
International Journal of the Physical Sciences Vol. 6(8), pp. 2072-2082, 18 April, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.480
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Trivial model for mitigation of risks in software
development life cycle

Basit Shahzad1*, Yousef Al-Ohali2 and Azween Abdullah3

1Deanship of E-Transactions and Communication, King Saud University, Riyadh, Saudi Arabia.

2College of Computer and Information Sciences, Saud University, Riyadh, Saudi Arabia.
3University Technology PETRONAS, Perak, Malaysia.

Accepted 12 April, 2011

Software development is the art of developing the software in an appropriate manner by using the
software development life cycle, regardless of the fact that which model is used for the development.
The development is a dynamic activity and requires a lot of rational thinking during the analysis,
design, coding, testing and maintenance phases of software development. As the development of
software is becoming more systematic and tool-driven, and due to the over emphasized use of the
technology the orientation of risks are increasing but the attention to risk management has been
observed to be helpless to improve with the same pace to tackle the dynamically increasing software
risks. In the last decade, precisely, having felt the importance of software risk management, increasing
emphasis has been given in this domain. Therefore the academic and industrial community is worried
to consider that how the risks can be handled to minimize the losses and to increase the profits and
maintain reputation in the market This paper focuses on the aspect of suggesting the techniques to
handle or manage the software risks. Taking into consideration the eighteen most prominent risk
factors that affect the software quality and software process, the handling or avoidance strategy has
been proposed. This paper suggests addressing the risk factors to be treated not only by the
technology but by using intuition as well.

Key words: Software risk management, software risk handling, risk mitigation.

INTRODUCTION

Software risk management has been a very hot area of
research since last three decades. Recently, the research
community looks seriously interested to identify not only
the risk factors but also the causes of the appearance of
the risk factors in software development life cycle and
how these risks can either be handled or avoided. A
recent survey of 600 firms indicated that almost 35% of
them had at least one ‘runaway’ software project
(Rothfeder, 1988). In another study, conducted on almost
13,000 projects, it was investigated that almost 25% of
the projects were either delayed or faced a failure. It has
been observed that most problems in the software
industry are faced just because of the poor software risk
handling mechanisms or due to the absence of any such
mechanism at all. In this regard it is important to note

*Corresponding author. E-mail:basit.shahzad@gmail.com. Tel:
00966 5698 38103.

that currently strong emphasis is being given on this
domain to identify more and more risk factors (Jones,
1996).

It is strongly believed that the risk identification,
particularly, is an ongoing process, and apparently there
is no full stop as the risk factors keep on increasing with
the arrival of new technologies, people, environment,
management and the circumstances. So a claim about
the identification of all risk factors available in the entire
software process may not be realistic. However, the
researchers have keenly considered the identification of
risk factors and the prioritization of risk factors is also an
open area of research. This paper not only focuses on
the identification of the risks but also provides a
mechanism to handle them effectively.

The paper discusses the RIMAM model of software risk
management by providing the step-wise execution of the
risk handling methodology. The model presents the easy-
to-understand, flowcharts to express the working of each
mitigation/avoidance strategy against any risk factors,

Shahzad et al. 2073

Table 1.The risk factors with respect to their identifier.

Risk # Risk factor Risk # Risk factor
1 Immature requirements 8 Staff turnover
2 Divergent estimation of cost and time 9 Staff inexperience
3 Massive user Stress 10 Backup issues
4 Less reusability 11 Natural disasters
5 Project delivery milestones 12 Excessive error detection
6 Funding un-certainty 13 Developer’s faithfulness
7 Over-optimistic technology Perceives 14 Preservation of intellectuals

thus providing the development team a chance to
address the risk locally. The organization may or may not
opt to follow the RIMAM model in full any may opt to have
practice the subset of it, which also is possible,
depending on the needs of the risk management activity.
The dependence diagram in this paper identifies the
dependencies of the risk factors on each other. Having
known that a risk on which quite a few factors are
dependent, it is imperative to keep that in order to
maintain the handling of risks in a software development
life cycle.

PREVIOUS WORK

Software risk identification is an open area of research
and considerable research has been done in recent past.
(Pressman, 2000) has made an effort to identify the
software risks, and has provided the ten broader risk
factors. Boehm, in his work has also provided a list of top
ten risk categories (Boehm, 1998). In a recent paper on
risk management, the risk factors have been prioritized
according to their frequency of occurrence and the impact
that they possess (Shahzad, 2005), and thus a list of
eighteen risk factors with respect to their total impact has
been prepared. The list is presented in Table 1 which
presents the list of all 14 risk factors, which presents the
ordered list of software risk factors with respect to the
overall impact of each risk factor (Shahzad, 2007).

