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An analysis is performed for an unsteady nonlinear heat diffusion problems modeling thermal energy 
storage in a medium with power law temperature-dependent heat capacity, thermal conductivity and 
heat source term and subjected to a convective heat transfer to the surrounding environment at the 
boundary through a variable heat transfer coefficient. Lie group theory is applied to determine 
symmetry reductions of the governing nonlinear partial differential equation (PDE) with the boundary 
conditions. The resulting nonlinear ordinary differential equation (ODE) with appropriate corresponding 
boundary conditions is solved using Adomian decomposition method (ADM) coupled with Padé 
approximation technique. The effects of material parameters on the thermal decay in the system are 
shown graphically and discussed quantitatively.  
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INTRODUCTION
  
For many years, considerable attention has been paid to 
the collection, storage and use of thermal energy to meet 
various energy demands. Thermal storage system is a 
specially designed energy saving device for temporary 
storage of heat energy. Recently, the use of solar energy 
to meet the thermal demands of industries, electronics 
devices, residential establishment, etc., is fast growing in 
many countries of the world (Duffie and Becham, 1980). 
Solar energy is provided by the light energy that comes 
from the sun. An important component of thermal 
systems designed for such purposes is a thermal energy 
storage unit. The medium in which the energy is stored 
may be fluid or solid (Jahiria and Gupta, 1982). In middle 
and low temperature solar energy systems, water and 
stones are the best and cheapest storing energy medium 
(Hawlader and Brinkworth, 1981). For instance, potable 
water is usually heated by a device known as a water 
heater or geysers for domestic and industrial usage. Most 
commonly, human-induced heating processes, such as 
combustion or electric-resistance, are relied upon to  heat 
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the water, but solar energy or where possible, geothermal 
power may be used (Shin et al., 2004). The effectiveness 
of a liquid thermal storage system is determined by how 
temperature of the system decays as a result of heat 
losses by convection to the environment (Davies, 1985). 
Thermal energy storage problem in a medium with 
temperature-dependent heat capacity and thermal 
conductivity constitutes an unsteady nonlinear heat 
diffusion problem and the solutions in space and time 
may reveal the appearance of thermal decay in the 
system. In order to predict the occurrence of such 
phenomena, it is necessary to analyze a simplified 
mathematical model from which insight might be gleaned 
into an inherently complex physical mechanism. Mean-
while, the solution of unsteady nonlinear heat diffusion 
equations in rectangular, cylindrical and spherical 
coordinates remains a very important problem of practical 
relevance in the engineering sciences (Badran and Abd-
el-Malek, 1995). Recently, the ideas of hybrid analytical-
numerical schemes for solving nonlinear differential 
equations have experienced a revival. One such trend is 
related to the combination of group theoretic approach 
and Adomian decomposition method (Adomian, 1994; 
Makinde, 2009; Moitsheki and Makinde, 2009).  



 
 
 
 

This hybrid analytical-numerical approach is also 
extremely useful in the validation of purely numerical 
scheme. 

In the present work, we studied an unsteady nonlinear 
heat diffusion problems modeling thermal energy storage 
in a medium with power law temperature-dependent heat 
capacity, thermal conductivity and heat source term and 
subjected it to a convective heat transfer to the 
surrounding environment at the boundary.  
 
 
MATHEMATICAL FORMULATION 
 
Consider an unsteady thermal storage problem in a medium whose 
surface is subjected to heat transfer by convection to an external 
environment having a heat transfer coefficient that varies with 
respect to the time. The energy equation in a rectangular, cylin-
drical or spherical coordinate system with heat source term can be 
used to find the temperature distribution through a region defined in 
an interval 0 < r < a. The unsteady heat conduction problem can be 
described by the following governing equation (Badran and Abd-el-
Malek, 1995);  
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with the initial condition: 
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and the following boundary conditions: 
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Where; T is the temperature, t is the time, ρ is the density, S(T) is 
the temperature-dependent heat source term and h(t) = h0f(t) is the 
time-dependent heat transfer coefficient.  
 
