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In this work, attempt has been made to analyze the nonlinear behavior of structures analytically. 
Despite the increasing expenses of building structures, to maintain their linear behavior, nonlinearity 
has been inevitable and therefore, nonlinear analysis has been of great importance to the scientists in 
the field. Studying on nonlinear dynamics highlights the fact that essentially all dynamic systems 
encountered in the real world are nonlinear, meaning that their description as differential equations 
contains nonlinear terms. Such nonlinearities appear in different ways, such as through frictional 
terms, coriolis and centrifugal terms, large amplitude effects, or other structural nonlinearities. The 
nonlinearities make that standard linear dynamics not sufficient for the analysis and understanding of 
nonlinear mechanical systems. As structures confront lateral forces and intense earthquakes especially 
near fault regions, a part of the structure remains linear, but some part of it behaves nonlinearly; this is 
simulated by a damped nonlinear oscillator. In this paper, the nonlinear equation of oscillator with 
damping which is representative of the dynamic behavior of a structure has been solved analytically. In 
the end, the obtained results are compared with numerical ones and shown in graphs and in tables; 
analytical solutions are in good agreement with those of the numerical method. 
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INTRODUCTION 
 
Until recently, finding an exact analytical solution for non-
linear equations is extremely difficult. Therefore, many 
analytical and numerical approaches have been investi-
gated. The most useful methods for solving nonlinear 
equations are perturbation methods. They are not valid 
for strongly nonlinear equations and they have many 
shortcomings. Many new techniques have been shown in 
the open literature to overcome the short-comings, such 
as variational iteration (Barari et al., 2008a; Fouladi et al., 
2010; Barari et al., 2008b), parameter-expansion 
(Kimiaeifar et al., 2010), energy balance (Momeni et al., 
2010; Ganji et al., 2009), variational approach (Kachapi 
et al., 2009), max-min (Babazadeh et al., 2010; Ibsen et 
al., 2010; Sfahani et al., 2010), Adomian   decomposition   
method  (Mirgolbabaei et al., 2010), differential transform 
method (Omidvar et al., 2010), and etc. Nonlinear  
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oscillations systems can  be presented as nonlinear 
behavior of a structure under dynamics loads. In current 
research, attempt has been made to propose an 
analytical solution for such problem, which is much 
simpler for engineers to interpret and to use in their 
designs. This is because an equation is obtained rather 
than only some data. 

In the dynamic model of this problem, the earthquake 
force has been modeled with a harmonic force and the 
columns with nonlinear behavior are modeled with the 

spring 2k  and the columns with linear behavior are 

modeled with the spring 1k . The coefficient c  represents 
the damping which is based on the joints, materials and 
other parameters (Mohammad et al., 1992; Yashuda et 
al., 1988; Kerschen et al., 2003; Feeny et al., 2001; Liang 
and Feeny, 2006). 

To fully demonstrate the problem, let us consider a 
structure which its columns are under the harmonic load 
(e.g. earthquake). This load results in a nonlinear 
behavior in a part of the structure, while another  part  still  
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(a)                                             (b)  

 
Figure 1. (a) Schematic view of a structure under harmonic load. (b) The dynamic model of a structure 
under harmonic load. 

 
 
 
behaves linearly. The important  point  is  the  analysis  of 
such system to obtain the displacement equation, which 
is extremely useful to study the structure (Figure 1). The 
analytical method which is used in this article is 
Homotopy Perturbation Method (HPM) (He, 2005). This 
method has been implemented successfully to many 
engineering problems by many scientists in different 
fields (Beléndez, 2009; Yusufo�lu, 2009; Shaban et al., 
2010; Ganji et al., 2010; Barari et al., 2008c; Miansari et 
al.,2010; Abdoul et al.,2008; Barari et al., 2009; 
Farrokhzad et al., 2009; Choobbasti et al.,2008). This 
method is capable of solving highly nonlinear problems 
while the constant coefficients are parametrically inserted 
into the equation. Therefore, the obtained results can be 
graphically shown and analyzed for different cases and 
by inserting different values for these parameters regar-
ding each single case of study. Finally, a comparative 
study is conducted to verify the accuracy of the analytical 
method with the numerical one.  
 
