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In this paper we give a new version of the Kudryashov's method for solving non-integrable partial 
differential equations in mathematical physics. Some exact solutions including 1-soliton and singular 

soliton solutions of the ),( nmK  equation with generalized evolution and time dependent damping and 

dispersion are obtained by using this new approach.  
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INTRODUCTION 
 
The study of nonlinear evolution equations has become 
very important in the recent years. There are a lot of 
nonlinear evolution equations that are solved using 
different mathematical methods. For these physical 
problems, soliton solutions, compactons, cnoidal waves, 
singular solitons and the other solutions have been 
found. These types of solutions appear in various areas 
of applied sciences and engineering. In this paper, we 

consider the ),( nmK  equation with generalized 

evolution along with time-dependent damping and time-
dependent dispersion as follows (Biswas, 2010):  
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Here )(ta  and )(tb  are real-valued functions while ml,  

and n  are positive integers. In this paper we assume 

nl =  and Equation 1 gets  
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There are many methods that are used to obtain the 
integration of nonlinear partial differential equations. 

Some of them are  the  exp-function   method  (He  and 
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Wu, 2006; Misirli and Gurefe, 2010a, b, 2011; Ebaid, 
2012; Gurefe and Misirli, 2011a), the trial equation 
method (Gurefe et al., 2011, 2012), the (G’/G)-expansion 
method (Gurefe and Misirli, 2011a, b), the Hirota's 
method (Salas et al., 2011; Gurefe et al., 2012), the 
auxiliary equation method (Zhang et al., 2009), and many 
more. In this research, we modify Kudryashov's (2012) 
method  to raise the effectiveness of this method. Our 
key idea is that traditional base e  of the exponential 

function is replaced by an arbitrary base 1a . So, new 

exact solutions of nonlinear evolution equations may be 
obtained by this simple modification. 
 
 
THE MODIFIED KUDRYASHOV METHOD 
 
We consider the following nonlinear partial differential 
equation for a function q  of two real variables, space x  

and time t :  
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The main steps of the modified Kudryashov method is 
summarize as follows: 
 
Step 1 
 
Our first step is to obtained the travelling wave solution of  



 

 
 
 
 
Equation 3 of the form  
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where k  is a free constant. Equatıon 3 was reduced to a 

nonlinear ordinary differential equation of the form:  
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where the prime denotes differentiation with respect to 

 . Suppose that the highest order nonlinear terms in 

Equation 5 are )()( )(  sl uu  and 
kpu )( )(

. 

 
 
Step 2 
 
Suppose that the exact solutions of Equation 5 can be 
obtained in the following form: 
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where 
a

Q
1

1
= . Where the function Q  is solution of 

equation  
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Step 3 
 
According to the proposed method, we assume that the 
solution of Equation 5 can be expressed in the form  
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To calculate the value N  in Equation 8 that is the pole 

order for the general solution of Equation 5, we proceed 
analogously as in the classical Kudryashov method on 
balancing the highest order nonlinear terms in Equation 
(5). More precisely, by straightforward calculations, we 
have  
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where Na  and Na  are constant coefficients. Balancing 

the highest order nonlinear terms of Equations 12 and 
(13), we have  
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so  
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Step 4 
 
Substituting Equation 6 into Equation 5 yields a 

polynomial )(QR  of Q . Setting the coefficients of )(QR  

to zero, we get a system of algebraic equations. Solving 

this system, we shall determine )(tw  and the variable 

coefficients of )(),...,(),( 10 tatata N . Thus, we obtain the 

exact solutions to Equation 3. 
 
 
APPLICATION OF KUDRYASHOV METHOD TO THE 

),( nmK  EQUATİON 

 
In this study, the modified Kudryashov method is applied 

to handle the ),( nmK  equation where Equation 4 is 

reduce to the ordinary differential equation by substituting 
it into Equation 2 which can be written as  
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Upon integration and if 0=)(ta , then Equation 16 

becomes  
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where C  is the integration constant. For simplicity we 

take 0=C . 

Using the transformation 
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Equation 17 becomes  
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From the first term in Equation 19, we take  
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so, constanttk =)( . Also we take  
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where 
a
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= . We note that the function Q  is 

solution of equation  
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Using the balance formula (Equation 15) for the nonlinear 

terms VV   and 
3V  in Equation 19, we compute  
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Therefore we have  
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and we substitute derivatives of the function )(y  with 

respect to  . The required derivatives in Equation 19 are 

obtained  
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As a result of this, we have the system of algebraic 
equations that can be solved with Mathematica. Solving 

the systems, we obtain the coefficients )(),( 10 tata  and 

)(2 ta  as follows:  
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where )(tb  is arbitrary function, k  is free constant and 

nm,  are positive integers. Substituting Equations 27 and 

28 into 24, we have  
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where  
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Substituting Equation 29 into 18, we can write the 
solutions  
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Figure  1. Solution of ),(1 txu  is shown at 1==== nmdk , ttb =)( . 

 
 
 

             
 

Figure 2. Solution of ),(1 txu  is shown at 1==== nmdk , )(=)( tsintb . 

 
 
 

Applying several simple transformations to these 
solutions, we obtain new exact solutions to Equation 2, 
respectively:  
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Here, )(),( 21 tAtA  represent the amplitude of the 

solitons, while B  is the inverse width of the solitons and 

)(= tvv  represent the velocity of the solitons. Also, 

Equation 33 represents a singular soliton solution for 
Equation    2.    Figures   1   to   7.   show  the  solutions
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Figure 3. Solution of ),(1 txu  is shown at 1==== nmdk , ,1/3][=)( tfunctionellipticsWeierstrastb  . 

 
 
 

        
 

Figure  4. Solution of ),(1 txu  is shown at 1==== nmdk , ,1/3][=)( tfunctionscellipticJacobitb  . 

 
 
 

       
   

Figure  5. Solution of ),(2 txu  is shown at 1==== nmdk , )(=)( tsintb .  

 
 
 

),(),,( 21 txutxu  for the values 1==== nmdk , the 

function )(tb  and a  takes respectively, Golden Mean, e  

and 10 . If we take ea =  in Equation 32, then we can 

find the solution obtained by using the Ansatz method in 
(Biswas, 2008).  

REMARKS AND CONCLUSIONS 

 
Our aim in this section is to show that general Exp a -

function with Kudryashov method could be used in the 
solutions in the form of symmetrical hyperbolic  Fibonacci  
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Figure  6. Solution of ),(2 txu  is shown at 1==== nmdk , ,1/3][=)( tfunctionellipticsWeierstrastb  . 

 
 
 

         
 

Figure  7. Solution of ),(2 txu  is shown at 1==== nmdk , ,1/3][=)( tfunctionscellipticJacobitb  . 

 
 
 
and Lucas functions. We highlight briefly the definitions of 
symmetrical hyperbolic Fibonacci and Lucas functions. 
Also Stakhov and Rozin (2005) defined all details of 
symmetrical hyperbolic Fibonacci and Lucas functions. 
We only give several formulas with respect to these 
functions here. Symmetrical Fibonacci sin, cosine, secant 
and cosecant functions are respectively defined as  
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Analogously, symmetrical Lucas sine and cosine 
functions are respectively defined as  
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where 
2

51
=


a , which is known in literature as 

Golden Mean (Ahmad and Ezzat, 2010). From this study, 
it is therefore possible to find more general (or more 
larger classes of) solutions in applying the modified 
Kudryashov method with Symmetrical Fibonacci 
functions. However, If ea = , then the other solutions can 

be obtained. 
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