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The singleton and non-singleton type-1 back propagation (BP) designed sixteen rule fuzzy logic system 
(FLS) on hourly averaged wind data for the years 1985 to 2004 are studied. The BP designed 16 rule 
non-singleton-type-1 FLS was found relatively a better forecaster than singleton-type-1. There are too 
many hidden or unraveled uncertainties, such as non-stationarity and stable attractors. These 
uncertainties make the data chaotic. Non-stationarity in the data can be properly handled with non-
singleton type-1 FLS, therefore, there appears no reason to use a type-2 FLS. The stable attractors and 
non-stationarity in our data do not affect the predicted values as confirmed by Mackey Glass 
simulation. Parallel structure fuzzy systems and genetic logic may be one of the options to resolve sub 
crisps and chaos in time series data. 
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INTRODUCTION 
 
Rule based fuzzy logic systems (FLS), a powerful design 
methodology, minimize the effect of uncertainty (Mendel, 
2001). The two most popular FLSs used by engineers 
today are the Mamdani and Takagi-Sugano-Kang (TSK) 
systems. Both are characterized by IF-Then rules and 
have the same antecedent structures. They differ in the 
structure of the consequents. The consequent of a 
Mamdani rule is a fuzzy set, whereas the consequent of a 
TSK rule is a function. The type-1 TSK FLSs have been 
widely used in control and other applications (Terano et 
al., 1994). The output of type-1 TSK forecaster occurs 
without a defuzzification step (Liang and Mendel, 1999, 
2000) developed type-2 TSK FLSs. The FLS forecasters 
comprise of singleton type-1 (with virtually no 
uncertainties), non-singleton type-1 (with uncertainties), 
singleton type-2, type-1 non-singleton type-2, type-2 non-
singleton type-2, type-1  TSK  and  type-2  TSK  (Mendel, 
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2001). The rule based FLSs, both type-1 and type-2, 
handle uncertainties because modeling and minimization 
of uncertainties can be accomplished. If all uncertainties 
disappear, type-2 FL reduces to type-1 FL. In the same 
vein, if randomness disappears, probability reduces to 
determinism.  

For basic singleton type-1 FLSs, we assume that there 
are no uncertainties; all fuzzy sets are of type-1, 
measurements are perfect and treated as crisp values, 
that is, as singletons. Thus, the non- singleton FLS do not 
yield crisp values, that is, uncertainties are inherently 
present. A FLS that is described completely in terms of 
type-1 fuzzy sets is called a type-1 FLS. Type-1 FLSs are 
unable to directly handle rule uncertainties, because they 
use type-1 fuzzy sets that are certain. Therefore, a better 
way to handle uncertainties is to use a type-2 FLS. But, a 
non-singleton type-1 FLS is a type-1 FLS whose inputs 
are modeled as type-1 fuzzy numbers; hence, it can be 
used to handle uncertainties. Moreover, the type-1 FL, in 
its applications, deciphers rule based systems as a 
powerful design methodology. 



 
 
 
 
The rules of a non singleton-type-1 FLS are the same as 
those for a singleton type-1 FLS (Mendel, 2001). The 
difference is of the fuzzifier, which treats the inputs, as 
type-1 fuzzy sets, and the effect of this on the inference 
block. The output of the inference block will again be a 
type-1 fuzzy set. So, the defuzzifiers that are described 
for a singleton type-1 FLS apply as well to a non-
singleton type-1 FLS (Mendel, 2001). 

We know that non-stationarity (randomness) in our 
wind data inherently exists (Jafri, 2008; Kamal and Jafri, 
1996); therefore, uncertainties or randomness cannot be 
reduced. It can be handled properly with non-singleton 
type-1 FLS, therefore, there appears no reason to use a 
type-2 FLS. We recently performed fuzzy logic (FL) time 
series prediction modeling on hourly averaged wind 
speed (HAWS) data of 1985 to 2004 and used Mackey-
Glass simulation, for Quetta, Pakistan (Jafri and Kamal, 
2010). Quetta (30°11’/N, longitude 66°

 
57’/E), the capital 

of Balochistan is elevated at 1799 m above sea level. We 
shall use the results of wind data with the applications of 
rule based type-1 FLS. We used the MATLAB M-files 
which are available as freeware on the internet at the 
following: URL:http://sipi.usc.edu/~mendle/software. The 
M-files are available in three folders: type-1 FLS, general 
type-2 FLSs and interval type-2 FLSs. We used in this 
study, the following type-1FLSs: 

 
1) Singleton Mamdani type-1 FLS sfls_type1.m: Compute 
the output(s) of a singleton type-1 FLS when the 
antecedent membership functions are Gaussian 
train_fls_type.1.m: tune the parameters of a singleton 
type-1 FLS when the antecedent membership functions 
are Gaussian using some input-output training data. 
2) Non-singleton Mamdani type-1 FLS nsfls_type1.m: 
Compute the output(s) of a non-singleton type-1 FLS 
when the antecedent membership functions are 
Gaussian and the input sets are Gaussian 
train_nsfls_type1.m: tune the parameters of a non-
singleton type-1 FLS when the antecedent membership 
functions are Gaussian, using some input-output training 
data. 

 
The extraneous matter is avoided on the development 
and historical background of rule-based FLSs because 
we are concerned only with the use of FLSs in time 
series. The exhaustive literature and indeed critical 
review on rule-based FLSs are available in the form of a 
book (Mendel, 2001) However, we shall deliberate on 
fundamental rules extracted from the data under 
consideration (Jafri, 2008; Jafri et al., 2012). 