The risk factor identified in this list is expected to cover
a border range of the risks that may come into the
software development process. Still the author feel
himself restricted, not to claim that this list covers all
possible risk factors widely focused area of research.

Software risk identification and mitigation has been a
prime area of research since last two decades, and this
area of research has received a highly overwhelming
response and contribution from the researcher both: in
industry and academia, world-wide. In order to identify
the recent trend and practices in the domain of software
risk identification a comprehensive literature survey was
conducted that has helped in the more effective
management of risk factors.

Danny (2006) has worked to reduce operational

risks by improving the software quality. Danny focuses on
the classification and quantitative evaluation of removing
the software risks by effective software management,
thus contributing to the classified risk mitigation. In a
study that was conducted in 2005, a sample of 167
customer’s data breaches were analyzed to view the
distribution of risks and threats and it was identified that
3% of the total risks are caused by accidental disclosure
bye-mails, 7.8% of risks are oriented due to the human
weaknesses, 40.1% risks are caused by unprotected
computer/backup media and 49.1% of risks are caused
due to the malicious exploitation of software risks. Thus,
the suggested way mitigates the risk factors more
appropriately.

The SEI reports that 90% of all software risks are due
to already known defects , while all of the SANA top 20
internet security problems are result of poor coding,
testing and sloppy software engineering. In recent past
huge emphasis has been on the management of risks in
distributed software projects, which proposes a
framework for handling the software projects that are not
developed at geographically same location, and have
advised a framework to e followed in this regard (Persson
et al., 2009). Alge et al. (2003) emphases on the
effective handling of risks and problems in the software
development lifecycle and in team structure by the usage
of knowledge building process and effective
communication (Alge and Witheoff, 2003). Bradner et al.
(2005) have worked to identify the correct team sizes for
the different project sizes and have focused the problems
that are experienced by over, low and poor staffing (Erin
et al., 2005).

Burn (2001) and his team have discussed the risks that
are oriented due to the in-appropriate application
selection methodology, especially in the database
projects (Burns and Dennis, 1985). Charatte (1989) has
proposed the analysis and management of the risk
factors in software development process (Robert, 1989).
The surveyed literature has been identified greatly in the
favor of categorical identification of the risk factors as the
existence of risk factors can be extremely harmful, if not
attended at the proper time by giving due consideration.

Boehm (1998) has identified the software risks in four
different domains of software, including requirement,

2074 Int. J. Phys. Sci.

personnel, re-usable software and tools and environment.
These four categories have been sub-classified by
identifying more categories falling in the same categories.
Barry has identified the risk factors and has given three
different choices for the selection of probability. The user
has to decide himself what probability of some specific
threat the software is facing and has to choose
accordingly. The improbable risk factors have the
probability range 0.0 to 0.3, the probable from 0.4 to 0.6
and frequent from 0.7 to 1.0.

Westfall (2009) has mentioned the idea of providing a
balance between the risks and opportunities and has
emphasized that taking risk provides profit and huge
market standing and to avoid the risks additional financial
burden is to be accepted. The author has provided two
conditions to limit the risk, firstly, the risk occurs and
become obvious as a problem, and secondly is that the
project succeeds. In order to manage the risks a model
that focuses on the identification of the risk has been
proposed. The author has proposed that interview,
volunteer reporting, product decomposition, project
decomposition, Assumption analysis, and risk
taxonomies for the purpose of risk identification. The risk
statement phase is described to consist of the source,
risk condition, consequence and any partial
consequence. In risk analysis phase the technical, cost,
schedule and customer satisfaction contribute to
calculate the final exposure of the risk, based on the
assumptions. For the purpose of risk management, the
author focuses on a detailed tracing of the risk itself. First
it asks for having additional information to see if it can be
avoided if not then if the risk can be transferred, if it
cannot be transferred it is accepted by providing the
mitigation.

Hoodat and Rashidi (2009) have focused on the
classification and proposing the strategy to calculate the
overall impact of these risk factors in a software
development life cycle. In order to manage the risks
effectively, the author has proposed to index the risk
factors by calculating the impact and likelihood of each
risk factor. In the risk assessment phase, risks have been
classified in a numerous ways. The author has first
categorized them as risks internal to the software and
risks external to the software. The software risks have
been also grouped into process, project and product
risks. The author has further categorized the risks into
performance risks, cost risks and scheduling risks. The
author has further classified different risks in five different
classes including requirement risks, cost risks,
scheduling risks, quality risks and business risk. In these
broader categories many risk factors have been
mentioned with quite a few being redundant and over
observant. The author has introduced the use of logic
gates to present the flow and dependence of risk factors,
and has calculated the dependence of risk factor on one-
another in the categories already mentioned.

