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INTRODUCTION 
 
The fractional partial differential equations appear very 
frequently in physical sciences. Number of physical 
phenomena are goverened by such equations (Podlubny, 
1999; Rossikhin and Shitikova, 1997; Mohyud-Din and 
Noor 2008; Mohyud-Din et al., 2009, 2010). Several 
techniques including decomposition, variational iteration, 
homotopy analysis and variation of parameters have 
been applied to solve such problems (Rossikhin and 
Shitikova, 1997; Mohyud-Din and Noor 2008; Mohyud-
Din et al., 2009, 2010). In this paper, we will consider the 
fractional heat-like and wave-like equations of  the form: 
 

( ) ( ) ( ) zzyyxx uxyxhuxyxguzyxf
t

u
,,,,,, ++=

∂

∂
α

α

, 

ax <<0 , by <<0 , cz <<0 , 0>t ,                    (1) 

 
subject to the Neumann boundary conditions: 
 

( ) ( )tzyftzyux ,,,,,0
1

= , ( ) ( )tzyftzyau
x

,,,,,
2

= ,  

( ) ( )tzxgtzxuy ,,,,0,
1

= , ( ) ( )tzxgtzbxuy ,,,,, 2= ,  (2) 
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 ( ) ( )tzxhtyxuz ,,,0,, 1= , ( ) ( )tzxhtcyxuz ,,,,, 2= , 

 
and  initial conditions: 
 

( ) ( )zyxzyxu ,,0,,, ψ= , ( ) ( )zyxzyxut ,,0,,, θ= , (3) 

 
where α  is a parameter describing the fractional 

derivative. The general response expression contains a 
parameter describing the order of the fractional derivative 
that can be varied to obtain various responses. In the 
case of  10 ≤< α , then Equation (1) reduces to a 

fractional heat-like equation with variable coefficients, 
and to a wave-like equation with variable coefficients for  

.21 ≤< α  In this paper, the homotopy analysis method 

(Liao, 1997, 1999, 2003, 2004; Hayat et al., 2004; 
Abbasband, 2007; Yildirim and Mohyud-Din, 2010a) is 
applied to solve fractional heat- and wave-like equations. 

A new approach for solving the fractional heat- and 
wave-like equations is established. It is expected the 
proposed techniques can be further applied to derive 
solutions for other partial differential equations with 
fractional order. By the present method, numerical results 
can be obtained with using a few iterations. The HAM 
contains the auxiliary parameter h , which provides us 
with a simple way to adjust and control the convergence 
region of  solution  series  for  large  values  of   t.  Unlike, 



  

 
 
 
 
other numerical methods are given low degree of 
accuracy for large values of t. Therefore, the HAM 
handles linear and nonlinear problems without any 
assumption and restriction. 
 
 
Fractional calculus 
 
We give some basic definitions  and properties of the 
fractional calculus  theory (Caputo, 1967) which are used 
further in this paper. 
 
 
Definition 1 
 

A real function  ( ) ,0, >xxf  is said to be in the space  

RC ∈µµ ,   if  there exists a real number   ( )µ>p , 

such that  ( ) ( ),
1

xfxxf
p=   where  ( ) [ ),,0

1
∞∈Cxf  

and it is said to be in the space  
mCµ   if  

( )
., NmCf m ∈∈ µ  

 
 
Definition 2 
 
The Riemann-Liouville fractional integral operator of 

order  ,0≥α  of  a function  ,1, −≥∈ µµCf  is defined 

as: 
 

( )
( )

( ) ( ) ,0,0,
1

0

1
>>−

Γ
= ∫

−x

xdttftxxfJ α
α

αα
 

( ) ( ).0 xfxfJ =  

 

Properties of  the operator  
αJ   can be found  in  

(Caputo, 1967), we mention only the following. For   

0,,1, ≥−≥∈ βαµµCf    and  :1−>γ  

 

1. ( ),xfJJJ βαβα +=  

2. ( ),xfJJJJ αββα =  

3.  
( )

( )
.

