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Constraint programming is a modern programming paradigm devoted to solve constraint-based 
problems, in particular combinatorial problems. In this paradigm, the efficiency on the solving process 
is the key, which generally depends on the selection of suitable search strategies. However, 
determining a good search strategy is quite difficult, as its effects on the solving process are hard to 
predict. A novel solution to handle this concern is called autonomous search, which is a special feature 
allowing an automatic reconfiguration of the solving process when a poor performance is detected. In 
this paper, we present an extensible architecture for performing autonomous search in a constraint 
programming context. The idea is to carry out an “on the fly” replacement of bad-performing strategies 
by more promising ones. We report encouraging results where the use of autonomous search in the 
resolution outperforms the use of individual strategies.  
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INTRODUCTION 
 
Constraint programming (CP) is a modern and powerful 
programming paradigm devoted to the efficient resolution 
of constraint-based and optimization problems. It 
interbreeds ideas from different domains, e.g. from opera-
tional research, numerical analysis, artificial intelligence, 
and programming languages. Currently, CP is widely 
used in different application areas, for instance, in 
computer graphics to express geometric coherence, in 
engineering design for the conception of complex 
mechanical structures, in database systems to ensure 
and/or restore data consistency, in electrical engineering 
to locate faults, and even for sequencing the DNA in 
molecular biology (Rossi, 2006). Solving a problem in CP 
requires firstly modeling it as a constraint satisfaction 
problem (CSP). A CSP is a formal problem representation 
that mainly consists of a sequence of variables lying in a 
domain and a set of constraints. The goal is to find a 
complete  variable-value   assignment   that  satisfies  the 
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whole set of constraints. The common approach for 
solving CSPs is based on the generation of a tree data 
structure that holds the potential solutions by interleaving 
two main phases: 1) enumeration and 2) propagation. 

In the enumeration phase, a variable is instantiated to 
create a branch of the tree, while the propagation phase 
is responsible for pruning the tree by filtering from 
domains the values that do not lead to any solution. In 
the enumeration phase, there are two major decisions to 
be made: the order in which the variables and values are 
selected. This selection is known as the variable and 
value ordering heuristics, and jointly constitutes the 
enumeration strategy. Such a pair of decisions is crucial 
in the performance of the resolution process, where a 
correct selection can dramatically reduce the compu-
tational cost of finding a solution. For instance, if the right 
value is chosen on the first try for each variable, a 
solution can be found without performing backtracks. The 
study of enumeration strategies has been the focus of 
research during many years. From the 70’s, there exist 
different studies concerning strategies. For instance, 
preliminary   studies  were  focused  on  defining  general  
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criteria, e.g. the smaller domain for variable selection, 
and its minimum, maximum, or a random value. There is 
also work focused on defining strategies for specific class 
of problems, e.g. for job shop scheduling (Smith and 
Cheng, 1993; Sadeh and Fox, 1996) and for 
configuration design (Chenouard et al., 2009). We can 
also find research focused on determining the best 
strategy based on some static criterion (Beck et al., 
2004a, b; Sturdy, 2003). 

However, it turns out that taking an a priori decision is 
quite difficult, as the effects on the solving process are 
hard to predict. During the last years there is a trend to 
analyze the state of progress of the solving process in 
order to automatically identify good-performing strategies 
(or a combination of them). For instance, the adaptive 
constraint engine (ACE) (Epstein et al., 2005) is a 
framework that learns ordering heuristics by gathering the 
experience from problem solving processes. The main 
idea is to manage a set of advisors that recommend in 
the form of comment a given action to perform e.g. 
“choose the variable with maximum domain size”. The 
reliability and utility of advisors is controlled by weights. 
Those weights are determined by a DWL (digression-
based weight learning) algorithm, which learns by 
examining the solution’s trace of problems successfully 
solved. 