Armestrong and Adens (2008) have emphasized that

risk is part of economic enterprise and profit. Risk
management is done to minimize the negative effects of
any risk rather than investing on projects to handle risks
that are hardly expected to be active. The authors have
elaborated that the first step to manage the risks
effectively is to be aware of the negative effects of the
risk and how to safeguard them. The authors have also
emphasized the need for collection of risks through the
survey by asking management, developers, development
teams, customers and any other project stake holders.
The authors have also identified 8 area of exposure to
which they expect the risk factors to generally belong to.
These areas include: clarity, reliability, availability,
experience, stability, suitability, dependency. The risks
can be categorized in 6 major areas including:
requirement changes, unreliable and un-realistic
estimates, high staff turnover, lack of project standards
and process, lack of design and inadequate
documentation and inadequate testing and quality
procedures. The authors mentioned that the risks should
be prioritized but keeping the business context in mind.
The authors urge to take into account the business
priorities like increased customers service and
satisfaction, improved delivery time, reduced dependency
on constraints, improved staff skill level, reduced costs,
improved cost estimation and planning and benefit from
re-usable components while prioritizing the risks. In terms
of reducing the risk that author focuses on the
establishment of incremental development process. From
the above discussion, it can be identified that the impact
and probability of risk factors is generally calculated by
doing the interviews, surveys and learning from personal
experiences.

The literature is fertile to have quite a few techniques
for identification and consequently for the mitigation of
risk factors.

(a) Risk taxonomy: The risk taxonomy follows the SDLC
and provides a framework for the handling of information.
This method is a kind of instrument with which the system
level risks can be obtained (Higuera and Haimes, 1996).

(b) Risk clinic: Risk clinic is a type of workshop that
takes the SEI’s continuous risk management (CRM) and
team risk management (TRM) and links it with the
communication, project management and risk
management channel of the client (Higuera and Haimes,
1996).

(c) Continuous risk management (CRM): CRM is a
principal based way of handling with the risks and
opportunities during the SDLC, it provides a control on
the management of risks regardless of the tool and
technique used. As the handling continuous, the
frequency of handling the risks is very high yet the
approach is expensive as huge emphasis remains on the
risk identification and mitigation of the identified risks

(Higuera and Haimes, 1996).

(d) Team risk management (TRM): TRM extends risk
management with team oriented activities, involving both
customer and developer (Higuera and Haimes,1996).

(e) Survey, questionnaires and interviews: Provide the
way of direct communication with the customer and can
produce the results in very short time and can be highly
effective.

(f) Intuition: The experience of the experienced team
leaders can be used as an asset to guide the
development team about the identification and mitigation
techniques for the identified risks in the software projects.

In the presence of the identification techniques above,
the literature is infertile to produce an example in which
risks could be identified by the usage of any single
technique. It has been observed that mostly more than
one techniques are used at the same time to identify the
maximum amount of risk factors, but which techniques to
combine, purely depends on the nature, scope, budget,
need and staffing of the project. But intuition and survey
(questionnaire, interviews) are more likely to be among
all combinations that can be proposed for effective risk
identification.

MODEL FOR SEQUENCE OF ACTIVITIES

Figure 1, represents the sequence of activities that are
performed to avoid, mitigate and handle risk factors that
have been discussed in “Handling and avoidance
mechanism”. The risk identification, management and
avoidance model (RIMAM) is presented in Figure 1.
RIMAM briefly presents the moves that are expected for
the purpose of identification, management and avoidance
of each risk factor presented in Table 1. The model
proposes that for the handling of risk factor ‘Immature
Requirements’ the inputs like interview results,
questionnaire results and results of direct client
communication should be present in order to form the
initial requirements. Then the FAST and JAD sessions
can be applied on the initial requirements to help in
identifying the final requirements and then the software
can be developed based on those requirements.