1

1 γαγα

γα

γ +

++Γ

+Γ
= xxJ  

 
The Riemann–Liouville derivative has certain 
disadvantages when trying to model realworld 
phenomena with fractional differential equations. 
Therefore, we shall introduce a modified fractional 

differential operator  
α

D   proposed by Caputo (1967) in 
his work on the theory of  viscoelasticity. 
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Definition 3 
 

The fractional derivative  ( )xf   in the Caputo sense is 

defined as: 
 

( ) ( )
( )

( ) ( ) ( )∫
−−− −

−Γ
==

x
mmmm dttftx

m
xfDJxfD

0

1
,

1 ααα

α
        (4)  

 

for   .,0,,1
1

mCfxNmmm −∈>∈≤<− α  

 
Also, we need here two of its basic properties. 
 
 
Lemma 1 
 

If   Nmmm ∈≤<− ,1 α    and  ,1, −≥∈ µµ
mCf   

then 
 

( ) ( ),xfxfJD =αα
 and, 

( ) ( ) ( ) ( )∑
−

=

+ >−=
1

0

.0,
!

0
m
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k
k

x
k

x
fxfxfDJ
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The Caputo fractional derivatives are considered here 
because it allows traditional initial and boundary 
conditions to be included in the formulation of the 
problem. In this paper, we consider the fractional heat- 
and wave-like equation  (1),  where the unknown function 
u = u(x, t) is a assumed to be a causal function of time 
and space, and the fractional derivatives are taken in 
Caputo sense as follows. 
 
 
Definition 4 
 
For  m   to be the smallest integer that exceeds  α, the 
Caputo time-fractional derivative operator of order α > 0 
is defined as: 
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( ) ( )
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,
,

0
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       (5) 

 
For more information on the mathematical properties of 
fractional derivatives and integrals one can consult the 
mentioned references. 
 
 
HOMOTOPY ANALYSIS METHOD (HAM) 
 
We apply the HAM (Liao, 1997, 1999, 2003, 2004; Hayat 
et al., 2004; Abbasband, 2007; Yildirim and  Mohyud-Din, 
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2010b) to the fractional heat- and wave-like equation (1). 
We consider the following differential equation: 
 

( )[ ] ,0, =txuFD                                                             (6) 

 
where FD is a nonlinear operator for this problem, x and t 

denote an independent variables, ( )txu ,   is an unknown 

function. 
In the frame of HAM (Liao, 1997, 1999, 2003, 2004; 

Hayat et al., 2004; Abbasband, 2007; Yildirim and 
Mohyud-Din, 2010a), we can construct the following 
zeroth-order deformation: 
 

( ) ( ) ( )( ) ( ) ( )( ),;,,,;,1
0

qtxUFDtxHqtxuqtxULq h=−−         (7) 

 

where [ ]1,0∈q  is the embedding parameter, 0≠h  is 

an auxiliary parameter, ( ) 0, ≠txH  is an auxiliary 

function, L is an auxiliary linear operator,  ( )txu ,
0

  is an 

initial guess of ( )txu ,   and ( )qtxU ;,  is an unknown 

function on the independent variables  x, t  and  q. 

Obviously, when 0=q   and  ,1=q  it holds: 

 

( ) ( ),,0;,
0

txutxU = ( ) ( ),,1;, txutxU =                         (8) 

 
respectively. Using the parameter q, we expand  

( )qtxU ;,   in Taylor series as follows: 

 

( ) ( ) ( )∑
∞

=

+=
1

0
,,,;,

m

m

m qtxutxuqtxU                            (9) 

 

where: 
( )

0

;

!

1

=∂

∂
=

qq

qtU

m
u

m

m

m
                      (10) 

 
Assume that the auxiliary linear operator, the initial 

guess, the auxiliary parameter  h  and the auxiliary 

function  ( )txH ,   are selected such that the series 

(Equation 9) is convergent at 1=q , then due to Equation 

(8) we have: 
 

( ) ( ) ( )∑
∞

=

+=
1

0
,,,

m

m txutxutxu                                    (11) 

 
Let us define the vector: 
 

( ) ( ) ( ) ( )}{ txutxutxutxu nn ,,...,,,,,
10

=
r

                      (12) 

 
Differentiating Equation (7) m times with respect to the 

embedding parameter q, then setting 0=q  and finally  

 
 
