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This paper investigates the accuracy of the differential transformation method (DTM) for solving the 
three-species food chain models which is described as three-dimensional system of ODES with 
quadratic and rational nonlinearities. Numerical results are compared to those obtained by the fourth-
order Runge-Kutta method to illustrate the preciseness and effectiveness of the proposed method. The 
direct symbolic-numeric scheme is indicated to be efficient and accurate. 
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INTRODUCTION 
 
In this paper, we consider two different three-species 
food chain model: Model with a Holling type II functional 
response (Hastings and Powell, 1991; Varriale and 
Gomes, 1998; Gomes et al., 2008) and model with a 
Beddington-DeAngelis functional response (Li et al., 
2006; Cantrell and Consner 2001; Gakkhar and Naji, 
2003; Naji and Balasim 2007; Hwang, 2003; Hwang, 
2004; Zhang et al., 2006 and Zhao and Lv, 2009). 

Model with a Holling type II functional response is 
described by the following differential equation system: 

 

 

                                         (1) 

 
 
where  represent, respectively, young tilapia (prey), 

developed tilapia (predator), tucunare fish (top-
opredator);      are   Holling    type   II 
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functional responses (Holling, 1965) with , the half –

saturation constant, satisfying  

that is, the value of prey density  at which the per capita 

removal rate of  is half maximal;   and  are, 

respectively, the intrinstic growth rate and carrying 
capacity of the environment  of the fish farm for the prey 

species;  and  are conversion factors of prey-to-

predator;  are  are the death rates for  and , 

respectively. 
Using  the same change of variables as in Hastings 

and Powell (1991), the dimensionless version of the 
model becomes 
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where  and   are the dimensionless population 

variables;         is    the    dimensionless    time   variable; 



 
 
 
 

  are dimensionless parameters. 

Then, as in Hastings and Powell (1991), we take 
 and  

Model with a Beddington-DeAngelis functional response 
is described by following differential equation system: 
 

 

                              (3) 

 
 
with 
 

                                  (4)               
 
The functions  and  present a functional 

response of Beddington-DeAngelis type.  and 

 are the saturating parameters of the two 

responses.  is the maximum harvest rate of predator 

from prey ,  and  are the half saturation constants, 

. The parameters  and 

 are all positive constants.  is the intrinsic 

growth rate of species  and  is its carrying capacity. 

 is the limiting value of resources.  and  are the 

conversion rates of prey to predator for species  and , 

respectively;  and  are death rates of species  and  

respectively. 
Using  the same change of variables as in Zhao and Lv 

(2009), the dimensionless version of the model becomes 
 

 

                      (5) 

  
 
where  
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Then, as in Zhao and Lv, 2009, we take 

 and  

When dealing with nonlinear systems of ordinary 
differential equations, such as the chaotic three-species 
food chain models, it is often difficult to obtain a closed 
form of the analytic solution. In the absence of such a 
solution, the accuracy of the DTM method is then tested 
against classical numerical methods, such as the Runge–
Kutta method (RK4). RK4 has been widely and 
commonly used for simulating solutions for chaotic 
systems (Lu et al., 2002; Yassen, 2003; Park, 2006a, b). 

The goal of this paper is to extend application to 
classical DTM and multi-step DTM for obtained 
approximant analytical solution of the aboved mentioned 
three-species food chain models. The differential 
transform method (DTM) was first proposed by Zhou 
(1986). See the references, Ayaz (2004a), Ayaz (2004b), 
Kanth and Aruna (2009), Odibat et al. (2010) and Al-
sawalha et al. (2009),  for  development of DTM. This 
technique has been employed to solve a large variety of 
linear and nonlinear problems. For more applications of 
the differential transformation method and other semi-
analytical methods in various problems of physics and 
engineering see the following references (Rashidi et al., 
2010, 2009; Yeh et al., 2006; Kuo, 2005; Ebaid, 2010; 
Yalcin et al., 2009; Bert and Zeng, 2004; Arenas et al., 
2009; Noor and Mohyud, 2008; Mohyud-Din et al., 2009a; 
Mohyid-Din and Noor, 2009b; Mohyud-Din, 2009c; 
Yildirim et al., 2010; Merdan and Gokdogan, 2011; 
Gökdogan and Merdan, 2010). 