In an effort to identify why requirements are not
properly understood and consequently why incorrect
estimates about time and cost of software ware made, it
was identified in a survey by Standish group, in 2004 that
only 29% of the projects succeed and, 53% are
challenged and 18% fail completely. Oxford University, in
a survey tried to measure the project failures, and
concluded that only 16% project succeeds, 74% were
challenged and 10% met complete failure. It was further

Shahzad et al. 2075

investigated that the ‘divergent estimation of cost and
time’ is the major issue that lead the project failure.
Similar findings have been proposed by the British
Computer Society and national Institute of Standards and
Technology. It has been further concluded that the
‘divergent estimation of cost and time t’ are mainly
caused by following prominent factors. The factors are:
‘Incorrect requirements’, ‘lack of training on tools and
inexperience’ and lack of intuition. Session (2009) has
also investigated the same in his white paper. The
dependency diagram is shown in Figure 2 (a).

The risk factor ‘less reusability’ is operational after the
requirements have been finalized. The process of
identifying the reusable code is initiated. If the reusable
code is identified as per the initial expectations things
proceed fine but in case the reusable code is not found
as expected, the development team has to develop and
test the code that causes the increment in the
development time and cost as discussed in the study.
The reusable code can be used in three ways: Software
libraries, design patterns or framework (Session, 2009). It
has been identified that the availability of less reusable
code as compared to what had been scheduled in the
beginning is a major problem which forces the
development team to develop, test and integrate the
piece of code. The ‘less reusability’ problem is expected
to have been influenced by the three factors: ‘incorrect
requirements’, ‘lack of training and in-experience’ and
‘lack of intuition’. The dependency diagram is shown in
Figure 2 (b).

Next, the model discusses the risk of tightening delivery
deadline and funding un-certainty. The model proposes
to identify the expected time and cost with respect to the
actual development, if found adequate enough and the
requirements are expected to change only after a fixed
amount of time the team may opt for the incremental
model to follow for the software development and in the
other case if the requirement change is frequent the team
may first opt to finalize requirements, apply FAST and
then develop. The cost of finalizing requirements and
then developing will be discussed. The dependency
diagram is shown in Figure 2 (c).

The risk item ‘over-optimistic technology perceives’
discusses the risk of the technology that does not meet
the requirements, the avoidance strategy proposed in this
regard takes into the account the initial requirements, and
after the discussion with the customer the final selection
about the technology is made. The continuous change
remains in practice with consultation with the customer.
The RIMAM focuses on this continuous consultation with
the customers in order to ensure that things are done in
order and the risk factor is avoided effectively. This risk
factor is expected if the development and estimation of
the project is done in a casual manner: without
measuring the impacts of risks and individual capabilities
of the workers. This risk factor is dependent on two other
risk factors, namely ‘staff in-experience’ and ‘lack on

2076 Int. J. Phys. Sci.

Figure 1. Risk identification, management and avoidance model (RIMAM).

Shahzad et al. 2077

���� ����

�� ��

	�

	� ��
 ����

���� ��

�� �� ����

���

��

�� ����

������

��
� ��	�

����

�

�� ��	�

����

����

�

�� ��

�� �� ��
� ���� �� ��

����	��� ��

Figure 2.Inter Dependence of software risk factors.

intuition’. The dependency diagram is shown in Figure 2
(d).

The risk factor ‘staff inexperience’ discusses the
avoidance strategy of the staff inexperience risk by taking
into account the employee profile and having to see that
if its adequate or not, if the employee profile is found
adequate he may be deployed to develop the software
other-wise if the profile is not adequate the team structure
may be developed and training may also be provided to
enhance the capability of the individual employees and if
the employee profile is not found adequate after several
such efforts, the employee may be fired and new hiring
may be done in order to train and work in the software
industry. The dependency diagram is shown in Figure 2
(e).

The ‘staff turnover’ of the RIMAM proposes the
avoidance strategy regarding the employee leaving the
organization frequently. Since the employees are an

asset to the organization, it is important that good
employees are retained within the organization by
providing the attractive perks and privileges. The RIMAM
proposes the annual review of the employees profile and
if found suitable he may be provided with the access and
participation in the meetings, conferences and social
gathering events by the firm and should be given respect
accordingly. The firm must adopt a secret or visible
framework to see that if the employee is happy. If he is
not happy the firm may offer the employees with loan
schemes, trainings and bonus etc. in order to keep them
committed and motivated. It is also essential that the
pays are rightly at par with that are provided in the market
by other competitors. It is important to note that the staff
turnover is not directly dependent to most of the risk
factors being discussed in this paper, yet it can be
indirectly influenced by the managerial decision, which,
as a plenty can stress the team member and the team

2078 Int. J. Phys. Sci.

member leave the organization in response (Hall et al.,
2008). The management behaves this way if they identify
that the worker is adding problem in development, and
cannot perform his duties adequately. Other reasons of
staff turnover are out of the scope of this paper. The
dependency diagram is shown in Figure 2 (f).

The ‘Excessive Error Detection’ of the RIMAM focuses
on the risk of presence of excessive amount of errors that
may be identified with the passage of time. The RIMAM
proposes that every developer that develops the code
must unit test its piece of code and any error identified
should be corrected immediately. After the developer is
done with the initial unit test the codes developed by the
group of developers are to be integrated and multiple test
are to be conducted in order to ensure that the pieces of
code work fine as a unit as well. If the software is
semantically and syntactically correct after integration it is
assumed ready for stress testing and system level testing
after which the software can be declared as successful.
In an effort to identify that this specific risk factors is
influenced which risk factors that are discussed in this
paper it is identified that there are seven risk factors that
directly or indirectly contribute in increasing the amount of
errors. The factors are: ‘Incorrect requirements’, ‘less
reusable code’, ‘tightened delivery deadline’, ‘technical
and human in-experience’ and ‘staff turnover’. The
dependency diagram is shown in Figure 2 (g).

The risk factor ‘preservation of intellectuals is directly
dependent to the staff turnover as the intuition itself is
dependent on experience, and retention of experienced
people is a must to maintain the intuition level in an
organization.

The detailed step-wise avoidance/management
strategies are also proposed for the remaining variables
of RIMAM. Some variables, for example, ‘backup issues’,
‘developer’s faithfulness’ etc. do not have any flow-chart
against them. In such cases, where there are less
descriptive strategies available, the flow-chart has not
been developed. It has been observed that risks factors,
somehow, are dependent on each other. This
dependence can be strong or weak. A factor is
considered strong if it directly affects on other risk factors
and a risk factor is considered weak if it affects some risk
factors indirectly. The dependence diagram is shown in
Figure 2 (h).

HANDLING AND AVOIDANCE MECHANISM

“Handling and avoidance mechanism”, discusses the
handling and avoidance strategies against each risk
factors, presented in Table 1.

Immature requirements

(i) Multiple requirement acquisition approaches must be
used; this includes the questionnaires, interviews and

direct communication.
(ii) Facilitated application specification techniques (FAST)
(Pressman, 2000) should be used to ensure the
elaborated understanding of the requirements at both
ends, that is, the customer and developer. The customer
must also allow the development team to have a flexible
schedule if the requirements are expected to change
dynamically.
(iii) The development team must be familiar with the
Enhanced Information Deployment (Pressman, 2000)
technique, to take care of the default requirements that
are not explicitly mentioned by the customer (Bell and
Thayer, 1976).

Divergent estimation of cost and time

(i) The development team while bidding for the project
must have a clear idea of the requirements that are
explicitly stated and also of those that are expected by
default.
(ii) If the funding and time are not flexible, the incremental
model (Boehm, 1998) of development may be a solution.
(iii) The development team must try to find the maximum
amount of reusable code, the availability of reusable code
will have three dimensional positive effects. Firstly, it will
decrease the time required for the software development
by making available the code that was to be developed if
the reusable code were not available. Secondly, it will
decrease the cost of development as less development is
required in the presence of reusable code, the higher the
usage of re-usable code the lower the cost of software
development comes. Thirdly, the re-usable code is
already tested component and hence does not require re-
testing, therefore, saving time of testing the component.
(iv) The team of experienced developers and
management may decide, in consultation with the
customer, that if there are any scrub able requirements
that may not harm the overall working of the software.
Such requirements may be eliminated to save time and
cost (Baskeles et al., 2007).
(v) Clean room engineering may not be implemented in
the projects that have tight time and cost schedule.

Massive user stress

(i) The developer, if possible, must design and develop
the system to tolerate with the extra burden as well.
(ii) The developers must also do the extensive stress
testing to ensure that the software is capable of handling
the load and stress of the users.

Less reusability

(i) While estimating for the project’s cost and resource
requirement, the developers must know that what amount

of software is available for re-use, this should be an
rational decision as, if the reusable code is not available
the effort to develop such code will be duplicated. If the
component is to be developed, it is necessary that a
clean room engineering approach is applied is the
development so that the time required for testing the
component is minimized if not completely eliminated
(Matsumura and Yamashiro, 2008).
(ii) The best developer, among the available lot, should
be deployed to develop the components so that the
expected time on development and testing is minimized.

Project delivery milestones

(i) The managers somehow try changing the
circumstances because of the deadline pressure or
because of the orientation of new requirements. The
development team and management of the development
firm must have the foreseeing capability, and should try
adhering to the dynamic circumstances without disturbing
the firm itself.
(ii) The FAST approach may be used to speed up the
requirement acquisition, thus decreasing the negative
impact of tightened deadlines.

Funding un-certainty

(i) In order to ensure that funding issues remain in order,
the development team must first ensure that the software
is developed within time, developing within time will not
only help to improve the revenues and profits but would
also ensure that the funding remains available throughout
the software development lifecycle. It is also important
that friendly relationship is maintained with the funding
agency.
(ii) Along with the cordial relationship with the funding
agency, it is also important that the funding agency is
kept updated regarding the progress of the software
development process, and also any problem during the
process.

Over-optimistic technology perceives

(i) The decision about the choice of technology should be
taken only after a very through consideration of the
available tools and technologies and only by the
experienced practitioners after discussion with customer
(MacManus, 2000).
(ii) The tool chosen should not only be acceptable to the
customer but the customer should have necessary
training on the tool. It is also important for the customer to
argue with the development firm about the future
acceptability of the product being developed by using that
specific tool.

Shahzad et al. 2079

Staff inexperience

(i) The development firm can keep its employees updated
by offering them training on the emerging tools (Lui and
Chan, 2004).
(ii) The firm may hire the new graduates from the leading
universities, having some knowledge of the current tools.
This approach has been observed to be extremely helpful
in not only fulfilling the industry-academia gap but in also
producing the quality products for the industry by using
the knowledge imparted by the academia (Lui and Chan,
2004).
(iii) It is important that the teams are made for each
project. Developing the team structure will help in not
only promoting the efficiency of the work but will also help
in providing experience to new members.

Staff turnover

(i) The employer should keep the estimations of the
salaries available in the market for experienced people
(Pressman, 2000).
(ii) The employer may offer the services like, free family
medical; children school fee, car allowance, house rent,
etc in order to keep the employee attracted. The
employer should provide other social gathering and
meeting opportunities to the employees, in order to help
establish a family culture at the organization.
(iii) The employer must try to keep the employees
updated and should provide the employees with chances
to refresh their knowledge about the emerging tools and
technologies (Pressman, 2000). The employer may also
introduce a loan scheme to help the needy individuals
and the return may be in easy installments, without or at
a minimal interest rate.
(iv) It is necessary that the employer try maintaining the
respect and honor of the employees, and it is never
compromised in any situation. The employer may also
introduce a bonus scheme to make the employees a part
of the profit that the firm gains. This would give a sense
of ownership to the employee and the employee will try to
deliver according to the best of his capabilities.

Backup issues

(i) Backup must be taken at multiple sites, so that in case
of any physical or technical damage the backup itself
remains intact. The management may try to introduce the
paperless environment in the firm; this would help in
maintaining the efficient, secure and traceable working
environment.
(ii) The backup sites may be frequently updated and the
updates should be inspected regularly to reduce the
chances of any data not being updated on the server.

The team structures should be observed in the

2080 Int. J. Phys. Sci.

development environment; this will improves the working
environment and will decrease the dependency on
individuals (Moore et al., 2005).

Natural disasters

(i) Proper smoke detectors and fire alarms must be
installed in the building to detect the fire and also the
emergency exit should be provided in case of any
emergency.
(ii) The organization must also ensure that the building
codes have been followed and the structure is according
to the prescribed standards. With the orientation of more
earthquakes recently in the world, it is also important that
the building structure is developed in a way that it can
absolve the earthquake shocks of an adequate level.

Excessive error detection

(i) Although testing techniques can help in identifying
errors yet it is more appropriate to try enforcing the clean
room engineering approach (Share and Amold, 1996).
Along with the availability of the inspections, the
developer must unit test the piece of software that he is
developing and must ensure that the code is free of
errors and also that it is according to the prescribed
requirements (IEEE Standards, 1999). It is important as
individual components may work fine but the integrated
application may still not work, because of the run-time
and integration errors (Moore et al., 2005).
(ii) The organization must adopt the team structure in the
software development. The teams can help each other to
test the code and also to ensure that the test cases are
correctly designed and are efficiently handled (Shahzad
and Afzal, 2005).
(iii) It is suggested that the jump to a new technology
should not be made without adequate thinking and must
be supported by the discussion and should be a result of
a decision governed by the logical thinking.
(iii) Sometimes there are so many errors identified in a
piece of code that only a re-development is the solution.
A re-development must logically be completed in much
higher speed as compared to the initial development
(Shaktivel, 2002).
(iv) It is also important that the testing process works fine,
that is, identification of too many errors can still be less
harmful as compared to the ignoring errors or un-
identified errors.