Following Makinde (2007), the power law temperature-dependent 
thermal   conductivity and   heat   capacity are taken as  
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and b are constants, T0 is the initial temperature of the body; T∞  is  
the  temperature  of  the  surrounding  environment.  The geometry 
of the body is specified by m = 0, 1, 2 representing rectangular, 
cylindrical and spherical coordinates respectively.  

Equations 1 - 4 are made dimensionless by introducing the 
following quantities: 
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The dimensionless governing equations become; 
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Where; Bi is the Biot number.  
 
 
SOLUTION OF THE PROBLEM 
 
In the following sections, we shall neglect the bar symbol in the 
dimensionless governing equations 5 - 8 for clarity. Firstly, we 
reduce the system of PDEs in Equations 6 - 8 to a system of ODEs 
using the Lie group methods (Stephani, 1989). This will be followed 
by the application of Adomian decomposition method (Adomian, 
1994; Makinde, 2009), in order to obtain a semi-analytical non-
perturbative approximate solution to the problem. 
 
 
Lie point symmetry analysis 
 
In brief, symmetry of a differential equation is an invertible 
transformation of the dependent and independent variables that 
does not change the equation. Symmetries depend continuously on 
a parameter and form a group; the one-parameter group of 
transformations. This group can be determined algorithmically. The 
theory and applications of Lie groups may be obtained in excellent 
text such as those of Bluman and Anco (2002, 1986), Stephani 
(1989), Olver (1986), Ovsianikov (1982) and Ibragimov (1999). In 
essence, determining symmetries for the governing Equation 6, 
implies seeking transformations of the for; 
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Generated by the vector field. 
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Which leave the governing Equation 6 invariant. It is possible to find 
all possible functions or cases for the source term S(T) such that 
extra symmetries are admitted by Equation 6. Determination of 
such cases and symmetries admitted is called group or symmetry 
classification. In this work we restrict our analysis to one case for 
application purpose. Full symmetry classification and further 
investigations will be dealt with elsewhere. Note that we seek point 
symmetries that leave a single Equation 6 invariant rather than the 
entire boundary value problem (BVP), and apply boundary 
conditions onto the obtained invariant solutions. It  is  a  well  known  
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fact that the symmetry algebra may be reduced if invariance is 
sought for the entire BVP. In the initial symmetry analysis of 
Equation 6, we obtained nothing more than the translation in t. 
Extra symmetries may be obtained for various choices of S(T) via 
symmetry classification. However, in this work we restrict analysis 

to the case n = b and
1

0
+= nTSS , where

1
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S . With this 

case of the source term, Equation 6 admits a finite four-dimensional 
Lie algebra spanned by; 
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and the infinite symmetry algebra, namely: 
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H is an arbitrary function of the independent variables r and t. The 
obtained finite symmetry algebra may result in reduction of the PDE 
in Equation 6 to ODE, using any linear combination. Furthermore, 
group invariant solutions may be classified according to the set of in 
equivalent subalgebras (Olver, 1986).  
 
 
Symmetry reduction  
 
Reduction by one of the variables of the governing equation is 

performed using a linear combination of the symmetries 1X  

and 4X . Letting �
�
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T(r,t) = θ(r)eβt.                                                           (13) 
 
 
Note that one may obtain this solution using method of separation 
of variables. However, this has been exposed by symmetry 
classification. Also, symmetry analysis is a systematical method 
that may lead to extra solutions. The time dependent heat transfer 

coefficient may be represented 0)( hth = enβt. With S(r,t) = 

S0θ(r)n+1e(n+1)βt and b = n, Equations 6 - 8 reduce to: 
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Computational method 
 