Finally, a decision is computed as a weighted 
combination of the comments done by the advisors in a 
process called voting. Another interesting approach 
following a similar goal is the weighted degree heuristic 
(Boussemart et al., 2004). The idea is to associate 
weights to constraints, which are incremented during 
propagation whenever this causes a domain wipeout. The 
sum of weights is computed for each variable involved in 
constraints and the variable with the largest sum is 
selected. The principles that support the weighted degree 
procedure can be conceived in terms of an overall 
strategy that combines two heuristic principles, the fail-
first and the contention principle. The fail-first principle 
says: to succeed, you must first search where you are 
most likely to fail; while contention principle says: those 
variables directly related to failure (domain wipeouts) are 
more likely to cause failure if they are chosen instead of 
other variables. The random probing method (Grimes and 
Wallace, 2007; Wallace and Grimes, 2009) address two 
drawbacks of the weighted degree heuristic. On one hand, 
the initial choices are made without information on edge 
weights, and on the other, the weighted degree is biased 
by the path of the search. This makes the approach too 
sensitive to local, instead of to global conditions of failure. 
The random probing method proposes to perform 
sampling during an initial gathering phase arguing that 
initial choices are often the most important. Preliminary 
results demonstrate that random probing performs better 
than weighted degree heuristic.  

The aforementioned approaches are mainly focused on 
sampling and learning good strategies after solving a 
problem or a set of problems. In  this  paper,  we focus on 

 
 
 
 
reacting as soon as possible instead of waiting the entire 
resolution process. To this end, we introduce a new 
framework that smartly combines CP with autonomous 
search (AS) (Hamadi et al., 2011). The CP component 
runs a classical solving process while the AS part is 
responsible for reacting as soon as a bad-performing 
strategy is detected. Reacting implies to replace “on the 
fly” the current strategy by another one looking more 
promising. Promising strategies are selected from a 
strategy rank which depends on a choice function. The 
choice function determines the performance of a given 
strategy in a given amount of time, and it is computed 
based upon a set of indicators and control parameters. 
Additionally, to guarantee the precision of the choice 
function, control parameters (Nannen, 2009) are 
smoothly adjusted by an optimizer. This framework has 
been implemented in the ECL

i
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 Solver (Schimpf and 

Shen, 2010) and it is supported by a 4-component 
architecture described later in this paper. Another 
important capability of this new framework is the 
possibility of easily updating its components. This is 
useful for experimentation tasks. Developers are able to 
add new choice functions, new control parameter 
optimizers, and/or new ordering heuristics in order to test 
new CP-AS approaches. The experimental results 
demonstrate the effectiveness of the proposed frame-
work, outperforming in several cases the use of individual 
strategies.  
 
 
BACKGROUND  

 
Here, we formally describe the CSP and we present the basic 
notions of CSP solving.  
 
 

Constraint satisfaction problems  
 

Formally, a CSP P is defined by a triple P = <X,D,C> where:  
 
-X is an n-tuple of variables X = <x1, x2,..., xn>. 
-D is a corresponding n-tuple of domains D = <D1, D2,..., Dn> such 

that xi ∈ Di , and Di is a set of values, for i = 1,...,n.  
-C is an m-tuple of constraints C = C1, C2, ..., Cm, and a constraint Cj 
is defined as a subset of the Cartesian product of domains Dj1 × · · · × 
Djnj , for j = 1,..., m.  
A solution to a CSP is an assignment {x1 → a1,..., xn → an } such that ai 

∈ Di for i = 1,...,n and (aj1,...,ajnj ) ∈ Cj , for j = 1,...,m.  
 
 

CSP Solving  
 
As previously mentioned, the CSP search phase is commonly 
tackled by building a tree structure by interleaving enumeration and 
propagation phases. In the enumeration phase, the branches of the 
tree are created by selecting variables and values from their 
domains. In the propagation phase, a consistency level is enforced 
to prune the tree in order to avoid useless tree inspections. 
Algorithm 1 depicts a general procedure for solving CSPs. The goal 
is to iteratively generate partial solutions, backtracking when an 
inconsistency is detected, until a result is reached. The algorithm 
begins by loading the CSP model. 

Then, a while loop encloses a set of actions to be performed until
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Table 1. Search process indicators.  
 

Name Description 

VFP Number of variables fixed by propagation 

n Number of steps or decision points (n increments each time a variable is fixed enumeration)  

Tn(Sj) Number of steps since the last time that an enumeration strategy Sj was used until step nth  

SB Number of Shallow Backtracks 

B Number of Backtracks  

In1 
Represents a Variation of the Maximum Depth. It is calculated as: CurrentMaxDepth − 
PreviousMaxDepth  

  

In2 
Calculated as: CurrentDepth − PreviousDepth. A positive value means that the current node 
is deeper than the one explored at the previous step  

  

B-real Number of backtracks considering also the number of shallow backtracks 

d Current depth in the search tree  

  

Thrash 
The solving process alternates enumerations and backtracks on a few number of variables 
without succeeding in having a strong orientation. It is calculated as: dt−1 − VFPt−1  

 
 
 

Table 2. Variable ordering heuristics. 
 