The rules in fuzzy logic time-series are usually 
extracted from designing the FLSs. Prior to 1992, all 
FLSs reported in the open literature fixed the parameters, 
such as the type of fuzzification, composition, implication, 
t-norm (operators for fuzzy intersection), defuzzification 
(produces crisp output) and membership functions, 
arbitrarily,   e.g.   the   locations   and    spreads    of    the 
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membership functions were chosen by the designer 
independent of the numerical training data. Then, at the 
first IEEE conference in fuzzy systems, held in San Diago 
in 1992, three different groups of researchers (Horikawa 
et al., 1992; Jang, 1992; Wang and Mendel, 1992) 
presented the same idea: tune the parameters of a FLS 
using the numerical training data. Since that time, quite a 
few adaptive training procedures have been published. 
Because tuning of free parameters had been in feed 
forward neural network (FFNN) long before it was done in 
a FLS, a tuned FLS has also come to be known as a 
neural fuzzy system. 

Designing a FLS (Mendel and Mouzouris, 1997) can be 
viewed as approximating a function or fitting a complex 
surface in a multidimensional space. Given a set of input-
output pairs, tuning is essentially equivalent to 
determining a system that provides an optimal fit to input-
output pairs, with respect to a cost function (tuning 
algorithm). Utilizing concepts from real analysis 
(Monzouris and Mendel, 1997) have proven that a non-
singleton FLS can uniformly approximate any continuous 
function on a compact set. Although, the proof of 
approximation (Monzouris and Mendel, 1997) provides 
some insight, it does not tell us how to choose the 
parameters of the non-singleton FLS, nor does it tell us 
how many basis functions will be needed to achieve such 
performance. The latter are accomplished through 
design. The  designing of FLSs require one-pass (OP), 
least square, back-propagation (BP, steepest descent), 
SVD-QR (SVD-QR is a matrix tool in numerical linear 
algebra used in signal processing, extracting fuzzy rules, 
reducing fuzzy rules and modeling the fuzzy rules) and 
iterative design methods. More and Deo (2003) employ 
the technique of neural networks to forecast daily, weekly 
and monthly wind speed. Both feed forward (FF) as well 
as recurrent networks (RN) are used and trained on past 
data in the autoregressive (AR) manner using BP and 
cascade correlation (CC) algorithm. They conclude that 
the CC algorithm yields better forecasts as compared to 
that of BP. 

The forecasting of time-series following the rule-based 
FLSs designing employ only two methods, that is, one 
pass (OP) and BP methods, respectively. The OP design 
constructs 500 rules for each antecedent consequent 
membership functions. We set the value of the standard 
deviation equal to 0.1 for all Gaussian in a pre-defined 
OP design. But, the OP is exhaustive as compared to BP 
designing in FLSs. On the contrary, the BP constructs 
only 16 rules for each antecedent and consequent 
membership functions. The initial values of the standard 
deviation of Gaussian membership function are all set 
equal to 0.5240 in a pre-defined BP design. The BP 
designing, in many respects, is better than OP (Mendel, 
2001). The predefined values of all four antecedent 
membership functions and for the centers of the 

consequent membership functions (
ly -height defuzzifier) 

for each corresponding 16 rules in a BP design  for  FLSs 
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are used in the form of a matrix as an input. We use the 

height defuzzifier (
ly  or centers of the consequent 

membership functions) to be a random number from the 
interval (0, 1). After training and using BP design, the 
FLS forecaster was fixed. 
 
 
MATERIALS AND METHODS 

 
We use the learning parameter α = 0.2 in BP design. With tractable 
learning laws, we set the learning parameters. Alpha stable 
statistics model the impulsiveness as a parameterized family of 
probability density functions. Additive fuzzy systems can filter 
impulsive noise from signals. We used artificial neural fuzzy 
information system (ANFIS) to filter out infinite variances of noise in 
time series data. With α < 2 one gets impulsive noise and noise has 
infinite variance. The alpha in statistics is an exponent parameter. 
With α=2, we get the classical Gaussian case, that is, exponential 
tail and finite variance. 

The predefined initial mean (center) values of antecedent 
membership functions along with height defuzzifiers (mean values 
of consequent membership functions) and the standard deviations 
of the Gaussian antecedent, in the form of matrix membership 
functions, as shown in Tables 1 and 2, are used for determining the 
values of singleton consequent membership functions, that is, 

)( k

s sf  for hourly 600 trainee wind data and 120 or 144 ( 1/6 to 

1/5th of the hourly averaged data of the month) testing wind data, 
respectively. The predefined final mean (center) values of 
antecedent membership functions along with height defuzzifiers 
(mean values of the consequent membership functions) and the 
standard deviations of the Gaussian antecedent membership 
functions, in the form of a matrix, after six epochs of training, as 
shown in Tables 2 and 3, are used for determining the values of 
non-singleton consequent member functions, that is, fns(s

k ), for 
hourly 600 trainee data and 120 or 144 testing data, respectively. In 
both cases, 600 trainee wind data and 120 or 144 testing data for 
all four antecedent membership functions are used as an input 
matrix, X, in sfls_type1.m and nsfls_type1.m, respectively. For 
trainee as well as for testing data, we calculated the predicted 
values (Jafri, 2008; