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INTRODUCTION 
 
Cao and Frank (2000, 2001) first considered using 
Tagagi-Sugeno (T-S) based fuzzy control for nonlinear 
time-delay systems. Moreover, the criteria for time-delay 
systems can be classified as delay-independent or 
delay-dependent, depending on whether the size of the 
delay is included in the criteria. Delay-dependent criteria 
are generally less conservative than delay-independent 
criteria in terms of practical utility. Most studies consider 
utilizing the single Lyapunov function for the fuzzy control 
stability conditions, which reduces the stability problem to 
a series of linear matrix inequality (LMI) problems in 
terms of a common Lyapunov function. Efficient 
interior-point algorithms are therefore available to solve 
LMI problems using the recently developed convex 
optimization technique (Nesterov and Nemirovsky, 1994). 
Increasing attention has recently been paid to Lyapunov 
functions for stability and stabilization problems (Tanaka 
et al., 2001, 2003). For example, in the past ten years, 
over fifty papers concerning the Lyapunov topic have 
been published in journal of vibration and control. In 2003, 
a direct adaptive neural network controller was developed 
for a model of an underwater vehicle (Kim and Inman, 
2003).  They derived a control law and a stable on-line 
adaptive law using the Lyapunov theory, where the 
tracking error converges to zero and the roundedness of 
the signals is guaranteed. Mazumder and Nayfeh (2003) 

analyzed the stability of a boost power-factor-correction 
(PFC) circuit using a hybrid model. Using concepts of 
discontinuous systems, they showed that the global 
existence of a smooth hyper surface for boosting the PFC 
circuit is not possible. Subsequently, they developed 
conditions for the local existence of each of the 
closed-loop systems using a Lyapunov function.  

Derkhorenian et al. (2004) described the design and 
implementation of a nonlinear adaptive disturbance 
rejection approach for single-input-single-output 
linear-time-invariant uncertain systems subject to 
sinusoidal disturbances with unknown amplitude and 
frequency. The controller design was based on a 
single Lyapunov function incorporating both the error 
states and updating laws, and hence, global stability and 
improved transient performance are readily 
achieved. Choi et al. (2004) investigated the active 
vibration control of a translating tensioned steel strip in a 
zinc galvanizing line. The control objective is to suppress 
the transverse vibrations of the strip via boundary control. 
The correct boundary control law is derived based on 
the Lyapunov second method. It is revealed that a 
time-varying boundary force and suitable passive 
damping at the right boundary can successfully suppress 
the transverse vibrations. Roup and Bernstein (2004) 
considered adaptive stabilization for a class of linear time 



                                                                                                 

 
 
 
 
-varying second-order systems. Lyapunov methods are 
used to prove global convergence of the system states. In 
the same year, a translational cantilevered 
Euler-Bernoulli beam operating with tip mass dynamics at 
its free end was used to study the effect of several 
damping mechanisms on the stabilization of the beam 
displacement. Specifically, a Lyapunov-based controller 
was developed utilizing a partial differential equation 
model of the translational beam to exponentially stabilize 
the beam displacement while the beam support is 
regulated to a desired set-point position (Dadfarnia et al., 
2004). Urakubo et al. (2004) dealt with the attitude control 
of a rigid spacecraft with two reaction wheels. They 
derived a discontinuous state feedback law based 
on Lyapunov control wherein the control input was 
obtained by multiplying the gradient vector of 
the Lyapunov function by a matrix that is composed of a 
symmetrical matrix and an asymmetric one. Choura 
and Yigit (2005) proposed a control strategy for the 
simultaneous suppression and confinement of vibrations 
in linear time-varying structures. The proposed controller 
has time-varying gains and can also be used for linear 
time-invariant systems. The proposed control strategy 
can be applied for the rapid removal of vibration energy in 
sensitive parts of a flexible structure for safety or 
performance reasons. The stability of the closed-loop 
system was proven through a Lyapunov approach. In the 
same year, two robust nonlinear controllers were 
developed to control the rigid and flexible motions of a 
single-link robotic manipulator (Bazzi and Chalhoub, 
2005). The controllers consist of a conventional sliding 
mode controller (CSMC) and a fuzzy sliding mode 
controller (FSMC). The parameters for the proposed 
FSMC are determined via fuzzy inference systems, and 
is designed based on two Lyapunov functions. In addition, 
mathematical models of aircraft systems always contain 
uncertain elements, which reflect the designer's lack of 
knowledge regarding some parameter values, 
disturbances and unmodeled dynamics (Ibrir and Botez, 
2005).  