In this section, we employed Adomian decomposition technique in 
order to explicitly construct an approximate non-perturbative 
solution for the nonlinear ordinary differential equations above. The 
advantage of this method is that it provides a direct scheme for 
solving the problem, that is, without the need for linearization, 
perturbation, massive computation and any further transformation.  
Following Adomian (1994), we rewrite Equation 14 with respect to 
Equation 15a in the form; 
 

( ) θ
θ
θθ −−=

2
r

r

n
L ,                                                                   (16)  

                                 
Where the subscript r represents derivative with respect to r and the 
differential operator employs the first two derivatives in the form: 
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In order to overcome the singularity behaviour at the point r = 0. In 

view of Equation 17, the inverse operator 
1−

rL  is considered a 
twofold integral operator defined by: 
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Applying 
1−

rL  to both sides of Equation 16, using the 
boundary conditions in Equation 15, we obtain; 
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As usual in Adomian decomposition method, the solution of 
Equation 19 is approximated as an infinite series; 
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and the nonlinear terms are decomposed as follows: 
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Where; Aj, are polynomials (called Adomian polynomials) given by: 
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Thus, we can identify  
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Using Equation 22, we compute some of the Adomian polynomials 
as follows: 
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Substituting Equations 20 - 21 into Equation 19, and using Maple 
we obtained a few terms approximation to the solution as; 
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where other terms up to O(r16) were derived. By applying the 
boundary conditions in Equation 15b to the expression in Equation 

26, we obtain approximately the values for 0θ  as shown in the 

following section. Usually, the decomposition method yields rapidly 
convergent series solutions by using a few terms in the partial sum 
(Abboui and Cherruault, 1995). However, in this particular problem 
the convergence of the decomposition series partial sum in 
Equation 26 is enhanced using Padé approximation technique 
(Baker, 1975; Makinde, 2009). 
 
 
RESULTS AND DISCUSSION 
 
In this investigation, symmetry analysis resulted in a large 
Lie symmetry algebra being admitted. More invariant 
solutions may be constructed using this algebra. Approxi-
mate solution obtained using Adomian decomposition 
method   (ADM)   in   Equation   26   coupled   with   Padé   
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Table 1. Computations 
showing the convergence of 
the ADM procedure (Bi = 1, n 
= 2, m = 0). 
 

Nψ  θθθθ(0) 

2ψ  1.299038 

3ψ  1.327342 

4ψ  1.327667 

6ψ  1.327667 
 
 
 

Table 2. Computations showing the 
core temperature at various 
parameter values (n=2). 
 

Bi m θθθθ(0) 
1 0 1.327667 

10 0 4.198452 
15 0 5.142033 
10 1 4.930336 
10 2 5.924108 

 
 
 

 
 
Figure 1. Temperature profile: Bi =10; n =2; ______m 
= 0; ooooo m = 1; ++++ m = 2. 

 
 
 

approximation technique is valid for energy storage 
systems in an interval 0 < r < 1. For the numerical 
validation of our results we have chosen physically 
meaningful values of the parameters for the problem. 
Unless otherwise stated we have taken: Bi = 0, 1, 10, 
100; n = 2, m = 0, 1, 2. In Table 1, we observed that the 
convergence of our computational procedure (ADM), 
improves with gradual increase in the number of 
decomposition series coefficients utilized. The effects of 
material geometry and convective heat exchange at the 
surface on the energy storage are demonstrated in Table 
2 and Figures 1 and 2. 
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Figure 2. Temperature profile: m = 0; n = 2; _____Bi = 0; ooooo Bi 
= 1; ++++ Bi = 10; ……..Bi = 100. 
 
 
 
It is interesting to note that the core temperature of the 
energy storage medium is higher than that of the material 
surface for all geometry due to convective heat transfer to 
the surrounding Bi > 0. However, in the absence of 
convective heat exchange at the surface (Bi = 0), a 
uniform temperature is observed in the energy storage 
system, since the system is insulated.  