 
 
METHODOLOGY 

 
Differential transformation method 

 
Consider a general system of first-order ODES 
 

                                             

                                           (6) 
 
subject to the initial conditions 
 

                 (7) 
 
To illustrate the differential transformation method (DTM) for solving 
differential equations systems, the basic definitions of differential 

transformation are introduced as follows. Let  be analytic in a 

domain  and let  represent any point in . The function 

 is then represented by one power series whose center is 

located at . The differential transformation of the k th derivative of 
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a function  is defined as follows: 

 

                                                (8) 
 

In (7),  is the original function and  is the transformed 

function. As in Zhou (1986), Ayaz (2004a), Ayaz (2004b), Kanth 
and Aruna (2009), Odibat et al. (2010) and Al-sawalha et al. (2009) 

the differential inverse transformation of  is defined as follows: 

 

                                            (9) 
 
From (7) and (8), we obtain 
 

                           (10) 
 

The fundamental theorems of the one-dimensional differential 
transform are: 
 

Theorem 1:  If , then . 

Theorem 2:  If , then . 

Theorem 3:  If , then . 

Theorem 4: If , then . 

Theorem 5: If , then 

. 

Theorem 6: If , then . 

Theorem 7: If , then 

 

 
 

Theorem 8: If , then  

 

 
 

In real applications, the function  is expressed by a finite series 

and (9) can be written as 
 

                                           (11) 
 
Equation (10) implies that 

 
 
 
 

 
 

is negligibly small. 
According to DTM, by taking differential transforms, both sides of 

the systems of equations given Equations (6) and (7) is transformed 
as follows: 
 

 

                                     (12) 

 

                                  (13) 
 

Therefore, according to DTM the term approximations for (1) 

can be expressed as 

 

                                             (14) 

 

 
 

 
Multi-step differential transformation method 

 

The approximate solutions (5) are generally, as will be shown in the 

numerical experiments of this paper, not valid for large . A simple 

way of ensuring validity of the approximations for large  is to treat 

(11)-(12) as an algorithm for approximating the solutions of (5)-(6) 
in a sequence of intervals choosing the initial approximations as 
 

 

 

 

                                                           (15) 
 
In order to carry out the iterations in every subinterval 

 of equal length , we would 

need to know the values of the following (Odibat et al., 2010), 
 

               (16) 
 
But, in general, we do not have these information at our clearance 

except at the initial point . A simple way for obtaining the 

necessary values could be by means of the previous n-term 

approximations  of the preceding subinterval,  
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Figure 1. Local changes of  for 5-term DTM(line) and RK4 with time step (circle). 

 
 
 
that is, 
 

         (17) 

 
 
RESULTS AND DISCUSSION 
 
The model with Holling type II functional response  
 
Taking the differential transformation of Equation (2) with 
respect to time t gives 
 

      (18) 
 

 

 

 

        
                                                                                    (19) 
 

 

          (20) 
 
where  and  are the differential 

transformations of the corresponding functions  

and , respectively, and the initial conditions are given 

by  and . 

 
For the above iterative system, we used a 5-term DTM, 5 
term MsDTM with  time step  and RK4 

with . Figures 1 and 2 show results obtanied 

from 5-term DTM and 5-term MsDTM with , 

respectively.  It is not difficult to see that DTM is valid for 
small . But, the MsDTM and RK4 solutions show good 

synchronization at time performed. 
Table 1 shows the numerical outputs for 5-term 

MsDTM and RK4 for time span . Figure 3 visually
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Figure 2. Local changes of  for 5-term multi-step DTM with (line) and RK4 with (circle). 

 
 
 

Table 1. Numerical comparisons between the 5-term MsDTM and RK4 solutions. 

