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This paper proposes a new criterion for passivity of fixed-point state-space digital filters with saturation 
arithmetic and external interference. The criterion guarantees not only exponentially stability, but also 
passivity from the external interference to the output vector. The criterion takes the form of linear matrix 
inequality (LMI) and, hence, is computationally tractable. An illustrative example is given to demonstrate 
the effectiveness of the proposed criterion. 
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INTRODUCTION 
 
When a linear digital filter is implemented using 
fixed-point arithmetic on a digital computer or on 
special-purpose digital hardware, nonlinearities due to 
finite wordlength, namely, quantization and overflow are 
unavoidable. If the total number of quantization steps is 
large or, in other words, the internal wordlength is 
sufficiently long, then the effects of these nonlinearities 
can be regarded as decoupled or noninteracting and can 
be investigated separately. The stability properties of 
digital filters employing saturation overflow arithmetic 
have attracted the attention of several researchers (Ebert 
et al., 1969; Sandberg, 1979; Singh, 1990; Kar and Singh, 
1998, 2003, 2005; Singh, 2007, 2008). However, most 
existing criteria for the stability of digital filters are only 
available under specific conditions, while in unfavorable 
environments with parameter uncertainty or external 
interference, these criteria will be of little use.  

The passivity theory (Willems, 1972; Byrnes et al., 
1991) is an effective  tool  to analyze the stability of  a  
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nonlinear system. It may deal with nonlinear systems 
using only the general characteristics of the input-output 
dynamics and offers elegant solutions for the proof of 
absolute stability. The passivity framework is a promising 
approach to the stability analysis of digital filters because 
it can lead to general conclusions on stability using only 
input-output characteristics. 

A natural question arises: can we obtain a passivity 
criterion for digital filters? This paper gives an answer for 
this question. So far, to the best of the authors' knowledge, 
the passivity criterion of digital filters with saturation 
arithmetic and external interference has never been 
studied in the literature. This situation motivates our 
present investigation. In this paper, we propose a new 
passivity criterion for digital filters with saturation 
arithmetic and external interference.  

This criterion is a new contribution to the topic of 
stability analysis for digital filters. The criterion guarantees 
that the digital filter is exponentially stable and passive 
from the external interference to the output vector. This 
criterion can be represented by a linear matrix inequality 
(LMI), which can be checked readily by using some 
standard numerical packages (Boyd et al., 1994; Gahinet 
et al., 1995). 



 
 
 
 
PROBLEM FORMULATION 
 

The digital filter under consideration is described by: 
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as an output vector. The following saturation 
nonlinearities: 
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are under consideration for ni ,1,2,= L . Note that the 

saturation nonlinearities are confined to the sector (0, 1), 
that is, 
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The objective of this study is to obtain a new LMI criterion 
in the passivity framework. Specifically, find a proper LMI 

criterion such that the digital filter 1 to 2 with 0=)(rw  is 

exponentially stable (
rrx εη≤||)(|| , where ε  and η  

are constants satisfying 1≥ε  and 10 << η ) and 
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Where β  is a nonnegative constant and ))(( kxΩ  is a 

positive semi-definite storage function. 
 
 
LMI BASED PASSIVITY CRITERION 
 
The new criterion is given in the following theorem. 
 
 
Theorem 1 
 
If we assume that there exist symmetric positive definite  
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matrices P , S , a positive diagonal matrix M , and a 

positive scalar δ  such that: 
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then the digital filter (1 to 2) is passive from the external 

interference )(rw  to the output vector )(ry . 

 
 
Proof 
 
Consider the following Lyapunov function: 

)()(=))(( rPxrxrxV T
. Along the trajectory of (1), we 

have: 
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Adding and subtracting )]()()[( rFwrAxrwT + , we 

obtain: 
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From (4), it is clear that: 
 

  (7) 
 

Then, for a positive scalar δ , we have: 
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Using (8), a new bound for ))(( rxV∆  can be obtained 

as: 
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Where ))](()([))((2=)( ryfryMryfr
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Note that )(rΦ  is nonpositive in view of (3). If the LMI 

(6) is satisfied, we have: 
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Summation both sides of (10) from 0  to r  gives: 
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Let (0))(= xVβ . Since 0))(( ≥rxV ,  
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The relation (11) satisfies (5). Therefore, the digital filter (1 
to 2) is rendered to be passive from the external 

interference )(rw  to the output vector )(ry . This 

completes the proof.            
 

Corollary 1: Without the external interference, the digital 
filter (1 to 2) is exponentially stable. 
 
 

Proof 
 

Note that ))(( rxV  satisfies the following Rayleigh 

inequality (Strang, 1986): 

2
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2
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Where )(
min

Pλ  and )(
max

Pλ  are the maximum and 

minimum Eigen values of the matrix.  
 

When 0=)(rw , we have: 

 
2

min
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From (10). According to Theorem 1 of (Lee, 2002), (12) 
and (13) guarantee the exponential stability. This 
completes the proof.          
 
 
Remark 1 

 

Various efficient convex optimization algorithms can be 
used to check whether the LMI (6) is feasible. In this 
paper, in order to solve the LMI, we utilize MATLAB LMI 
Control Toolbox (Gahinet et al., 1995), which implements 
state-of- the-art interior-point algorithms. 
 
 
NUMERICAL EXAMPLE 
 

Consider a second-order system (1 to 2) with: 
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and the external interference )(rw  is given by: 

 

   (15) 
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Figure 1. Response of the state )(
1

rx . 

 
 
 

Where )(
1

rn  and )(
2

rn  are white Gaussian random 

sequences with mean 0  and variance 1. 

 
Solving the LMI (6) by the convex optimization technique 
of MATLAB software gives: 
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It can be easily verified that each of the criteria in previous 
works (Ebert et al., 1969; Sandberg, 1979; Singh, 1990; 
Kar and Singh, 1998, 2003, 2005; Singh, 2007, 2008) fails 
in the example given by (1 to 2) with parameters (14) 
and(15). On the other hand, it turns out that the  criterion  

(6) verifies the passivity when 0)( ≠rw  and the 

exponential stability when 0=)(rw  in this example. 

Figures 1 and 2 show state trajectories when the initial 

states are given by [ ]Tx 1.5  2=(0) − . These figures 

show the state vector )(rx  of the digital filter is bounded 

on the interval where the external interference )(rw  

exists. In addition, it is shown that the state vector )(tx  

converges to zero after the external interference )(rw  

disappears. 
 
 
CONCLUSION 
 
In this paper, a new LMI criterion for passivity of 
fixed-point digital  filters  with saturation  arithmetic and 
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Figure 2. Response of the state )(
2

rx . 

 
 
 
external disturbance has been presented. The proposed 
criterion guaranteed that the digital filter is exponentially 
stable and passive from the external interference to the 
output vector. A numerical example was given to show the 
effectiveness of the proposed criterion. 
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