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We discuss Hansen-Sengupta operator in the context of circular interval arithmetic for the algebraic 
inclusion of zeros of interval nonlinear systems of equations. It was demonstrated by showing the 
effects of applying repeatedly preconditioners of inverses of the midpoint interval matrices on the well 
known Trapezoidal Newton method at each iteration cycle wherein, the work of Shokri (2008) was our 
major tool of investigation. It was shown that the Trapezoidal interval Newton method with inverse 
midpoint interval matrix as preconditioner is not a H-continuous map and that Baire category failed to 
hold in the sense of Aguelov et al. (2007). This was more so since it produced from our numerical 
example, not only overestimated results but, also results that are not finitely bounded which we 
compare with results computed previously given in Uwamusi. 
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INTRODUCTION 
 
We are interested in the solution of nonlinear interval 
system of equations 
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We are interested in bounding the solution of (1) or 
establish their absence by a first order slope interval 
method. This means that given a box 
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of the function F with desired interval based methods 
produce intervals [ ]iF  of the function F which are 

guaranteed to validate and enclose the zeros of F even in 
the presence of nonlinearities and round off errors. 

A method of reducing the width of co-multiplication for 
two intervals was proposed (Rump, 1999), This method is 
known to handle efficiently interval based evaluation of 
functions of several variables as well as finding 
enclosures of solution set of linear interval systems. 

Our motive behind the paper is to extend Rump’s 
interval operations wherein inverse isotonicity operation 
as enunciated in Uwamusi (2007, 2009) is applicable in 
the contexts of modified (Hansen and Sengupta, 1981) 
and Preconditioned Trapezoidal Newton method. It was 
expected that these methods are able to either guarantee 
that the system has no solution or to yield sharp bounds 
of the results computed. 

We paid special emphasis on the efficiency of the 
method to guarantee convergence to the correct 
solutions in the results obtained. 

By repeatedly solving the linear interval system 
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from 
  

)ˆ)(()()ˆ( xxxJxfxf −+∈ ,                                   (3)  

 
one obtains an equivalent system (1) where  J(x) is 
denoted by A(x)  in the form: 
 

)()ˆ)(( xbxxxA −∋− .                                     (4) 

 
Method (4) does not only take into consideration the 
problem of dependencies but also has a simpler structure 
and its hull is also straight forward. Thus  
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where ])([
)(kxN is the interval Newton method. 

Now suppose instead of solving method (4), we consider 
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where ]1,0[,
^

∈∈ tandIDxx . 

We can estimate ))((
)(

^
)( kk xxtxJ −+  in the interval [0,1] 

at the point t = 0. Following (Shokri, 2008), we estimate 
(6) by the trapezoidal rule in the form 
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where from we obtain an iterative formula 
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and, 
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is the Newton step length which is a predictor. 

 
 
Definition 1  

 
An iteration is said to be numerically stable if it produces 

a sequence 
( ){ }kx  of approximations of the solution 

∗x  

such that for large k the relative error 
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 is of 

order )),(1( dFcond+η  and η  is the relative machine 

precision and d is a data vector (Wozniakowski, 1977). 

 
 
 
 
Definition 2  
 
An iteration is said to be well behaved if a slightly 

perturbed 
( )kx is an almost exact solution of a slightly 

perturbed problem (Wozniaskowski, 1977). This implies 

that 
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Definition 3 
 

An interval function 
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IRXF
−

→: is called S-continuous 

if its graph is a closed subset of 
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Definition 4 
 

An interval function 

n

IRXF
−

→:  is Hausdorff 

continuous (H-continuous) if it is an S- continuous 
function that is minimal with respect to inclusion, that is if 

n

IRD
−

→:ψ is an S-continuous function then 

FF =⇒⊆ ψψ (Aguelov, 2007). Symbolically, we 

denote by )(XH , the set of H-continuous functions on 

X. 
 
 
NOTATION 
 

We denote 
nxnn IRAandIRx ∈∈  to signify the set of 

interval vectors and respectively interval matrices. 
An interval vector x is said to be thick if there exist 

Xx ∈
1

 and Xx ∈
2

 with 
21

xx ≠ such that the 

width 0)( >xw .  An interval vector is said to be thin if for 
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We hereby introduce interval operation due to Rump 

(1999) as follows: Let [ ]raxRxra <−∈=),(  where a 

is the centre and r is the radius. The basic interval 

operations /),,,( o−+  such that for intervals 
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Inclusion isotonicity for intervals is implied by 
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These operations hold for commutativity and 
associativity but fail woefully for distributivity except for its 
subdistributivity, that is, 

bcaccba ±=± )( for IRcba ∈,, .  A disk inversion due 

to (Carstensen and Petkovic, 1994) in the form of 
complex plane is adopted for our purpose as follows 
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The emphasis is computing rigorous bounds on the 
solution of such systems with computable overestimation 
factor that is supposedly small. Such bounds enclose 
truncation, rounding and often modeling errors.  The use 
of different specific interval machinery as inner 
enclosures to check the validity of the quality of bounds 
obtained dictates our interest in this paper. 
 
 
THE METHOD 
 
Central to our discussion, we review the following 
definition. 
 
 
Definition 4 
 
We say that a sequence of interval matrices 

][
kA converges if the lower and upper bounds converge,  
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or equivalently, if the midpoints and radii converge 
(Neumaier, 1990). This means that 
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Theorem 1  
 

Let 
nn IRIRDF →⊂:  be continuously differentiable 

and assume that ))]([((
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0)( ≠xf  ][
0xx ∈∀ . 

Proof is given in Alefeld (1984, 2008) for example.  
 
 
Theorem 2  
 

Let 
nxn

RA∈  be an H-matrix with positive diagonal 

elements and let 
nn RR → be continuous, diagonal and 

isotone (Neumaier, 1990).  Then the function 
nn RRf →: defined by )()( xQxAxF +=  has a 

unique zero
nRx ∈* .  Moreover the inequality  
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holds for every nonnegative vector 
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Proof is given in Neumaier (1990). 

The (Hansen and Sengupta (1981) and Uwamusi 
(2009) method is defined by 
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We expect the interval matrix A to be regular. Sufficient 
conditions for verifying regularity of interval matrices have 
been discussed (Rohn, 2011a, 2011b, 2010, 2005). The 
numerator in Equation (24) contains zero. By the 
definition of optimal preconditioner in Kearfott (1990) and 
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The preconditioned system (21) has an M- matrix 
centered about the identity matrix I with right hand vector 
in the form 
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(Shi and Tian, 1999) obtained inequalities for method 
(21) in the form: 
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Table 1. Results for preconditioned trapezoidal Interval Newton method of Equation 8. 
 

Iteration Results in midpoint-radius vector 
∞

)(
)(kXF  

1 

[0.33169161,0.012680616] 

[0.5362032,0.01241961] 

[0.794301886,0.006144126] 

2.0118213 × 10
-2
 

   

2 

[0.337703974,0.000558556] 

[0.585171538,0.0060343] 

[0.801821044,0.00038168] 

1.153693 × 10
-3
 

   

3 

[0.338826244,0.000003618] 

[0.586294836 0.0000038] 

[0.799870224,0.000001674] 

1.0659344 × 10
-2
  

   

4 

[0.341908146,0.000000038] 

[0.591894964,0.000000096] 

[0.804670818,0.000000808 

1.1499132 × 10
-2
 

   

5 ? ? 
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infer from the analysis presented in (Rohn, 1993) that 
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 where A ′′  is a matrix of perturbation bound. With the 
aforementioned exposition, we infer that Hansen-
Sengupta method converges for any starting point for the 
interval nonlinear systems of equations. 
 
 

EXAMPLE 
 
We illustrate with the following problem discussed in 
(Uwamusi, 2009): 
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Using a result due to (Schafer, 2007) which is a version 
of Miranda’s theorem (Miranda, 1940), we are able to 
show that the so called Trapezoidal Newton method has 
no rational map with a fixed point solution to the given 
problem. Further insight into this regard can be found in 
Rohn (1993, 2005). Again Trapezoidal Newton method is 
also not a H-continuous map since Baire category 
(Aguelov et al., 2005; Anguelov, 2007; Angueov et al., 
2006) failed to hold as we found in the given problem. 
This means that the graph completion operator is not an 
inclusion isotone for this type of method. 
 
 

Conclusion 
 
The paper reported a defect which is common with 
multiple applications of a preconditioner in the interval 
based Hansen-Sengupta method for finding solution to 
interval nonlinear system of equations. In particular, we 
studied this effect on Trapezoidal interval Newton 
method.  The inherent problems encountered arose as a 
result, where there are many paths near some points, it 
was discovered from our investigation that the 
Trapezoidal Newton algorithm based on multiple usage of 
preconditioner may produce not only overly an 
overestimated results but also results that are not finitely 
bounded as shown in Table 1.   

On the other hand, computed values from Uwamusi 
(2009) as shown in Table 2 wherein we incorporated 
Hansen-Sengupta method of Equation 21 via inclusion 
isotonicity of inverse disk in the sense of Carstensen and 
Petkovic (1994) produced quite satisfactory results in the 
sense that monotonic and inclusion isotonicity property of  
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Table 2. Results for Hansen-Sengupta method with error bounds. 
 

Iteration 
Result 

Mid (
k

X ), Rad (
k

X ) 
∞

−

)( kXF  

1 

0.358937022, 1.7095978 × 10
-2

 

0.600208287, 1.6381989 × 10
-2

 

0.808328540, 8.809388 × 10
-3
 

2.6257369  × 10
-2

 

   

2 

0.336461223, 3.350353 × 10
-3
 

0.585636548, 2.417562 × 10
-3
 

0.801816087, 8.112458 × 10
-3
 

3.351703 × 10
-3
 

   

3 

0.337953381, 3.4978 × 10
-5
 

0.585355878, 3.4033 × 10
-5
 

0.801709854, 1.5718 × 10
-5
 

2.18688 × 10
-4
 

   

4 

0.337917117, 3.6264 × 10
-5
 

0.585289640, 6.6708 × 10
-5
 

0.801634504, 4.15 × 10
-7
 

3.1 × 10
-8
 

   

5 

0.337917117, 4 × 10
-9
 

0.585289640, 7.305 × 10
-12

 

0.801634504, 1.9341 × 10
-12

 

0 

   

6 

0.337917117,0 

0.585289640,0 

0.801634504,0 

0 

 
 
 
interval arithmetic with order preserving hold. Such a 
similar case was reported in Kearfortt and Xing (1993) 
which narrowed closely our findings. While the solutions 
obtained from using Interval Trapezoidal Newton method 
expanded suddenly in third iteration, that of Uwamusi 
(2009) method provided numerically good solution as 
sequence of iterates approach infinity. 

 

Termination criterion for the iteration is 

( )

( )
12

0
10
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)(
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xF

xF
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or 
( ) 10

10
−<k

s  and 
( ) ( ) ( )kkk xxs −= +1

. 

 
In the case of Table 1, we halt the iteration when there 
was no longer any noticeable improvement after four 
successive iteration as the solution obtained began to 
diverge from the true solution. Thus the way an iterative 
method is written or evaluated will greatly harm the 
quality of interval solutions. This suggests that it is 
strongly recommended in interval based iteration to 
reduce as much as possible correlations among intervals 
as were seen in our investigation in the Trapezoidal 
Newton method. 
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