 

  
 

 

   
 

   

  5  1.430e-09  8.420e-09  1.300e-08   1.800e-10  2.000e-10  8.000e-09 

 10  7.100e-09  3.370e-09  1.200e-08   1.710e-08  2.500e-10  7.800e-08 

 15  2.800e-09  7.090e-08  3.700e-08   2.330e-08  1.960e-08  6.500e-08 

 20  1.033e-08  4.340e-09  1.700e-08   1.910e-09  3.200e-09  7.800e-08 

 25  7.790e-08  1.669e-08  1.800e-08   9.700e-09  5.600e-10  1.120e-07 

 30  2.017e-07  6.200e-09  1.000e-07   1.130e-08  2.030e-08  1.380e-07 

 35  3.772e-08  1.295e-08  2.300e-08   4.130e-09  1.820e-09  1.290e-07 

 40  9.090e-08  5.035e-08  4.100e-08   1.340e-08  1.144e-08  1.560e-07 

 45  1.385e-08  3.491e-07  1.550e-07   1.640e-09  1.860e-08  1.980e-07 

 50  1.124e-07  8.930e-09  3.500e-08   9.030e-09  4.060e-09  1.700e-07 

 55  3.630e-08  1.487e-07  6.900e-08   5.400e-09  2.086e-08  2.110e-07 

 60  3.110e-09  3.001e-07  1.440e-07   7.300e-10  1.960e-08  2.550e-07 

 65  3.263e-07  3.340e-09  3.700e-08   6.040e-08  7.800e-10  2.250e-07 

 70  3.990e-07  4.833e-07  2.030e-07   1.430e-08  1.170e-08  2.660e-07 

 75  1.423e-08  3.312e-07  1.700e-07   3.780e-09  6.040e-08  3.120e-07 

 80  7.736e-07  1.770e-08  3.400e-08   9.600e-08  1.037e-08  3.250e-07 

 85  1.340e-06  1.274e-06  4.220e-07   3.283e-07  2.508e-07  4.600e-07 

 90  4.594e-08  2.693e-07  1.350e-07   1.893e-08  4.923e-08  3.970e-07 

 95  1.128e-06  5.591e-08  2.700e-08   3.797e-07  2.472e-08  3.740e-07 

100  1.737e-06  7.645e-07  6.260e-07   6.938e-07  1.327e-07  6.260e-07 
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Figure 3. Differences between the 5-term MsDTM with  and RK4 with . 

 
 
 
displays plots of various differences between 5-term 
MsDTM with  and RK4 on time step  for 

each variable. They indicates that the result of MsDTM 
are in agreement with those obtained by the RK4 method 
(Figure 4). 
 
 
The model with Beddington-DeAngelis functional 
response 
 
Taking the differential transformation of Equation (2) with 
respect to time t gives 
 

 

 

 

 

              (21) 
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Figure 4. Phase portraits for 5-term multi-step DTM with (line) and RK4 with (circle), with time span . 

 
 
 

 

 

             (22) 
 

 
 

 

 

         (23) 
 
where  and  are the differential 

transformations of the corresponding functions  

and , respectively, and the initial conditions are given 

by  and . 

 
For the above iterative system, we used a 5-term DTM, 5 
term MsDTM with  time step  and RK4 

with . Figures 5 and 6 show results obtanied 

from 5-term DTM and 5-term MsDTM with , 

respectively. It is not difficult to see that DTM is valid for 
small . But, the MsDTM and RK4 solutions show good 

synchronization at time performed. 
Table 2 indicate the numerical outputs for 5-term 

MsDTM and RK4 for time span . Figure 7 visually 

displays plots of various differences between 5-term 
MsDTM with  and RK4 on time step  for 

each variable. They indicates that the result of MsDTM 
are excellent in agreement with those obtained by the 
RK4 method. Observation shows that the accuracy 
between both time steps used are considered very 
precise. We could also see that a smaller time step 
( ) exhibits a small maximum error. At the same 

time, increasing  the  number  of  iteration  will  also  help
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Figure 5. Local changes of  for 5-term DTM(line) and RK4 with  (circle). 

 
 
  

  
 

Figure 6. Local changes of  for 5-term multi-step DTM with (line) and RK4 with 

(circle). 
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Table 2. Numerical comparisons between the 5-term MsDTM and RK4 solutions. 
 