Using both Lyapunov's direct method and the linear 
matrix inequality approach, Ibrir and Botez (2005) 
developed the controller design procedure, to obtain a 
definite feel for the stability analysis and robust control of 
aircraft systems with significant uncertainty. Zhang et al. 
(2005) presented a systematic procedure for deriving the 
model of a cable transporter system with arbitrarily 
varying cable lengths. The assumed mode method was 
used to obtain an approximate numerical solution for the 
governing equations by transforming the infinite - 
dimensional partial differential equations into a 
finite-dimensional discretized system. They proposed 
a Lyapunov controller, based directly on the governing 
partial differential equations, which can both dissipate the 
vibratory energy during the motion of the transporter and 
guarantee the attainment of the desired goal point. In 
2006, Bowong and Kagou (2006) proposed a new adaptive  
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feedback controller for linearizable chaotic systems with 
uncertainties. Based on the Lyapunov stability theory, the 
adaptation law is determined so as to tune the controller 
gains in order to track predetermined linearizing feedback 
control. They assert that this control method has a simple 
controller structure, high robustness against uncertainties 
and strong rejection of external disturbances. In the same 
year, an adaptive fuzzy sliding mode control scheme was 
presented.  

Sadati and Talasaz’s proposed approach (2006), the 
switching functions are replaced by adaptive fuzzy control 
signals so as to satisfy the Lyapunov stability conditions. 
This adaptive fuzzy controller is believed to be able to 
improve the performance and also eliminate high 
frequency chattering in the control signals by preventing 
the application of large control gains where these are 
unnecessary, especially when the state trajectories are 
close to the sliding surfaces. In 2007, Dai and Chen 
(2007) analyzed the dynamic stability of a nonlinear 
cracked rotor system with asymmetrical viscoelastic 
supports. Nonlinear governing equations for the cracked 
rotor system subjected to periodic forces generated 
during machining are established. The linear and 
nonlinear dynamic stabilities of the system are 
investigated, utilizing the Lyapunov theory and the 
Floquet criterion. In the same year, Chen et al. (2007) 
proposed a design method for producing H-infinity control 
performance for structural systems using a T-S fuzzy 
model. A structural system with a tuned mass damper is 
modeled using a T-S type fuzzy model. Using the parallel 
distributed compensation (PDC) scheme, Chen et al. 
(2007) designed a nonlinear fuzzy controller for the tuned 
mass damper system. A sufficient stability condition for 
the control system can be derived in terms 
of Lyapunov theory. This control problem is reformulated 
to solve the linear matrix inequality (LMI) problem. Anac 
and Basdogan (2007) presented model validation 
techniques integrated with some design methodologies to 
predict the performance of micro systems. A 
two-dimensional micro scanner mirror was chosen for a 
case study to demonstrate the developed methodologies. 
The state space model was used for disturbance analysis 
performed using the Lyapunov approach to obtain the 
root mean square values of the mirror rotation angle 
under the effect of a disturbance torque. In 2008, 
analytical investigation was conducted to suppress the 
vibration of tall building structures in the presence of 
uncertainty in terms of structural dynamic characteristics 
(Amini and Vahdani, 2008). Three control algorithms 
consisting of probabilistic optimal control, fuzzy logic 
control and optimal control theories were combined to 
control system fluctuations and severe seismic 
excitations. A state-space reduced order model was 
constructed based on the dominant observable and 
controllable Gramians of Lyapunov equations in order to 
prevent a control matrix singularity and to achieve 
computational efficiency. Both types of active and semi- 
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active control systems can be installed in buildings to 
reduce the seismic response (Amini and Vahdani, 2008).  