 
MATHEMATICAL MODELING  
 
The general equation of an oscillator with a nonlinear spring, a  
linear spring and a damper under a harmonic load is as follows 
(Mann and Khasawneh, 2009; Rao, 1995; Rao et al., 2004): 
 

3
1 2 0 cos( )mx cx k x k x F tω+ + + =�� �

                                (1) 
 
Subject to the following initial conditions 
 

(0) , (0) 0x A x= =�
                                                          (2) 

 

Where m  is the mass, c is a viscous damping coefficient, 1k
 is a 

linear stiffness coefficient, and 2k
is a nonlinear stiffness 

coefficient. The harmonic excitation force is characterized by the 

force amplitude, 0F
, with excitation frequency of ω . A is the 

initial amplitude of displacement.   
 

As in Rao (1995),ω  can be found easily by having the 

parameters, A , c , m , 1k
 and 2k

: 

2 3 2 2 2
1 2 0

3
(( ) ) ( )

4
k m A k A c A Fω ω− + + =

         (3) 
 
Figure 2 shows how the stiffness coefficients of nonlinear and linear 

springs behave, where ( )f x  is the spring force and x is the 
displacement. 

In the following sections the basic concepts of the analytical and 
numerical methods as well as their applications to the discussed 
problem above were investigated. 
 
 
THE BASIC CONCEPT OF THE SOLUTIONS 
 
In this section, the basic of the utilized methods are explained for 
the better understanding of the reader. 
 
 
HPM 
 
To illustrate the basic ideas of this method, we consider the 
following equation: 
 

( ) ( ) 0A x f r− =  Ω∈r                                       (4) 
 
With the boundary condition of: 
 

, 0
x

B x
t

∂� � =� �∂� �         Γ∈r                                                (5) 
 

Where A  is a general differential operator, B  a boundary 

operator,  ( )f r  a known analytical function and Γ is the boundary 

of the domain Ω .  

A Can be divided into two parts of L  andN, where L is linear 

and N is nonlinear. Equation (4) can therefore be rewritten as 
follows: 
 

( ) ( ) ( ) 0L x N x f r+ − =
 Ω∈r                               (6) 

 
Homotopy perturbation structure is shown as follows: 
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(a) (b)  

 
Figure 2. (a) Hard spring stiffness nonlinear behavior. (b) Soft spring 
stiffness nonlinear behavior. 

 
 
 

( ) ( ) ( ) ( ) ( ) ( )0, 1 0H p p L L x p A f rν ν ν= − − + − =� � � �	 
 	 
           (7) 
 
Where,  
 

( ) [ ] Rpr →×Ω 1,0:,ν
                                                                (8) 

 

In Equation (7), [ ]1,0∈p  is an embedding parameter and 0x  is the 
first approximation that satisfies the boundary condition. We can 
assume that the solution of Equation (4) can be written as a power 
series in p , as following: 
 

�
=

=+++=
n

i

i
i ppp

0
2

2
10 ννννν �

                            (9) 
 
And the best approximation for the solution is: 
 

1 0 1 2limpx ν ν ν ν→= = + + +�                                         (10) 
 
 
Runge-Kutta 
 
For the numerical approach to verify the analytic solution, the fourth 
RK (Runge-Kutta) method has been used. This iterative algorithm is 
written in the form of the following formulae for the second-order 
differential equation: 
 

1 1 2 3 4

1 1 2 3

( 2 2 )
6

( ( ))
6

i i

i i i

t
x x h h h k

t
x x t x h h k

+

+

∆= + + + +

∆= + ∆ + + +

� �

�

                (11) 
 

Where, t∆  is the increment of the time and 1h
, 2h

, 3h
, and 4h

 
are determined from the following formulae: 

1

2 1

2
3 1 2

2
4 2 3

( , , ) ,

( , , ),
2 2 2

1
( , , , ),

2 2 4 2
1

( , , , ).
2

i i

i i i i

i i i i

i i i i

h f x x x k

t t t
h f t x x x h

t t t
h f t x x t h x h

h f t t x tx t h x th

=
∆ ∆ ∆= + + +

∆ ∆ ∆= + + ∆ +

= + ∆ + ∆ ∆ + ∆

� �

� �

� �

� �

       (12) 
 
The numerical solution starts from the boundary at the initial time, 
where the first value of the displacement function and its first-order 
derivative are determined from initial condition (Section 2). Then, 
with a small time increment t∆ , the displacement function and its 
first-order derivative at the new position can be obtained using 
Equation (11). This process continues to the end of the time limit. 
 
 
THE SOLUTIONS 
 
In this section the applications of the two methods to the nonlinear 
equation of oscillator are discussed. 
 
 
HPM (Analytic) 
 
As the HPM was applied to the nonlinear equation of (1), we have: 
 

3
1 1 2 0 cos(1 p) (m x c x k x )+p (m x c x k x k x F ( t ) ) =0ω− + + + + + −�� � �� �    (13) 

 
After expanding the equation and collecting it based on the 

coefficients of p -terms, we have: 
 

0
0 0 1 0

1 3
1 1 1 1 2 0 0

2 2
2 2 1 2 2 0 1

3 2 2
3 3 1 3 2 0 2 2 0 1

: 0

: cos( ) 0

: 3 0

: 3 3 0

p m x c x k x

p m x c x k x k x F t

P m x c x k x k x x

P m x c x k x k x x k x x

ω
� + + =
�

+ + + − =�
� + + + =�
� + + + + =	

�� �

�� �

�� �

�� �
        (14) 



 
 
 
 
Table 1. The numerical values for x and x� for eleven different 

points of time (Analytic), for 0.5, 0.06, 4.163379415f A ω= = = . 
 

t  x  x�  
0 0.06 � 

1 -0.005350926 -0.078888606 

2 0.019216633 -0.013109041 
3 -0.007335627 0.072786956 

4 -0.011085293 -0.064177133 

5 0.018934134 -0.005887804 
6 -0.008674275 0.070317298 
7 -0.009880823 -0.067501783 
8 0.018986752 0.000133187 
9 -0.009935365 0.067363257 

10 -0.00861736 -0.070438539 
 
 
 
One can now try to obtain the solution of different iterations (14), in 
the form of: 
 

2
1
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And from Equation (10), ( )x t  can be obtained: 
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The obtained iteration is used to generate the equation for the next 
iteration, and therefore the second and third iterations are obtained. 
Since the two other ones and therefore the general solution are too 
long to be written in this article, we have shown them in graphs (see 

section 5). In Table 1, the numerical values for x and x� for 

different points of time and for 0.5, 0.06, 4.163379415f A ω= = =  
have been tabulated. 
 
 
Runge-Kutta (Numerical) 
 
In this section, the Maple Package has been utilized for the 
numerical analysis of the problem, in which the rkf45 is used to 
solve ODEs. The solution for the displacement and the velocity for 
eleven different points of time are shown in Table 2. 
 
 
RESULTS AND DISCUSSION 
 
In this section, the results for displacement and the 
velocity for different times are shown in Tables 3 and 4, 

for   different  f 's  and  A 's,  in  order  to  evaluate  the  
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Table 2. The numerical values for x and x� for eleven different points of time 
(Numerical), for 0.5, 0.06, 4.163379415f A ω= = = . 
 

t x  x�  
0 0.06 0.00 
1 -0.0028167883 -0.0825804788 
2 0.0195449692 -0.0138897877 
3 -0.0073091136 0.0727177020 
4 -0.0110834704 -0.0641821083 
5 0.0189342438 -0.0058881623 
6 -0.0086742697 0.0703173716 
7 -0.0098808263 -0.0675016034 
8 0.0189867450 0.0001330720 
9 -0.0099353577 0.0673626924 

10 -0.0086173519 -0.0704385763 
 
 
 

Table 3. A comparative table for error detection of the analytic method, for 0.5, 0.06, 4.163379415f A ω= = = .  
 

 x  x�  
t  HPM RKf45 HPM RKf45 

0 0.06 0.06 0.00 0.00 
1 -0.0053509257 -0.0028167883 -0.0788886055 -0.0825804788 
2 0.0192166329 0.0195449692 -0.0131090406 -0.0138897877 
3 -0.0073356269 -0.0073091136 0.0727869563 0.0727177020 
4 -0.0110852934 -0.0110834704 -0.0641771328 -0.0641821083 
5 0.0189341339 0.0189342438 -0.0058878042 -0.0058881623 
6 -0.0086742754 -0.0086742697 0.0703172984 0.0703173716 
7 -0.0098808233 -0.0098808263 -0.0675017833 -0.0675016034 
8 0.0189867516 0.0189867450 0.0001331867 0.0001330720 
9 -0.0099353650 -0.0099353577 0.0673632572 0.0673626924 

10 -0.0086173596 -0.0086173519 -0.0704385389 -0.0704385763 
 
 
 

Table 4. A comparative table for error detection of the analytic method, for 
0.7, 0.04, 5.147879675f A ω= = = . 