 
 

dividing them by !m , we have the so-called mth-order 

deformation equation: 
 

( ) ( )[ ] ( ) ( ),,,,
11 −− =− mmmmm uRtxHtxutxuL

r
hχ         (13) 

 
where: 
 

( )
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( )( )
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1
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1

1
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−
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qtUFD
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and 
 





>

≤
=

.11

,10

m

m
mχ                                                        (15) 

 
Finally, for the purpose of computation, we will 
approximate the HAM solution (11) by the following 
truncated series: 
 

( ) ( )∑
−

=

=
1

0

.
m

k

km tutφ                                                          (16) 

 
 
Examples 
 
Example 1 
 
In this example we consider the following one-
dimensional fractional heat-like problem: 
 

,
2

1 2

xxt uxD =α 10 << x ,  10 ≤< α , 0>t ,          (17) 

 
subject  to  the boundary conditions: 
 

( ) 0,0 =tu , ( ) t
etu =,1 , 

 
and  the initial condition ( ) .0,

2
xxu =  

 
The exact solution, for the special case   ,1=α  is given 

by: 
 

( ) textxu 2
, =                                                               (18) 

 
According to Equation (7), the zeroth-order deformation 
can be given by: 

 

( ) ( ) ( )( ) ( ) ( ) ( )









∂

∂
−=−−

2

2

2

0

;,

2

1
;,,,;,1

x

qtxU
xqtxUDtxHqtxuqtxULq

t

αh          (19) 

 

We can start with an initial approximation  ( ) 2

0
, xtxu =  
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(a)        (b)                                                       (c) 
                               

 
 
Figure 1. The surface shows the solution  u(x, t)   for  Equation (17) when  α = 1: (a) exact solution (23) (b) 

approximate solution (22) and (c)  
ex a pp

u u− . 

 
 
 
and we choose the auxiliary linear operator: 
 

( )( ) ( ),;,;, qtxUDqtxUL t

α=  

 

with  the property ( ) ,0=CL  where  C  is an integral 

constant. We also choose the auxiliary function to be: 
 

( ) .1, =txH  

 
Hence, the mth-order deformation can be given by: 
 

( ) ( )[ ] ( ) ( ),,,,
11 −− =−

mmmmm
uRtxHtxutxuL
r

hχ  

 
where: 
 

( ) ( )
( )

2

1

2

2

11
2

1

x

u
xuDuR m

m

t

mm
∂

∂
−= −

−− α

r
                     (20) 

 
Now the solution of the mth-order deformation equations 

(20) for 1≥m  become: 

 

( ) ( ) ( )[ ].,, 1

1

1 −
−

− += mmmmm uRLtxutxu
r

hχ                  (21) 

 
Consequently, the first few terms of the HAM series 
solution are as follows: 
 

( ) 2

0
, xtxu = , 

( )
( )1

,
2

1
+Γ

−=
α

αt
xtxu h , 

( )
( ) ( ) ( )

.

,
1211

,

2

22222

2

M

hhh
+Γ

+
+Γ

−
+Γ

−=
ααα

ααα t
x

t
x

t
xtxu

 

 

Hence, the HAM series solution (for )1−=h  is: 

( ) ( ) ( ) ( ) ( ) .....,,,,,
3210

++++= txutxutxutxutxu  

( ) ( ) ( ) 







+

+Γ
+

+Γ
+

+Γ
+= .....

13121
1

32

2

ααα

ααα ttt
x

      (22) 

 

For the special case   ,1=α  we obtain from (22): 

 

( ) t
extxu

2
, =                                                         (23) 

 
The evolution results for the exact solution (23) and the 
approximate solution obtained using the homotopy  
analysis method, for the special case α = 1, are shown in 
Figure 1. It can be seen from Figure 1 that the solution 
obtained by the present method is nearly identical with 
the exact solution. Figure 2(a, b) show the approximate 
solutions when α = 0.5 and α = 0.25, respectively. It is to 
be noted that only the third-order term of the homotopy 
analysis solution was used in evaluating the approximate 
solutions for Figures 1 and 2. It is evident that the 
efficiency of this approach can be dramatically enhanced 
by computing further terms of u(x, t)  when the homotopy 
analysis method is used. 
 