Kaddissi et al. (2009) studied the control of an 
electrohydraulic active suspension, based on a 
combination of backstepping and integrator forwarding. 
The goal is to control and reduce the car's vertical motion 
and keep it at zero. The active suspension model is 
highly nonlinear and non-differentiable due to the 
hydraulic components, especially the servovalve and the 
hydraulic actuator, whose chamber volume varies during 
extension and retraction. Therefore, a powerful control 
strategy is required. In such cases, Lyapunov-based 
control strategies are the most suitable because they 
offer a lot of maneuverability in building an analytical 
control signal (Kaddissi et al., 2009). In the same year, 
Asokanthan and Wang (2009) studied the instabilities in a 
MEMS gyroscope subjected to angular rate fluctuations. 
For the purpose of acquiring stability conditions, when the 
angular rate input is subject to small periodic intensity 
fluctuations, the dynamic behavior of periodically 
perturbed linear gyroscopic systems should be studied in 
detail. An asymptotic approach based on the method of 
averaging has been employed for this purpose, and 
closed-form conditions for the onset of instability due to 
parametric resonances have been obtained. A numerical 
approach based on the Floquet-Lyapunov theory is 
employed for validating the analytical stability predictions. 
Wang and Wang (2009) considered the global 
exponential robust stability analysis problem for a class of 
uncertain distributed parameter control systems with 
time-varying delays. The uncertain parameters are 
generated from modeling errors as well as parameter 
variations in the systems. The purpose for addressing this 
problem is to derive easy-to-test conditions such that the 
dynamics of the uncertain system will be globally 
exponentially robustly stable. A new Lyapunov-Krasovskii 
function was developed by employing, a linear matrix 
inequality (LMI) approach to establish the desired 
sufficient conditions. Global exponential robust stability 
for uncertain distributed parameter control systems with 
time-varying delays can be easily checked by utilizing the 
numerically efficient Matlab LMI toolbox. Moreover, 
modeling and robust controller designs for horizontal 
vibrations of high-speed elevators were discussed (Feng 
et al., 2009). Based on the theory of rigid body dynamics, 
they modeled the horizontal vibrations about an elevator 
cage. The motion of the elevator cage is resolved into 
translation and rotation around the center of mass of the 
cage. Taking account of the characteristics of nonlinearity, 
parameter uncertainties and external disturbances of the 
elevator cage, a robust controller can be designed 
using Lyapunov's method (Feng et al., 2009). 

Chen et al. (2010) proposed a combining a T-S fuzzy 
model approach with a parallel distributed compensation 
(PDC) scheme for time-delay control of the response of a 
tension leg platform (TLP) system subjected to an 
external wave force. A global PDC-based fuzzy logic  

 
 
 
 
controller is constructed by blending all local state 
feedback controllers. A method of fuzzy-model-based 
control is thereby developed which can attenuate the 
influence of the external wave force. The controller can 
be evaluated in terms of stability analysis and the LMI 
conditions guaranteeing the stability of the TLP system 
derived via Lyapunov theory. In the same year, Dogan 
and Morgul (2010) considered the motion of a two-link 
flexible arm with a nonuniform cross section. They 
proposed a novel control scheme which consists of a 
dominant control law together with a parallel controller 
and showed that with the proposed controller, the control 
objectives are satisfied. The stability analysis is based on 
the Lyapunov approach and LaSalle's invariance principle 
extended to infinite-dimensional systems.  