Developer’s faithfulness

(i) The Human Resource (HR) department must ensure
that the person they are hiring is adequately trustable and
owes a good employment history. The organization may
also opt to take the employees from the accredited

universities and resource providers so that only, already
verified, individuals can find a place in the organization.
(ii) The organization may decide to hire the employees
based upon the references or recommendation of their
existing employees or someone may provide the
guarantee for the employee for the purpose of reliability
and trust.
(iii) Backup must be taken at multiple sites, so that in
case of any physical or technical damage the backup
itself remains intact. The backup sites may be frequently
updated and the updates should be inspected.

Preservation of intellectuals

(i) It has been observed that the experienced individuals
can help in estimating the cost, budget and manpower of
any project by just using their intuition (Erin and Gloria,
2005). The guess provided by them is generally accurate,
and thus causes a huge benefit for the organization. The
organization must do adequate effort to retain such
people and should continue befitting from their
experience.
(ii) Talented individual must be attached to work with the
experienced individuals so that they can learn that how
the estimations can be made by using the previous
knowledge and intuition (Naur, 1985).

COMPARISON WITH EXISTING APPROACHES

Mitigation and avoidance of software risk factors has
been in active consideration since some decades and
many researchers have worked in this domain.

Danny (2006) has worked to reduce operational risks
by improving the software quality (We name his work as
Approach �). Danny focuses on the classification and
quantitative evaluation of removing the software risks by
effective software management, thus contributing to the
classified risk mitigation. Danny focuses that instead of
spending (rather wasting) resources on the handling and
mitigation of risk factors, take preemptive actions so that
risk can’t occur and are not introduced into the software
system. Danny’s emphasis on the effective management
of risks includes the technology, personnel, environment
and infrastructure management. Danny has strongly
extended the need for effective management of
personnel resources, specially. Along with the personnel
management Danny has strongly emphasized the need
for effective technology utilization to support the software
development process and to ensure that it is free from
most common errors. This can be effectively done by
following the CMM (capability maturity model) that helps
in the effective management of software development life
cycle to develop the software. As the process matures,
not only the likelihood of orientation of errors decreases
but also the probability that the risks (even if they arrive)
will be very actively handled, and thus ensuring that a
huge amount of resources can be saved. Danny’s

Shahzad et al. 2081

Table 2. Time and budget requirements for different risk management approaches.

Approach Project scale Budget availability Time
 S M L A T IA A C S
� � � � �
� � � �
� � � �
� � � � � � �

approach may be very suitable for small projects or for
the large projects that have adequate funding, as the
improvement of software process quality, in itself, is as
resource consuming as the software development itself
is.

Alge et al. (2003) have emphases on the effective
handling of risks and problems in the software
development lifecycle (we name this approach as �) and
in team structure by the usage of knowledge building
process and effective communication. The sharing of
knowledge among team members ensures that the
individuals do not become an integral part of any
software development team, and teams can work
smoothly even without them, thus reducing the person
dependence and maturing the system, which reduces the
chances of any in-appropriate moves from the staff
working on the project. This research only focuses on the
issues that are caused by the staffing proportions, thus,
this approach can only be used in a multi-team
environment specifically, with no description of the
funding and resources to be utilized. As this approach is
not sufficient to handle the risks adequately, it is not
recommended for the handling and management of
SDLC.

This paper proposes the approach (we name as �) of
continuous observation and embarks the managerial and
role based activation, thus ensuring that every role
assigned to each individual is performed with accuracy
and perfection. This approach provides the handling and
mitigation of risk factors through a process that is very
sensitive to any risk factor and thus easing the process of
risk identification. Identification, being the matter of
utmost importance, is the key activity and after the
identification has been done, this approach focuses to
minimize / avoid the risk factors. Risks are handled and
rectifications are done in the affected area if a risk factor
has damaged the process to some extent. In, under
handing project scale (S=small, M=medium, L=large),
under heading budget availability (A=adequate, T=tight,
IA=inadequate) and under time heading (A=ample,
C=critical and S=short) (Table 2).

Conclusion

Software development process is complex and requires

efficient handling of the available resources. Poor
planning invites risk factors that are very difficult to deal
with. The paper unleashes the possible strategies to
avoid or overcome risk, once they have been identified in
a software process. Although a complete list of software
risk factors is impossible to produce, as the risk factors
keep on growing with the new tools and technologies, yet
a comprehensive list has been considered for providing
knowledge about the handling and avoidance
mechanism. In the last three decades ample stress has
been given on the identification, management, avoidance
and handling of risk factors. This paper after having
identified the risk factors, proposes the avoidance and
mitigation strategies for each risk factor based on the
frequency of their occurrence. The software houses that
are developing the small and medium software can
especially benefit by following the avoidance strategy.