 
Example 2 
 
In this example we consider the two-dimensional  
fractional heat-like equation: 
 

yyxxt uuuD +=α
, π2,0 << yx , 10 ≤< α , 0>t ,  (24) 

 
subject  to the boundary conditions: 
 
 ( ) 0,,0 =tyu ,         ( ) 0,,2 =tyu π , 

 ( ) 0,0, =txu ,          ( ) 0,2, =txu π , 

 
and  the initial condition: 
 

( ) yxyxu sinsin0,, = , 

The exact solution, for the special case   ,1=α   is  given
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(a)        (b)  
 
Figure 2. The surface shows the solution  u(x, t)   for  Equation(17): (a) α = 0.5,  (b) α = 0.25. 

 
 
 
by: 
 

( ) .sinsin,,
2 yxetyxu t−=                                          (25) 

 
According to Equation (7), the zeroth-order deformation 
can be given by: 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
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∂
−=−−
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2
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;,,;,,
;,,,,,,;,,1

y

qtyxU

x

qtyxU
qtyxUDtyxHqtyxuqtyxULq

t

αh
  (26) 

 
We can start with an initial approximation  

( ) yxtyxu sinsin,,
0

=  and we choose the auxiliary 

linear operator: 
 

( )( ) ( ),;,,;,, qtyxUDqtyxUL t

α=  

 

with  the property ( ) ,0=CL  

 
where  C  is an integral constant. We also choose the 
auxiliary function to be: 
 

( ) .1,, =tyxH   

 
Hence, the mth-order deformation can be given by: 
 

( ) ( )[ ] ( ) ( ),,,,,,,
11 −− =− mmmmm uRtyxHtyxutyxuL

r
hχ  

 
where: 
 

( ) ( )
( ) ( )

2

1
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2

1

2

11
y

u

x

u
uDuR mm

m

t

mm
∂

∂
−

∂

∂
−= −−

−− α

r
           (27) 

 
Now the solution of the mth-order deformation equations 

(27) for 1≥m  become: 

 

( ) ( ) ( )[ ].,,,,
1

1

1 −
−

− +=
mmmmm

uRLtyxutyxu
r

hχ          (28) 

 
Consequently, the first few terms of the HAM series 
solution are as follows: 
 
   ( ) yxtyxu sinsin,,

0
= , 

   ( )
( )1

sinsin2,,
1

+Γ
=

α

αt
yxhtyxu , 

   ( )
( ) ( ) ( )

.

,
12

sinsin4
1

sinsin2
1

sinsin2,,

2

22

2

M

hhh
+Γ

+
+Γ

+
+Γ

=
ααα

ααα t
yx

t
yx

t
yxtyxu   (29) 

 

Hence, the HAM series solution (for )1−=h  is: 

 

( ) ( ) ( ) ( ) ( ) .....,,,,,,,,, 3210 ++++= tyxutyxutyxutyxutxu  

( ) ( ) ( ) 







+

+Γ
−

+Γ
+

+Γ
−= .....

13
8

12
4

1
21sinsin

32

ααα

ααα
ttt

yx   (30) 

 

For the special case  (when 1=α ), we can reproduce 

the series solution of  (24), and the solution in  a closed 
form: 
 

( ) yxetyxu t
sinsin,,

2−= ,                                         (31) 

 
follows immediately. Figure 3(a,b,c)  show the exact 
solution (31) and the approximate solution obtained using 
the homotopy  analysis method, for the special case α = 
1. Figure 4 (a,b) show the approximate solutions when α 
= 0.5 and α = 0.25, respectively. It is to be noted that only 
the third-order term of the homotopy analysis solution 
was used in evaluating the approximate solutions for 
Figures 3 and 4. It is evident that the efficiency of this 
approach can be dramatically enhanced by computing 
further terms of u(x,y, t)  when the homotopy analysis 
method is used. 
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(a)      (b)        (c)  
 
Figure 3. The surface shows the solution  u(x,y, t)   for  Equation (24) when  α = 1  and  x = y. (a) exact 

solution (31) (b) approximate solution (30) (c)  
ex app

u u− . 

 
 
 

(a)       (b) 
 

 
 
Figure 4. The surface shows the solution  u(x,y, t)   for  Equation (24): (a) α = 0.5,  (b) α = 0.25. 

 
 
 
Example 3 
 
Consider the three-dimensional inhomogeneous 
fractional heat-like equation: 
 

[ ]
zzyyxxt

uzuyuxzyxuD 222444

36

1
+++=α

, 

,1,,0 << zyx 10 ≤< α ,   ,0>t                              (32) 

 
subject to the boundary conditions: 
 

( ) ,0,,,0 =tzyu ( ) ( ),1,,,1
44 −= tezytzyu  

( ) ,0,,0, =tzxu ( ) ( ),1,,1,
44 −= tezxtzxu  

( ) ,0,0,, =tyxu ( ) ( ),1,1,,
44 −= tezytyxu  

 
and  the initial condition: 
 

( ) .00,,, =zyxu  

The exact solution of Equation (31)  when  1=α   is: 

 

( ) ( )1,,,
444 −= tezyxtzyxu . 

 
According to Equation (7), the zeroth-order deformation 
can be given by: 
 

( ) ( ) ( )( ) ( )
( ) ( ) ( )[ ]















++−

−

=−−
zzyyxx

t

UzUyUx

zyxUD

tzyxHqtzyxuqtzyxULq
222

444

0

36

1,,,,,,;,,,1
α

h
   (33)                                        

 
We can start with an initial approximation  

( ) 0,,,
0

=tzyxu  and we choose the auxiliary linear 

operator: 
 

( )( ) ( ),;,,,;,,, qtzyxUDqtzyxUL t

α=  

 
with  the property: 
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( ) ,0=CL  

 
where  C  is an integral constant. We also choose the 
auxiliary function to be: 
 

( ) .1,,, =tzyxH   

 
Hence, the mth-order deformation can be given by: 
 

( ) ( )[ ] ( ) ( ),,,,,,,,,,
11 −− =−

mmmmm
uRtzyxHtzyxutzyxuL
r

hχ  

 
where: 
 

( ) ( ) ( ) ( ) ( )[ ]zzuzuyuxzyxuDuR
yyxx

t

0

2

0

2

0

2444

001
36

1
++−−= α

r ,   (34) 

 

( ) ( ) ( ) ( ) ( )[ ]zzuzuyuxuDuR
yyxx

t

1

2

1

2

1

2

112
36

1
++−= α

r
,  (35) 

 

( ) ( ) ( ) ( ) ( )[ ]
.

,
36

1
2

2

2

2

2

2

223

M

r
zzuzuyuxuDuR

yyxx

t ++−= α ,            (36) 

 
Now the solution of the mth-order deformation equations 

(34 to 36) for 1≥m  become: 

 

( ) ( ) ( )[ ].,,,,,,
1

1

1 −
−

− +=
mmmmm

uRLtzyxutzyxu
r

hχ   (37) 

 
Consequently, the first few terms of the HAM series 
solution are as follows: 
 

( ) 0,,,
0

=tzyxu , 

( )
( )1

,,,
444

1
+Γ

−=
α

αt
zyxtzyxu h , 
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44424442444

2

M

hhh
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−
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−
+Γ

−=
ααα

ααα
t

zyx
t

zyx
t
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Hence, the HAM series solution (for )1−=h  is: 

 

( ) ( ) ( ) ( ) ( ) .....,,,,,,,,,,,,,
3210

++++= tzyxutzyxutzyxutzyxutxu  

( ) ( ) ( ) 







+

+Γ
+

+Γ
+

+Γ
= ......

13121
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444

ααα

ααα ttt
zyx       (38) 

 

For the special case  (when 1=α ), we can reproduce 

the series solution of  (32), and the solution in  a closed 
form: 
 

( ) ( )1,,,
444 −= tezyxtzyxu                                       (39) 

 
 
 
 
follows immediately. Figure 5(a,b,c) show the exact 
solution (39) and the approximate solution obtained using 
the homotopy  analysis method, for the special case α = 
1. Figure 6(a,b) show the approximate solutions when α = 
0.5 and α = 0.25, respectively. It is to be noted that only 
the third-order term of the homotopy analysis solution 
was used in evaluating the approximate solutions for 
Figures 5 and 6. It is evident that the efficiency of this 
approach can be dramatically enhanced by computing 
further terms of u(x,y,z t)  when the homotopy analysis 
method is used. 
 