Furthermore, Robert and Gabor (2010) proved the 
subcritical sense of this period-doubling bifurcation. They 
approximated the emerging period-two oscillations by 
using the Lyapunov-Perron method to compute the center 
manifold and by calculating the Poincare-Lyapunov 
constant of the bifurcation analytically at certain 
characteristic parameter values. The existence of the 
unstable period-two oscillations around the stable 
stationary cutting was confirmed using a numerical 
continuation algorithm developed for time-periodic 
delay-differential equations. In another work Li et al. 
(2010) adopted the adaptive fuzzy sliding mode (AFSM) 
control algorithm to actively control nonlinear structural 
vibration. Since the AFSM control algorithm needs the full 
state feedback of the structure, a dynamic neural network 
(DNN) observer is proposed, considering the nonlinearity 
of the structure. The neural network weights are adapted 
on-line, so no off-line learning is required. Furthermore, 
no exact knowledge of structural nonlinearities is needed. 
Li et al. (2010) established a weight training algorithm 
based on Lyapunov stability theory in the presence of 
modeling errors. Moreover, Yoshimura (2010) proposed 
an adaptive discrete sliding mode control (SMC) for 
mechanical systems with mismatched uncertainties. The 
uncertainties are expressed in a parameterized form, and 
the estimates for the states and the uncertainties are 
taken by using the proposed weighted least squares 
estimator (WLSE). The proposed adaptive discrete SMC 
is constructed on the basis of the estimates obtained by 
the proposed WLSE. It can be verified using the 
Lyapunov method so that the estimation error equation is 
asymptotically stable and the mechanical systems are 
ultimately bounded under the action of the proposed 
adaptive discrete SMC. Zhao et al. (2010) was also 
concerned with the problem of robust H-infinity reliable 
load-dependent control design for a class of semi-active 
seat suspension systems. A four degree-of-freedom 
human body model was considered in order to 
investigate the control strategy more precisely. It is 
assumed that the human body mass resides in an 
interval and can be measured online. The load - 
dependent approach is based on a parameter-dependent 



                                                                                                 

 
 
 
 
Lyapunov function. Chen (2010) also presented a fuzzy 
robust control design which combines H-infinity control 
performance with Tagagi-Sugeno (T-S) fuzzy control for 
the control of delayed nonlinear structural systems under 
external excitations. They designed a nonlinear fuzzy 
controller based on parallel distributed compensation 
schemes. The controller design problem is reformulated 
as an LMI problem as derived from the Lyapunov theory. 
Lee et al. (2010) focused on the development of 
triangular fuzzy numbers, the revising of triangular fuzzy 
numbers, and the constructing of a half-circle fuzzy 
number model, which can be utilized to perform more 
plural operations. Similarly, Pai (2010) presented a 
proportional-integral sliding mode control methodology for 
the robust control of vibrations in a linear uncertain 
system with state and input delays. The systems were 
assumed to have structured, unmatched and time-varying 
parameter uncertainties. Based on the Lyapunov stability 
theorem and LMI H-infinity technique, a sufficient 
condition was derived to guarantee the global stability of 
the dynamics and achieve a prescribed H-infinity normal 
bound of disturbance attenuation for all admissible 
uncertainties without the state predictor.  