  
 

 

   
 

   

  5  4.575e-05  4.365e-05  4.064e-05   6.400e-08  4.510e-08  2.380e-08 

 10  8.300e-07  9.382e-07  1.175e-05   2.000e-09  9.681e-10  1.690e-08 

 15  8.200e-08  1.401e-07  3.328e-06   5.000e-09  1.411e-10  5.700e-09 

 20  1.603e-06  3.058e-06  1.700e-09   4.000e-09  2.733e-09  2.700e-09 

 25  2.630e-04  4.531e-04  7.097e-05   2.520e-07  4.419e-07  6.838e-08 

 30  3.338e-04  1.737e-04  1.476e-04   2.960e-07  1.554e-07  1.700e-07 

 35  3.100e-08  3.146e-08  1.423e-04   1.000e-09  4.060e-11  1.354e-07 

 40  3.780e-07  7.143e-07  5.203e-05   1.000e-09  9.938e-10  4.660e-08 

 45  5.136e-05  9.879e-05  4.018e-06   6.400e-08  1.237e-07  6.510e-09 

 50  1.041e-03  1.191e-03  1.064e-03   1.493e-06  1.605e-06  1.548e-06 

 55  4.900e-08  2.795e-08  2.360e-04   1.000e-09  3.641e-10  2.696e-07 

 60  1.990e-07  3.599e-07  8.646e-05   8.000e-09  1.919e-10  1.039e-07 

 65  1.205e-05  2.342e-05  2.647e-05   7.000e-09  1.550e-08  2.945e-08 

 70  1.508e-03  1.380e-03  6.004e-04   1.258e-06  1.173e-06  4.366e-07 

 75  9.798e-06  1.007e-05  5.491e-04   1.100e-08  8.488e-09  4.575e-07 

 80  5.500e-08  1.039e-07  2.076e-04   5.000e-09  6.800e-12  1.493e-07 

 85  2.552e-06  4.899e-06  7.477e-05   3.000e-09  3.173e-09  6.590e-08 

 90  4.427e-04  7.841e-04  8.323e-05   2.690e-07  4.722e-07  4.056e-08 

 95  8.836e-04  4.263e-04  3.951e-04   5.230e-07  2.259e-07  3.690e-07 

100  2.700e-08  1.361e-08  3.553e-04   2.000e-09  2.893e-10  3.623e-07   

 
 
 

 

 

 

 

 

 

 

 

 
 

Figure 7. Differences between the 5-term MsDTM with  and RK4 with . 



Merdan et al.        1831 
 
 
 

 

 
 

 
 

Figure 8. Phase portraits for 5-term multi-step DTM with (line) and RK4 with (circle), with time span . 

 
 
 
enhance the accuracy level. We do note, however, that 
the results displayed by the chaotic case is less accurate 
compared to the non-chaotic case. This is due to the fact 
that its chaotic state has sensitive dependence on initial 
conditions. 

Figure 7 visually displays plots of various differences 
between MsDTM with time steps  and RK4 on 

time step  for each state variable. 

In Figure 8, we have displayed typical phase portraits 
for young tilapia (prey) population , developed tilapia 

(predator)population, and tucunare fish (top-predator) 

population z(t) of the system (2) with initial values 
 

Period doubling bifurcation leads to chaos of system (2) 
with initial values X(0) = (0.1, 0.1, 0.1),(a) Quasi-periodic 
solutions for , (b) phase portrait of 2T-period 

solution for , (c) phase portrait of 4T-period 

solution for  and (d) phase portrait of 8T-period 

solution for  in Figure 9 . 

 
 
Conclusion 
 
In this work, we carefully apply the multi-step DTM, a 
reliable modification of the DTM, that improves the 
convergence of the series solution. The method provides 
immediate and visible symbolic terms of analytic 
solutions, as well as numerical approximate solutions to 
both linear and nonlinear differential equations. The 
validity of the proposed method has been successful by 
applying it for the chaotic three-species food chain 
models. The method were used in a direct way without 
using linearization, perturbation or restrictive 
assumptions.  It provides the solutions in terms of 
convergent series with easily computable components 
and the results have shown remarkable performance. 
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Figure 9. Attractors for 5-term multi-step DTM with  when (a)  (b)  (c)  (d) . 
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