Moreover, it is noteworthy that the core temperature of 
the energy storage system is lowest when the material 
geometry is rectangular (m = 0) and highest when the 
material geometry is spherical (m = 2) as illustrated in 
Table 2 and Figure 1.  

Hence, the energy storage capacity of materials in 
cylindrical and spherical geometry is higher than that of 
the material in rectangular geometry. Practical application 
of this result can be easily seen in the design of hot water 
storage systems used in many houses which are 
normally cylindrical in shape. The thermal decay at the 
surface of the material due to heat losses by convection 
to the surrounding environment is demonstrated in Figure 
2. Although the core temperature is high at large Biot 
number, a rapid decrease in the material surface tempe-
rature is observed. When the Biot number is low, the 
surface heat loss is also very low. 
 
 
Conclusion  
 
We have solved the nonlinear heat diffusion problem for 
energy storage in a medium with power law temperature-
dependent heat capacity and thermal conductivity using 
both the group theoretical and decomposition methods. 
The numerical results demonstrate that Adomian-Padé 
technique gives the approximate solution with faster 
convergence rate and higher accuracy. Our results show 
that  a  storage  device   with   cylindrical   and   spherical  

 
 
 
 
configuration conserve more energy than the rectangular 
one, and the thermal decay at the material surface due to 
convective heat transfer to the surrounding environment 
at the boundary can be reduced by decreasing the Biot 
number. Symmetry analysis resulted in a large Lie sym-
metry algebra being admitted. More invariant solutions 
may be constructed using this algebra. Full symmetry 
classification is currently under investigation in our future 
work.  
 
 
ACKNOWLEDGEMENT 
 
The authors would like to thank the National Research 
Foundation (NRF) of South Africa Thuthuka programme 
for their generous financial support. 
 
 
REFERENCES 
 
Abboui K, Cherruault Y (1995). New ideas for proving convergence of 

decomposition methods. Comput. Appl. Math. 29 (7): 103-105. 
Adomian G (1994). Solving frontier problems of physics: The 

Decomposition method. Kluwer Academic Publishers, Dordecht. 
Badran NA, Abd-el-Malek MB (1995). Group analysis of nonlinear heat-

conduction problem for a semi-infinite body. Nonlinear Math. Phys. 
2(3-4): 319-328. 

Baker Jr GA (1975). Essentials of Padé approximants, Academic Press, 
New York. 

Davies TW (1985). Transient conduction in a plate with counteracting 
convection and thermal radiation at the boundary. Appl. Math. Model. 
9: 337-340. 

Duffie JA, Becham WA (1980). Solar Engineering of thermal processes. 
Wiley, USA, p.485. 

Hawlader MNA, Brinkworth BJ (1981). An analysis of the non-
convective solar pond. Solar Energy 27(3): 195. 

Ibragimov NH (1999). Elementary Lie group analysis and ordinary 
differential equations. Wiley, New York. 

Jahiria Y, Gupta SK (1982). Decay of thermal stratification in a water 
body for solar energy storage. Solar Energy 28(2): 137. 

Makinde OD (2009). On non-perturbative approach to transmission 
dynamics of infectious diseases with waning immunity. Int. J. 
Nonlinear Sci. Numerical Simulat. 10(4): 451-458. 

Moitsheki RJ, Makinde OD (2009). Symmetry reductions and solutions 
for pollutant diffusion in a cylindrical system. Nonlinear Analysis: Real 
World Appli. 10: 3420-3427. 

Ovsianikov LV (1982). Group analysis of differential equations. 
Springer, New York. 

Olver PJ (1986). Applications of Lie groups to differential equations. 
Springer, New York. 

Shin MS, Kim HS, Jang DS, Lee SN, Yoon HG (2004). Numerical and 
experimental study on the design of a stratified thermal storage 
system. Appl. Thermal Eng. 24: 17-27.  

Stephani H (1989). Differential equations - their solutions using 
symmetries. Cambridge University Press, Cambridge. 

 
 
 
 
 
 
 
 
 
 

 