Name Description 

First (F)  The first variable of the list is selected  

Minimum remaining values (MRV)  At each step, the variable with the smallest domain size is selected  

Anti minimum remaining values (AMRV) At each step, the variable with the largest domain size is selected  

Occurrence (O)  The variable with the largest number of attached constraints is selected  

 
 
 

Table 3. Value ordering heuristics.  
 

Name Description 

In Domain (ID)  
It starts with the smallest element and upon backtracking 
tries successive elements until the entire domain has been 
explored 

  

In Domain Max (IDM)  It starts the enumeration from the largest value downwards 

 
 
 
fixing all the variables (that is assigning a consistent value) or a 
failure is detected (that is no solution is found). The first two 
enclosed actions correspond to the variable and value ordering 
heuristics. The third action is a call to a propagation procedure, 
which is responsible for attempting to prune the tree. Finally, two 
conditions are included to perform backtracks. A shallow backtrack 
(Barták and Rudová, 2005) corresponds to try the next value 
available from the domain of the current variable, and the 
backtracking returns to the most recently instantiated variable that 
has still values to reach a solution.  
 
 
ARCHITECTURE  
 
Our framework is supported by four components: 1) SOLVE, 2) 
OBSERVATION, 3) ANALYSIS and 4) UPDATE.  
1) The SOLVE component  runs  a  generic  CSP  solving  algorithm 

performing the aforementioned propagation and enumeration 
phases.  
The enumeration strategies used are taken from the quality rank, 

which is controlled by the UPDATE component.  
2) The OBSERVATION component aims at regarding and recording 
relevant information about the resolution process. These 
observations are called snapshots.  
3) The ANALYSIS component studies the snapshots taken by the 
OBSERVATION. It evaluates the different strategies, and provides 
indicators to the UPDATE component. The indicators as well 
variable and value ordering heuristics used in this implementation 
are depicted in Tables 1, 2 and 3, respectively.  
4) The UPDATE component makes decisions using the choice 
function. The choice function determines the performance of a 
given strategy in a given amount of time. It is calculated based on 
the indicators given by the ANALYSIS component and a set of 
control parameters computed by an optimizer. 
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Figure 1. General schema of the architecture. 

 
 
 

 
 
Figure 2. Hyper-heuristic approach for the UPDATE component.  

 
 
 
The UPDATE component  

 
The framework has been designed to allow easy modification of the 
UPDATE component. In fact, UPDATE is the most susceptible 
component to suffer modifications, since the most obvious 
experiment –in the context of AS– is to tune or replace the choice 
function or the optimizer. Figure 1 depicts a general schema of the 
architecture. The SOLVE, OBSERVATION, and ANALYSIS 
component have been implemented in ECL

i
PS

e
. The UPDATE 

component has been designed as a plug-in for the framework. 
Indeed, we have implemented a Java version of the UPDATE 
component which computes the choice function and optimizes its 
control parameters through a genetic algorithm. Another version of 
the UPDATE component, which is currently under implementation, 
uses a swarm optimizer.  

Let us note that the UPDATE component is carefully supported 
by a hyperheuristic approach (Figure 2). The hyperheuristic is a 
heuristic that operates at a higher level of abstraction than the  CSP 



 
 
 
 
solver (problem domain). The hyperheuristic is responsible for 
deciding which enumeration strategy to apply at each decision step 
during the search. It manages the portfolio of enumeration 
strategies having no prior problem specific knowledge. The hyper-
heuristic and the choice function work in conjunction. The choice 
function provides guidance to the hyperheuristic by indicating which 
enumeration strategy should be applied next based upon the 
information of the search process. The choice function is defined as 
a weighted sum of indicators expressing the recent improvement 
produced by the enumeration strategy that had been called.  
 
 
The choice function  

 
The choice function (Soubeiga, 2009) attempts to capture the 
correspondence between the historical performance of each 
enumeration strategy and the decision point currently being 
investigated. Here, a decision point or step is every time the solver 
is invoked to fix a variable by enumeration. The choice function is 
used to rank and choose between different enumeration strategies 
at each step. For any enumeration strategy Sj, the choice function f 
in step n for Sj is defined by Equation 1, where l is the number of 
indicators considered and α is a parameter to control the relevance 
of the indicator within the choice function. 
 

( ) ( )
j

n
i

l

=i

ijn
Sfα=Sf ∑

1                               (1) 
 
Additionally, to control the relevance of an indicator i for a strategy 
Sj in a period of time, we use a popular statistical technique for 
producing smoothed time series called exponential smoothing. The 
idea is to associate, for some indicators, greater importance to 
recent performance by exponentially decreasing weights of older 
observations. In this way, recent observations give relatively more 
weight than older ones. The exponential smoothing is applied to the 

computation of 1
if

 (Sj), which is defined by Equations 2 and 3, 
where v1 is the value of the indicator i for the strategy Sj in time 1, n 
is a given step of the process, β is the smoothing factor, and 0 < β < 
1.  
 

( )
1

1

v=Sf ji
                                                                              (2) 

 

( ) ( )
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Sfβ+v=Sf
1−                                                     (3) 

 
Let us note that the speed at which the older observations are 
smoothed (dampened) depends on β. When β is close to 0, 
dampening is quick and when it is close to 1, dampening is slow. 
The general solving procedure including AS can be seen in 
Algorithm 2. Three new function calls have been included at the 
end: for calculating the indicators, the choice function, and for 
choosing promising strategies, that is, the ones with highest choice 
function. They are called after constraint propagation to compute 
the real effects of the strategy (some indicators may be impacted by 
the propagation).  
 
 
The parameter optimizer 

 
As previously mentioned, an optimizer determines the most 
appropriate set of parameters αi for the choice function. The 
parameters are fine-tuned by a genetic algorithm (GA) which trains 
the choice function carrying out a sampling phase. Sampling occurs 
during an initial information gathering phase where the search is 
run repeatedly to a fix cutoff (that is until a fixed number of variables  
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instantiated, visited nodes or backtracks). After sampling, the 
problem is solved with the most promising set of parameter values 
for the choice function. The GA evaluates and evolves different 
combinations of parameters, relieving the task of manual 
parameterization. Each member of the population encodes the 
parameters of a choice function. Then, these individuals are used in 
order to create a choice function instance. Each choice function 
instantiated (each chromosome) is evaluated in a sampling phase 
trying to solve partially the problem until a fixed cutoff. As an 
evaluation value for the chromosome, an indicator of performance 
process is used (number of backtracks). After each chromosome of 
the population is evaluated, selection, crossover and mutation are 
used to breed a new population of choice functions. As noted 
above, the GA is used to tune the choice function. 

A population size of 10 is used and the domain of parameters αi 
is [-100, 100]. The crossover operator randomly selects two 
chromosomes from the population and mates them by randomly 
picking a gene and then swapping that gene and all subsequent 
genes between the two chromosomes. The two modified chromo-
somes are then added to the list of candidate chromosomes. The 
crossover operator uses a fixed crossover rate; this operation is 
performed 0.5 as many times as there are chromosomes in the 
population. The mutation operator runs through the genes in each 
of the chromosomes in the population and mutates them in 
statistical accordance to the given mutation rate (0.1). Mutated 
chromosomes are then added to the list of candidate chromosomes 
destined for the natural selection process.  

 
 
EXPERIMENTAL RESULTS  
 
Our implementation has been written in the ECL

i
PS

e
 

Solver version 5.10. Tests have been performed on a 
2.33 GHZ Intel Core2 Duo with 2GB RAM running 
Windows XP. The stop criterion is 65535 steps for each 
experiment and the problems used were the following:  
 

-N-queens (NQ) -10 linear equations (10-Equation)  
-Magic Squares (MS) -20 linear equations (20-Equation) 
-Sudoku -Knight’s tour (Knight)  
 