 
Example 4 
 
Consider the one-dimensional fractional wave-like 
equation: 
 

,
2

1 2

xxt
uxD =α

 10 << x , 21 ≤< α , 0>t ,           (40) 

 
subject  to  the boundary conditions: 
 

( ) 0,0 =tu ,          ( ) ttu sinh1,1 += , 

                              
and  the initial condition: 
 

( ) xxu =0, ,          ( ) 2
0, xxu

t
=  

 

The exact solution, for the special case   ,2=α  is given 

by: 
 

( ) txxtxu sinh,
2+=                                                  (41) 

 
We can start with an initial approximation: 
    

( ) ( ) ( ) txxxtuxutxu
t

2

0
0,0,, +=+= , 

 
We can use similar procedures which was used  in 
Example 1 and  the first few terms of the HAM series 
solution are as follows: 
 

( ) txxtxu 2

0
, += , 

( )
( )2

,

1

2

1
+Γ

−=
+

α

α
t

xtxu h , 

( )
( ) ( ) ( )

.

,
2222

,
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1
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1

2

2

M

hhh
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+
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−
+Γ

−=
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ααα

ααα t
x

t
x

t
xtxu

 

 

Hence, the HAM series solution (for )1−=h  is: 
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    (a)                                                              (b)      (c) 
 

 
 
Figure 5. The surface shows the solution  u(x,y,z, t)   for  Eq.(32) when  α = 1  and  x = y = z. (a) exact solution 

(39), (b) approximate solution (38)  and (c)  
ex app

u u− . 

 
 
 

(a)       (b)  
 
Figure 6. The surface shows the solution  u(x,y, z,t) for  equation (32): (a) α = 0.5,  (b) α = 0.25. 

 
 
 

( ) ( ) ( ) ( ) ( ) .....,,,,,
3210

++++= txutxutxutxutxu  

( ) ( ) ( ) 
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+Γ
+

+Γ
+

+Γ
++=
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.....
23222

13121

2

ααα

ααα
ttt

txx          (42) 

 

For the special case  (when 2=α ), we can reproduce 

the series solution of (40), and the solution in  a closed 
form: 
 

( ) txxtxu sinh,
2+=                                           (43) 

 
follows immediately 
 
 
Example 5 
 
Next, we consider the two-dimensional fractional wave-
like equation: 

[ ]
yyxxt

uyuxuD 22

12

1
+=α

, ,1,0 << yx  21 ≤< α , 

,0>t                                                                            (44) 

 
subject to the boundary conditions: 
 

( ) 0,,0 =tyu , ( ) ttyu cosh4,,1 = , 

( ) 0,0, =txu , ( ) ttxu sinh4,1, = , 

 
and  the initial condition: 
 

( ) 4
0,, xyxu = , ( ) 4

0,, yyxu
t

= . 

 

The exact solution, for the special case   ,2=α  is given 

by: 
 

( ) tytxtyxu sinhcosh,,
44 +=                                 (45) 
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We can start with an initial approximation: 
 

( ) ( ) ( ) tyxyxtuyxutyxu
t

44

0
0,,0,,,, +=+= , 

 
We can use similar procedures which was used  in 
Example 2 and  the first few terms of the HAM series 
solution are as follows: 
 

( ) tyxtyxu 44

0
,, += , 

( )
( ) ( )










+Γ
+

+Γ
−=

+

21
,,

1

44

1
αα

αα
t

y
t

xtyxu h , 

( )
( ) ( ) ( ) ( )

( ) ( )

.