  

 x  x�  
t  HPM RKf45 HPM RKf45 

0 0.04 0.04 0.00 0.00 
1 -0.0166844795 -0.0141498204 -0.0179037352 -0.0215962732 
2 -0.00676624361 -0.0064378310 -0.0955008558 -0.0962817733 
3 0.0138665780 0.01389313562 -0.0721831694 -0.0722528614 
4 0.0185603233 0.0185621543 0.0342636907 0.0342587020 
5 0.00179512000 0.0017952350 0.101082818 0.1010825368 
6 -0.0170457813 -0.0170457707 0.0510209037 0.0510209094 
7 -0.0161768383 -0.0161768394 -0.0580359551 -0.0580359227 
8 0.00339720702 0.0033972117 -0.0999860509 -0.0999864615 
9 0.0190431014 0.0190430958 -0.0263242834 -0.0263237149 

10 0.0126696636 0.0126696551 0.0777768330 0.0777768691 
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                       (a) 

 
                     (b)  

 
Figure 3. Displacement x  based on time t  for (a) 0.5, 0.06, 4.163379415f A ω= = = ), and (b) 0.7, 0.04, 5.147879675 f A ω= = = ). 

 
 
 

 
(a) 

(b) 

 
(c)  

 

Figure 5. Acceleration x��  based on displacement x  for (a) 
0.5, 0.06, 4.163379415f A ω= = = ), (b) 
0.6, 0.05, 4.582639115f A ω= = =  (c) 
0.7, 0.04, 5.147879675 f A ω= = = ). 

accuracy of the analytic solution. 
As it is obviously seen, the results of the analytic and 

numerical approaches have shown excellent 
compatibility. In order to have a better scheme of the 
problem, displacement x  is shown in Figure 3 based on 
time, for ten seconds (different f 's and A 's are 
assumed). 

In the Figure 4, the velocity of each position is drawn 
versus its position; therefore, the velocity of any specific 
point x can be easily read. This procedure can only be 
performed using the analytic method; since the equation 
of displacement is readily given by this method, the first 
and second differentiations can be simply done by 
differentiating with respect to t . 

Also using Figure 5, the acceleration of any specific 
point x can be easily read. As mentioned earlier, this can 
only be done using the analytic approach. 

The important point which cannot be seen on the 

figures of ( )x x−�  and ( )x x−��  is that the starting part 
of these diagrams refereeing to the times between t 's 

from 0  to1, is not drawn. The reason is that in this period 
of time, the behavior of the displacement equation has 
not yet become harmonic and therefore, the velocity and 
acceleration is not in the rage of the above diagrams. 
 
 
Conclusions 
 
As structures are exposed to lateral harmonic forces and 
intense earthquakes, parts of the structure remains li-
near, but some parts of it inevitably behave nonlinearly; 
this is simulated by a damped nonlinear oscillator.  

In this work, HPM which is a new analytical method has 
been applied to the nonlinear equation of an oscillator 
with damping and the results have been compared with 
those of the numerical solution. The results, as in 
section5, have shown good agreement with the numerical 
ones. By obtaining the displacement equation, one is 
able to determine the velocity and acceleration equations.  
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The target of the present work was to determine the 
displacement, velocity and acceleration equations of the 
structure under the specified harmonic load, which give a 
better viewpoint for engineering design to scientist in the 
field. The obtained displacement equation can be used 
by designers to minimize displacements. 

The main advantage of applying HPM is that the results 
are readily obtained and a few iterations are used. The 
significant merit of the analytic approach is to provide 
scientists with the general parametric relation between 
the dependent and independent variables, namely, dis-
placement and time, respectively. Therefore, the related 
equations can be simply obtained, giving one the oppor- 
tunity for further studies, for different cases and thereby 
different parameters. 
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