Tables 4 and 5 present the results measured in terms of 
number of backtracks, Tables 6 and 7 present the results 
in terms of number of visited nodes, and Tables 8 and 9 
show the runtimes. For the evaluations, we consider 8 
enumeration strategies (F+ID, AMRV + ID, MRV + ID, O 
+ ID, F + IDM, AMRV + IDM, MRV + IDM, and O + IDM), 
a random selection, and our autonomous search (AS) 
approach. Let us note that the portfolio of AS is 
composed of the same eight strategies mentioned earlier. 
Results show that the AS approach gain very good 
position in the global ranking. It is the best in several 
cases, for instance in almost all instances of the N-
Queens problem (n=8, 20, 50, 75), in both instances of 
the magic squares, in Equation 10, and in the Knight 
problem (n=6). Considering only backtracks, the AS 
approach is also the best one for the Sudoku, and 
considering visited nodes, it takes the second place by a 
short difference w.r.t. F+IDM. Tables 8 and 9 depict the 
runtimes for the benchmarks. We include them in order to 
illustrate the expected overhead of using the choice 
function.  
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Table 4. Number of backtracks solving different instances of the N-Queens problem with different strategies.  
 

Strategy NQ (n=8) NQ (n=10) NQ (n=12) NQ (n=15) NQ (n=20) NQ (n=50) NQ (n=75) 

F + ID 10 6 15 73 10026 >27406 >26979 

AMRV + ID 11 12 11 808 2539 >39232 >36672 

MRV + ID 10 4 16 1 11 177 818 

O+ID 10 6 15 73 10026 >26405 >26323 

F+IDM 10 6 15 73 10026 >27406 >26979 

AMRV + IDM 11 12 11 808 2539 >39232 >36672 

MRV+ IDM 10 4 16 1 11 177 818 

O+IDM 10 6 15 73 10026 >26405 >26323 

Random 5 8 18 98 32 >32718 >32973 

AS 4 6 4 73 0 7 74 

 
 
 

Table 5. Number of backtracks solving Eq-10, Eq-20, Magic Squares, Sudoku, and the Knight problem with 
different strategies. 
 

Strategy Eq-10 Eq-20 MS (n=4) MS (n=5) Sudoku Knight (n=5) Knight (n=6) 

F + ID  3 3 12 910 18 767 >19818 

AMRV + ID  5 1 1191 >46675 10439 >42889 >43098 

MRV + ID  4 3 3 185 4 767 >19818 

O+ID 3 3 10 5231 18 >18838 >19716 

F+IDM 10 5 51 >46299 2 767 >19818 

AMRV +IDM 8 3 42 >44157 6541 >42889 >43098 

MRV+ IDM 3 8 97 >29416 9 767 >19818 

O + IDM 10 5 29 >21847 2 >18840 >19716 

Random 4 5 17 >39742 250 >40022 >35336 

AS 3 3 0 7 2 8190 4105 

 
 
 

Table 6. Number of visited nodes solving different instances of the N-Queens problem with different strategies. 
 

Strategy NQ (n=8) NQ (n=10) NQ (n=12) NQ (n=15) NQ (n=20) NQ (n=50) NQ (n=75) 

F + ID  24 19 43 166 23893 >65535 >65535 

AMRV + ID  21 25 30 1395 4331 >65535 >65535 

MRV + ID  25 16 45 17 51 591 2345 

O+ID 25 19 46 169 24308 >65535 >65535 

F+IDM 24 19 43 166 23893 >65535 >65535 

AMRV + IDM 21 25 30 1395 4331 >65535 >65535 

MRV+ IDM 25 16 45 17 51 591 2345 

O+IDM 25 19 46 169 24308 >65535 >65535 

Random 15 23 41 205 78 >65535 >65535 

AS 14 22 18 169 20 66 296 

 
 
 

For instance, for smaller instances of the N-queens 
problem (n=8, 10, 12, 15) as well as for the Sudoku and 
Magic Squares (n=4) the overhead is nearly 2 s w.r.t. the 
average runtime, which is around 0 s. We estimate that 
such an overhead is reasonable, considering the strong 
work done by the choice function. For harder problems, 
the overhead begins to be less relevant, for instance for 

20-Queens, the AS runtime is 7 s slower than the best 
runtime, but about 15 s faster than four strategies (F+ID, 
O+ID, F+IDM, and O+IDM). For the Knight problem 
(n=5), five of ten strategies solve the problem before the 
stop criterion, AS is one of them, being only about 5 s 
slower than the best runtime. For the Magic Squares 
(n=5), only four strategies are able to solve  the  problem,
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Table 7. Number of visited nodes solving eq-10, eq-20, Magic Squares, Sudoku, and the Knight problem with different 
strategies. 
 