ACKNOWLEDGMENT

This work is supported by the Research Center of
College of Computer and Information Sciences in King
Saud University. The authors are grateful for this support.

REFERENCES

Alge BJ, Witheoff C, Klein HJ (2003). When does the medium matters?

Knowledge building experiences and opportunities in decision making
teams. Organ, 91(1): 26-37.

Armestrong R, Adens G (2008). Managing software project risks.
TASSC Technical Paper. USA.

Baskeles B, Turhan B, Bener A (2007). Software effort estimation using
machine learning method. 22nd Int. Symp. Comput. Inf. Sci., pp. 1–6.

Bell TE, Thayer TA (1976). Software Requirements - Are they really a
problem? Proceedings of the 2nd International Conference on
Software Engineering , San Francisco, California, United States, pp.
61–68.

Boehm BW (1998). Software risk management: Principles and
practices, p. 13.

Burns RN, Dennis AR (1985). Selecting the appropriate application
development methodology. SIGMIS Database, 17(1): 19-23.

Danny L (2006). Enterprise Software Risk Reduction. Review, 12: 1-15.
Erin B, Gloria M, Tammie DH (2005). Team size and technology fit:

Participation, awareness, and rapport in distributed teams. IEEE
Trans. Prof. Comm., 48(104): 68-77.
Hall T, Beecham S, Verner J, Wilson D (2008). Impact of staff
turnover on software projects: The importance of understanding what
makes software practitioner’s tick. Proc. ACM SIGMIS CPR
Conf. Comput. Personnel Doctoral Consortium Res., Charlottesville,
VA, USA, 2008.

2082 Int. J. Phys. Sci.

Higuera RP, Haimes YY (1996). Software Risk Management. Technical

Report CMU/SEI-96-TR-012 ESC-TR-96-012.
Hoodat H, Rashidi H (2009). Classification and Analysis of Risks in

Software Engineering. WASET, pp. 446-452.
IEEE Standards Board (1999). IEEE Standards: Software Engineering,

Two: Process Standards.
Jones C (1996). Patterns of software success and failure. J. Defense

Softw. Eng., July 1998, pp. 13-18.
Lui KM, Chan KCC (2004). Test Driven Development and Software

Process Improvement in China. Lect. Notes Comput. Sci., Springer,
pp. 219-222.

MacManus J (2000). Risk Management in Software Projects. Comput.
Wkly Prof. Ser. Elsevier, pp. 4-18.

Moore RW, Jaja JF, Chadduck R (2005). Mitigating risk of data loss in
preservation environments. 22nd IEEE / 13th NASA Goddard Conf.
Mass Storage Syst. Technol., pp. 39–48.

Naur P (1985). Intuition in software development. Proc. Int. Joint Conf.
Theory Pract. Softw. Dev. (TAPSOFT) Formal Methods Softw.,
Berlin, Germany, pp. 60–79.

Persson JS, Mathiassen L, Madsen TS, Steinson F (2009). Managing
risks in distributed software projects: An integrative framework. IEEE
Trans. Eng Manage., 56(3).

Pressman RS (2000). Software engineering: A practitioner’s approach.
5th ed. McGraw-hill, pp. 151-159.

Robert NC (1989). Software engineering risk analysis and

management. McGraw-Hill, Inc., New York, NY, USA, p. 325.
Rothfeder J (1988). It’s Late, Costly, and incomplete-But Try Firing a

Computer System. Bus. Week, pp. 64-65.
Sakthivel S (2002). A decision model to choose between software

maintenance and software redevelopment. Department of Accounting
and MIS, Bowling Green State University, USA.

Session R (2009). The IT complexity Crisis: Danger and Opportunities.
A white paper by Roger Session.

Shahzad B, Afzal T (2005). Enhanced risk analysis and relative impact
factorization. 1st International Conference on Information and
Communication Technology. IBA Karachi, pp. 290-296.

Shahzad B, Iqbal J (2007). Software Risk Management – Prioritization
of frequently occurring Risk in Software Development Phases using
Relative Impact Risk Model. 2nd International Conference on
Information and Communication Technology (ICICT2007), IBA
Karachi, pp. 82-87.

Share SW, Kouchakdjian A, Arnold PG (1996). Experience Using
Cleanroom Software Engineering. IEEE Softw., 13(3): 69–76.

Westfall L (2009). Software is a risky business. USA, 2009.