,
2212

2221
,,

12

4

2

42

1

442

1

44

2

M

h

hh










+Γ
+

+Γ
+










+Γ
+

+Γ
−








+Γ
+

+Γ
−=

+

++

αα

αααα

αα

αααα

t
y

t
x

t
y

t
x

t
y

t
xtyxu

  

 

Hence, the HAM series solution (for )1−=h  is: 

 

( ) ( ) ( ) ( ) ( ) .....,,,,,,,,,,
3210

++++= tyxutyxutyxutyxutyxu  

( ) ( ) ( ) ( ) ( ) ( ) 







+

+Γ
+

+Γ
+

+Γ
++








+

+Γ
+

+Γ
+

+Γ
+=

+++

....
23222

......
13121

1

13121

4

32

4

αααααα

αααααα
ttt

ty
ttt

x    (46) 

 

For the special case  (when 2=α ), we can reproduce 

the series solution of  (44), and the solution in  a closed 
form: 
 

( ) tytxtyxu sinhcosh,,
44 +=                                 (47) 

 
follows immediately. 
 
 
Example 6 
 
Finally, we consider the three-dimensional fractional 
wave-like equation of the form: 
  

[ ]
zzyyxxt

uzuyuxzyxuD 222222

36

1
+++++=α

, 

,1,,0 << zyx 21 ≤< α ,  ,0>t                               (48) 

 
subject to the boundary conditions: 
 

( ) ( ) ( ),11,,,0
22 −+−= −tt ezeytzyu  

( ) ( )( ) ( ),111,,,1
22 −+−+= −tt ezeytzyu  

( ) ( ) ( ),11,,0,
22 −+−= −tt ezextzxu  

( ) ( )( ) ( ),111,,1,
22 −+−+= −tt ezextzxu  

( ) ( )( ),1,0,,
22 −+= teyxtyxu   

 
 
 
 

( ) ( )( ) ( ),11,1,,
22 ++−+= −tt eeyxtyxu  

 
and  the initial condition: 
 

( ) 00,,, =zyxu ,         ( ) 222
0,,, zyxzyxu

t
−+= , 

 

The exact solution, for the special case   ,2=α  is given 

by: 
 

( ) ( ) ( ) tt ezeyxzyxtzyxu −+++++−= 222222
,,,   (49) 

 
We can start with an initial approximation: 
 

( ) ( ) ( ) ( )tzyxzyxtuzyxutzyxu
t

222

0
0,,,0,,,,,, −+=+=

 
We can use similar procedures which was used  in 
Example 3 and  the first few terms of the HAM series 
solution are as follows: 
 

( ) ( )tzyxtzyxu
222

0
,,, −+= , 

( ) ( )
( )

( )
( )21

,,,

1

222222

1
+Γ

−+−
+Γ

++−=
+

αα

αα
t

zyx
t

zyxtzyxu hh

, 

( ) ( )( ) ( )
( )

( )
( )

.

,
122

1,,,,,,

2

2222

1

2222

12

M

hhh
+Γ

+++
+Γ

−+++=
+

αα

εα
t

zyx
t

zyxtzyxutzyxu
 

 

Hence, the HAM series solution (for )1−=h  is: 

 

( ) ( ) ( ) ( ) .....,,,,,,,,,,,,
210

+++= tzyxutzyxutzyxutzyxu

 

( )
( ) ( ) ( )

( ) ( ) ( ) 







−

+Γ
+

+Γ
−

+Γ
+−

+







+

+Γ
+

+Γ
+

+Γ
++=

+

+

.....
1221

.......
1221

21

2

21

22

ααα

ααα

ααα

ααα

ttt
tz

ttt
tyx

        (50) 

 

For the special case  (when 2=α ), we can reproduce 

the series solution of  (48), and the solution in  a closed 
form: 

 

( ) ( ) ( ) tt ezeyxzyxtzyxu −+++++−= 222222
,,,      (51) 

 
follows immediately. 

 
 
CONCLUSION 

 
The applications of the homotopy analysis method (HAM) 



  

 
 
 
 
were extended successfully for solving the fractional 
heat-like and wave-like equations with variable 
coefficients. The homotopy analysis method was clearly 
very efficient and powerful technique in finding the 
solutions of the proposed equations. The procedure 
presented to solve the fractional heat-like and wave-like 
equations is the same as those for standard heat-like and 

wave-like equations, and in special cases of 1=α  and 

2, the general solution reduces to the heat-like and wave-
like solutions. 
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