Strategy Eq-10 Eq-20 MS (n=4) MS (n=5) Sudoku Knight (n=5) Knight (n=6) 

F + ID  12 11 37 1901 158 3113 >65535 

AMRV + ID  14 8 1826 >65535 30139 >65535 >65535 

MRV + ID  12 11 22 546 76 3113 >65535 

O+ID 12 11 31 13364 196 >65535 >65535 

F+IDM 19 13 110 >65535 58 3113 >65535 

AMRV + IDM 17 11 69 >65535 19550 >65535 >65535 

MRV+ IDM 10 17 230 >65535 153 3113 >65535 

O+IDM 19 13 61 >65535 62 >65535 >65535 

Random 13 13 47 >65535 1019 >65535 >65535 

AS 10 11 16 40 61 28643 16840 

 
 
 

Table 8. Runtimes in seconds for different instances of the N-Queens problem with different strategies. 
 

Strategy NQ (n=8) NQ (n=10) NQ (n=12) NQ (n=15) NQ (n=20) NQ (n=50) NQ (n=75) 

F + ID 0 0 0.031 0.109 23.468 t.o. t.o. 

AMRV + ID 0 0 0.015 1.625 8.391 t.o. t.o. 

MRV + ID 0.016 0 0.016 0.015 0.031 1.031 8.562 

O+ID 0.016 0 0.015 0.109 23.109 t.o. t.o. 

F+IDM 0 0.015 0.016 0.109 22.922 t.o. t.o. 

AMRV + IDM 0 0.015 0.015 1.609 8.328 t.o. t.o. 

MRV+ IDM 0.016 0.015 0.015 0 0.031 1.031 8.579 

O+IDM 0 0 0.016 0.094 22.875 t.o. t.o. 

Random 0.0063 0.083 0.0306 0.3739 5.1619 t.o. t.o. 

AS 1.89 1.89 1.89 2.485 7.875 24.343 49.859 

 
 
 

Table 9. Runtimes in seconds for eq-10, eq-20, Magic Squares, Sudoku, and the Knight problem with different 
strategies. 
 

Strategy Eq-10 Eq-20 MS (n=4) MS (n=5) Sudoku Knight (n=5) Knight (n=6) 

F + ID  0.219 0.016 0.015 2.437 0.063 2.985 t.o. 

AMRV + ID  0.016 0.016 3.781 t.o. 34.735 t.o. t.o. 

MRV + ID  0.016 0.015 0.015 0.516 0.016 2.61 t.o. 

O+ID 0.016 0.031 0.046 9.344 0.11 t.o. t.o. 

F+IDM 0.031 0.031 0.141 t.o. 0.015 2.578 t.o. 

AMRV + IDM 0.015 0.032 0.062 t.o. 22.953 t.o. t.o. 

MRV+ IDM 0 0.031 0.156 t.o. 0.063 2.594 t.o. 

O+IDM 0.031 0.031 0.063 t.o. 0.015 t.o. t.o. 

Random 0.021 0.021 0.0568 t.o. 0.3041 t.o. t.o. 

AS 3.687 5.375 2.203 2.875 18.328 7.422 114.906 

 
 
 
being the AS approach the third best runtime. For 50-
Queens and 75-Queens,  
AS is one of the only three strategies that solve the 

problem before the stop criterion. Finally, AS is the unique 
strategy that solves the Knight problem with n=6, and as 
a consequence the only one that solves the complete set 

of problems.  
 
 
CONCLUSION  
 
In   this   work,   we   have   presented  an  extensible  AS 
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framework for CP. Based on a set of indicators; our 
approach measures the resolution process state to allow 
the replacement of strategies exhibiting poor perfor-
mances. A main element of the architecture is the choice 
function, which is responsible for determining the quality 
of strategies. The choice function is calculated based 
upon a set of indicators and control parameters, while the 
adjustment of parameters is handled by a genetic 
algorithm. 

We have applied our approach to solve different CSPs, 
the results demonstrate that in several cases the dynamic 
selection outperforms the use of classic enumeration 
strategies. The framework introduced here is ongoing 
work, and we believe there is a considerable scope for 
future work, for instance, the addition of new combination 
of enumeration strategies, analysis of the control para-
meters, as well as the study of new statistical methods for 
improving the choice function.  
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