Chen et al. (2011) discussed the stability analysis of a 
genetic algorithm-based (GA-based) H-infinity adaptive 
fuzzy sliding model controller (AFSMC) for a nonlinear 
system. Lyapunov's direct method can be used to ensure 
the stability of the nonlinear system. In the same year, 
Gabale and Sinha (2011) provided a methodology for a 
reduced order controller design for nonlinear dynamic 
systems with time-periodic coefficients. The proposed 
methodology is quite general in the sense that it can 
easily be modified for nonlinear systems with constant 
coefficients. The equations of motion are represented by 
quasi-linear differential equations in state space, 
containing a time-periodic linear part and nonlinear 
monomials of states with periodic coefficients. 
The Lyapunov-Floquet (L-F) transformation is used to 
transform the time-varying linear portion of the system 
into a time-invariant form. Lin et al. (2011) also 
considered the modeling of a TLP system via the 
Lyapunov method. In terms of the stability analysis, the 
linear matrix inequality conditions guaranteeing the 
stability of the TLP system can be derived from 
fuzzy Lyapunov theory. McCullough et al. (2011) also 
considered a Lyapunov treatment of swarm coordination 
under conflict. A Newtonian dynamics-based double 
integrator model is taken into account, as well as a 
control strategy using the relative positions and velocities 
of opposing swarm members. This control was introduced 
so as to achieve stability and to ensure the capture of the 
evaders by the pursuers. For the sake of simplicity only 
swarms with equal membership strengths and equal 
mass are considered in the present document. This effort 
begins with a set of suggested interaction force profiles, 
which are functions of local vectors. To formulate a robust 
control law, Lyapunov-based stability analysis was used  
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(McCullough et al., 2011). Njah (2011) designed active 
controllers based on the Lyapunov stability theory and the 
Routh-Hurwitz criteria. They were designed to completely 
synchronize two parametrically and externally excited 
Phi(6) Van der Pol oscillators, Phi(6) Duffing oscillators 
and a Phi(6) Van der Pol oscillator with a Phi(6) Duffing 
oscillator in the triple-well configuration of the Phi(6) 
potential. Furthermore, they considered global exponential 
stabilization for a class of distributed parameter control 
systems with Markovian jumping parameters and 
time-varying delay (Wang and Wang, 2011). By 
employing a new Lyapunov-Krasovskii function, an LMI 
approach was developed to establish some easy-to-test 
criteria for global exponential stabilization in the mean 
square for stochastic systems (Wang and Wang, 
2011). In a recent effort, Kozic et al. (2011) investigated 
the stochastic stability of narrow moving bands under 
random tension fluctuation utilizing the concept of the 
Lyapunov exponent. Galerkin's method was used to 
reduce the partial differential equations of motion for a 
corresponding ordinary differential equation with 
randomly varying stiffness. They obtained explicit stability 
conditions based on the asymptotic expansion series for 
a two-dimensional linear stochastic system. Moreover, 
advanced techniques in soft computing and artificial 
intelligence have been successfully applied to a variety of 
fields, such as robot manipulation (Hsiao et al., 2005a, 
2005b, 2005c, 2005d, 2005e; Chen et al., 2011a, 2011b; 
Chen and Huang, 2011; Shih et al., 2011a, 2011b; Lee et 
al., 2011), engineering applications (Lu, 2003; Amini and 
Vahdani, 2008; Chang et al., 2008; Chen, 2006; Chen et 
al., 2008d, 2008e; Trabia et al., 2008; Tu et al., 2008; 
Yang et al., 2008a; Shih et al., 2010b; Yeh and Chen, 
2010), architectural engineering (Chen et al., 2004; Chen 
et al., 2010i; Hsieh et al., 2006; Chen, 2010a, 2010b, 
2010c; Hsu et al., 2010; Chen cy, 2010; Chen cy, 2011a; 
b; c; d; Chen, 2011c, 2011d; Chen et al., 2011c, 2011d; 
Liu et al., 2011; Tang et al., 2011), satellite observations 
(Lin et al., 2009a, 2009b; Lin and Chen, 2010b; Lin and 
Chen, 2011; Yeh et al., 2011), marine research (Chen et 
al., 2005a, 2005b; Chen et al., 2006a, 2006b, 2006c; 
Chen et al., 2007a, 2007b, 2007c, 2007d, 2007e, 2007f; 
Chen et al., 2008a, 2008b, 2008c; Tseng et al., 2009; 
Chen, 2009b, 2009c; Chen et al., 2009c; Chen, 2010d; 
Chen, 2011a, 2011b, 2011c), network optimization (Chen 
et al., 2009g; Chen and Chen, 2010b; Shih et al., 2010a, 
2010c; Kuo et al., 2010; Kuo et al., 2011; Kuo and Chen, 
2011a, 2011b), system development (Chen, 2009a; 
2010c; Chen et al., 2009a, 2009b, 2009d, 2009e, 2009f; 
Chen et al., 2010a, 2010c, 2010d, 2010f; Lin and Chen, 
2010a; Shih et al., 2011d; Tseng et al., 2011), educational 
improvement (Chen et al., 2010b;  Shih et al., 2010d; 
Shen et al., 2011; Shih et al., 2011c) and management in 
the leisure and tourism industries (Yildirim et al., 2009; 
Zhao et al., 2009; Tsai et al., 2008; Yang et al., 2008b; 
Yeh et al., 2008; Chen and Chen, 2010a; Chen et al., 
2010e, g, h; Lee et al., 2010a, 2010b; Chiang et al., 2010; 
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Tsai and Chen, 2010; Tsai and Chen, 2011). To the best 
of the author’s knowledge, there are few existing results 
related to delay-dependent criteria for multiple time-delay 
fuzzy systems via fuzzy Lyapunov methods. In this work, 
the fuzzy Lyapunov approach is used to derive a stability 
condition for the stability analysis of multiple time-delay 
fuzzy systems. A delay-dependent stability criterion is 
proposed. This study uses a generalization (Tanaka et al., 
2001, 2003). Based on the criteria given in this work, a 
parallel distributed compensation (PDC) control design is 
presented in order to stabilize the multiple time-delay T-S 
fuzzy systems.  
 
 
SYSTEM DESCRIPTION AND PRELIMINARY 
PROBLEM  
 
It is assumed that a continuous multiple time-delay fuzzy 
system can be described by fuzzy IF-THEN rules as 
follows: 
 
Plant rule i 
     
IF iggi Mt zMtz   is  )( and  and    is )( 11 �  

 

 THEN )()()()( tUBtXAtXAtX inii +−+= τ�        (1) 
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(x(t), u(t)) is a controllable pair and given a pair of (x(t), 
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for all t. We use the parallel distributed compensator 
(PDC) concept to synthesize fuzzy control laws for the 
stabilization of time-delayed T-S fuzzy systems. The idea 
of this type of fuzzy controller rules is based on the same 
premise as those of the T-S model. Therefore, we can 
use linear control design techniques to design the 
feedback gains to compensate each rule in the T-S fuzzy 
model using a PDC scheme, also called T-S fuzzy control 
in this paper. The linear control rule i is derived based on 
the state of Equation 2 in the consequent part of the ith 
model rule. 
 
 
Control rule i 
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where ri   ,, 2 , 1   �= . r is the number of IF-THEN rules 
and Ki is the local feedback gain matrix. The final control 
U is inferred using the Sum-Product reasoning method. 
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By substituting Equation 8 into Equation 2,  the following 



                                                                                                 

 
 
 
 
model of a closed-loop control system is obtained: 
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FUZZY LYAPUNOV FUNCTION APPROACH 
 
A fuzzy Lyapunov function is defined herein, and the 
stability conditions for time-delay T-S fuzzy systems 
described in Equation 9 are considered. 
 
 
Definition 1  
 
Equation 10 is said to be a fuzzy Lyapunov function for 
the T-S fuzzy system if the time derivative of ))(( tXV  
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where iP  is a positive definite matrix. The fuzzy 
Lyapunov function contains the time derivative of the 
premise membership functions by sharing the same 
membership functions with the T-S fuzzy model. 
Therefore, the time derivative of the premise membership 
functions needs to be handled. This study adopted an 

upper bound for the time derivative, that is, ρρ φ≤)(th� , 

to ensure that the term of the time derivative )(thρ
�  can 

be solved numerically. Before a typical stability condition 
for time-delay T-S fuzzy system (Equation 9) is proposed, 
some useful concepts are given below: 
 
 
Lemma 1  
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symmetric positive definite matrix G nn×∈ R  or R , we 
have:  
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Lemma 2 gives a sufficient condition for ensuring 
asymptotic stability of a closed-loop fuzzy system 
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Based on the aforementioned inequalities, a stability 
condition can be generalized using the fuzzy Lyapunov 
method as follows: 
 
 
Theorem 1  
 
The fuzzy system (Equation 9) is stable in the large if 
there exist common positive definite matrices 
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Proof of Theorem 1 
 

Consider the Lyapunov function candidate for the fuzzy 
system (Equation 9): 
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Based on Lemma 1 and (Equation 18), we have: 
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Based on Theorem 1, ))(( tXV� < 0 at 0)( ≠tX . 
 
 
Remark 1 
 
Since condition of Equation 15 implies that condition of 
Equation 16 can be negative that is, 0<∆ , then 

0))(( <tXV�  when 0=τ  under single Lyapunov function. 

This means that the closed-loop T-S fuzzy system )(tX�  

)}()){(()(
1 1

tXKBAthth
r

i
liil

r

l
i��

= =
−= is asymptotically 

stable if disturbances and time delays are not considered. 
This stability condition of Theorem 1 can be reduced to 
that of Lemma 2. 
 
 
CONCLUSIONS 
 
This study presents a criterion for multiple time-delay T-S 
fuzzy systems based on the fuzzy Lyapunov method, 
which is defined in terms of fuzzy blending quadratic 
Lyapunov functions. The delay-dependent stability 
criterion is derived in terms of the fuzzy Lyapunov method 
to guarantee the stability of multiple time-delay T-S fuzzy 
systems.  
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