
where  
 

                                      (A. 10) 
 
Equation (A. 9) can be rewritten as 
 

                                                                      (A. 11)
 

 
where 
 

                        (A. 12) 
 

    (A. 13) 
 

Equation (A. 11) is a recursion formula for 
,
 

eqns. (A. 6) constituting the first steps. This formula 
implies Equations (17) (for n = 0) and (18) (for n ≥ 1) 
in the text. In particular, as regards Equation (18), the 
quantity Γn results in 

 

                                       (A. 14) 
 
where N is a normalization constant. The operator 

 in Equation (A. 11) corresponds to a graph 

endowed with n gluons, such that the n-th gluon leg is 
attached to the quark leg on the left side of the graph 
(Figures 2a and 3a). 

Taking into account the hermitian character of Â µ (k) 
and the relation 

 
Equation (A. 

11) implies 
 

 
                                                                        (A. 15) 
 

In this case  corresponds again to a graph with 

n gluons, but such that the n-th gluon is attached to the 
quark leg on the right side of the graph.  This last result  
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implies that Γn represents any graph with n gluons, 

each gluon leg being attached to the left or right quark 
leg. 
 
 
Appendix B 
 
Here we deduce the parameterizations of the quark-
quark correlator at zero order and of the quark-gluon-
quark correlation, arising from first order correction. 
 
 
B.1. The Zero Order Quark-Quark Correlator 
 
The matrix Γ0(p), defined by 

 

  (B. 1) 
 
fulfils the homogeneous Dirac equation 
 

                                        (B. 2) 
 
where m is the rest mass of the quark. As shown in 
Appendix A, this is a consequence of the Politzer 
theorem. This implies, at zero order in the coupling, 
 

                                      (B. 3) 
 
Therefore, in the approximation considered, the quark 

can be treated as if it were on shell (see also Qiu, 

1990). Then, initially, we consider the Fourier expansion 
of the unrenormalized field of an on-shell quark that is, 
 

         (B. 4)
 

 
Here s = ±1/2 is the spin component of the quark along a 
given direction in the quark rest frame, u its four-spinor, 
c the destruction operator for the flavor considered and 
 

 
             (B. 5) 

 
As regards the normalization of us and cs , we assume 
 

                            
                                                                      (B. 6) 
 
where 
 

p                                                    (B. 7) 

 
 
 
 
and qs (p) is the probability density to find a quark with 

spin component s and four-momentum p≡ (p−, p̃ ), with p
− 

= (m
2
 + p

2
)/2p

+
. For an antiquark the definition is 

analogous, except that, in the Fourier expansion (B. 4), 
we have to substitute the destruction operators cs with 

the creation operators  and p with −p in the 

exponential. 
Choosing the quantization axis along the hadron 

momentum P in the frame defined at the beginning of 
sect. 4, and substituting Equation (B. 4) into Equation (B. 
1), we get 
 

                                                                         (B. 8) 
 
But owing to the second Equation (B. 6) we have 
 

                  (B. 9) 
 

where 
 

 (B. 10) 
 

                                                             (B. 11) 
 

Firstly we elaborate  We have 
 

              (B. 12)
 

 

Here  is a four-vector such that, in the quark rest 

frame,  and S is the unit 

spin vector of the hadron in its rest frame. Therefore 
 

       (B. 13) 
 

where 
 

                                 (B. 14) 
 

is the unpolarized transverse momentum distribution of 
the quark, while 
 

                           (B. 15) 



 
 
 
 
According to transformation properties of one-particle 
states under rotations, one has 
 

                      (B. 16)
 

 
where ± denotes the (positive or negative) helicity of the 
hadron and θ the angle between P and S. Substituting 
Equation(B. 16) into Equation(B. 15), and taking into 
account parity conservation, we get 
 

                                     (B. 17) 
 
Here 
 

                                                                      (B. 18)
 

 
is the longitudinally polarized TMD distribution of the 
quark, the last equality following from parity 
conservation. 

Now we consider  . Equation (B. 16) yields, for θ = 
π/2, 
 

                                             (B. 19)
 

 
where |±) and | ↑ (↓)) denote quark states with spin 

components, respectively, along P̂ and along 
 

                                                          (B. 20) 
 
Substituting Equations (B. 16) and (B. 19) into 
Equation (B. 11), and taking into account again parity 
conservation, we get 
 

        (B. 21)
 

 
where 
 

                                                                     (B. 22) 
 
is the TMD transversity of the quark. Returning to the 
Dirac notation, we have 

 

    (B. 23) 
 

where  is such that  ≡ (0, n̂ ) in the quark rest 

frame and 
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                                                              (B. 24) 

 
Then Equation (B. 21) goes over into 
 

     (B. 25) 

 
Substituting Equations (B. 13), (B. 17) and (B. 25) into 
Equation (B. 9) yields 
 

                                                                       (B. 26) 

 

having set
  =  cosθ and

  =  sinθ.  Equation 

(B. 26) is a solution to Equation (B.
 
2), which is a 

consequence of the Politzer theorem at zero order in 
g.  Since this equation survives renormalization - which 
generally implies only a weak Q-dependence (Sterman, 
2005; Dokshitzer et al., 1980) - the structure of Γ0 is not 

changed by QCD evolution. 
Lastly we deduce the expressions of the four-vectors 

 
and  in the frame where the quark momentum is 

p. In the quark rest frame we have 
 

                                        (B. 27)

 

 
In view of the Lorentz boost, it is convenient to further 

decompose and S⊥ into components parallel and 

perpendicular to the quark momentum. We have 

 

 
           (B. 28) 

 

                        (B. 29) 
 
where 
 

                                           (B. 30) 
 

                (B. 31) 
 
The boost which transforms the four-momentum of the 

quark from (m, 0) to (E, p), with  
changes only 

the components along p̂ of λP̂ and of S⊥. In particular, 

the boost transforms the four-vector (0, p) to p/m, with p 
≡ (|p|, Ep̂ ). Therefore, since α and β are O(|p⊥|/|p|) and 

|p|/P = O(1), Equations (B. 27) go over into 
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               (B. 32) 
 
where 
 

 
 
 
B.2. The Quark-Gluon-Quark Correlator 
 
Now we deduce a parameterization for the quark-gluon-
quark correlator, defined by 
 

                                                        (B. 33) 
 

As shown in Appendix A, the Politzer theorem implies, 
at order 1 in the coupling, 
 

                                    (B. 34) 
 

which holds also after renormalization. Therefore our 
line of reasoning is the same as for Γ0, that is, we 

start from unrenormalized fields and we take on-shell 
quarks, whose field satisfies expansion (B. 4). Sub-
stituting this expansion into Equation (B. 33), we get 
 

                (B. 35) 

 

                                                                    (B. 36) 
 

Here  are defined analogously to Equations 

(B. 5), 
 

                              (B. 37) 
 

and 
 

                                                                    (B. 38) 
 

Moreover the matrix element (B. 38) fulfils a relation of 
the type 
 

  (B. 39) 
 

where 
 

is a quark-gluon correlator and 

 are defined by Equation (B. 7). Then Equation 

(B. 36) yields  

 
 
 
 

                (B. 40) 
 
and 
 

 
                                      (B. 41)

 

 
We rewrite Equation ( B. 40) as 
 

                                         (B. 42) 

 
where 
 

               (B. 43) 

 

               (B. 44) 
 
Taking into account the appropriate Lorentz trans-
formations for the spinors involved, we have 
 

                                                            (B. 45) 
 

                                                            (B. 46) 
 

                (B. 47) 
 

                            (B. 48) 

 

             (B. 49) 

 

analogous definitions holding for . Moreover 

 and  refer to the PL vector of a quark with 

four-momentum , directly connected with nucleon 

polarization; they can be related to the nucleon 
longitudinal and transverse PL vectors, using the 

formulae elaborated at the end of sect. B1.  refers to 

the spin caused by spin-orbit coupling, 
 

                              (B. 50)
 

                                     



 
 
 
 

Last,  is a real, ”soft” parameter, which in general will 

depend on  and ; it will be included in the 

definitions of two of the ”soft” correlation functions. 
We assume θ0, θ1 << 1, where θ0 and θ1 are, 

respectively, the angle between p0 and P and the one 

between p1 and P. Then 

 

          (B. 51)
 

 
with 
 

                        (B. 52) 
 
Then Ψµ results in 

 

        (B. 53) 
 

                                                                      (B. 54)
 

 
where 
 

           (B. 55) 
 

                          (B. 56) 
 

                               (B. 57) 
 

                      (B. 58) 
 

                               (B. 59) 
 
are correlation functions.  In order to parameterize 
these functions, we recall the definition (B. 33) of 
quark-gluon-quark correlator and Equation (9), con-
cerning the gauge used. Therefore we have to take into 
account the available transverse four-vectors, whence it 
follows that 
 

       (B. 60) 

 

                                                     (B. 61) 
 

                                                (B. 62) 
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                                                 (B. 63) 
 

Here C1 , C2 , C3, ∆C, ∆T C and ∆T C′ are ”soft” 

functions of p and k. The parameterization of is 

obtained by inserting Equations (B. 54) and (B. 60) to 
(B. 63) into Equation (B. 35). Again, as in the case of 
Γ0, the Politzer theorem, of which Equation (B. 4) is a 

consequence, implies that renormalization effects pre-
serve the structure of that parameterization. 
 
 
Appendix C 
 
Here, we consider the parameterization of the 
correlator in terms of the Dirac components, up to and 
including twist-3 terms. This parameterization is similar 
to the usual ones (Boer and Mulders, 1998; Goeke et 
al., 2005), also as regards notations, except for an 

energy scale , which we leave undetermined here, 

and for the twist-2, T-odd sector, which we omit 
because it has no place in our procedure. The scale

, usually set equal to the rest mass of the hadron, is 

determined in sects. 4 and 5, with a different result. 
The parameterization reads 

 

                                                                          (C. 1) 

Here 
 

                                                                        (C. 2) 
 

                                                                        (C. 3)
 

 

                                                                         (C. 4) 
 

Here,  denotes the ”hybrid” term, both interaction 

free (
 
, T-even) and interaction dependent ( , T-

odd): the two terms have the same parameterization, 
but behave quite differently. For the ”soft” functions, we 
have adopted notations  similar  to  those  employed  by 
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Goeke et al. (2005). Note, however, that in the 

expression of  the functions 
 do not 

appear in the parameterization proposed by those 
authors; on the contrary, we have not taken into account 

the functions and , defined by them. 
 

 
 
 
 
 


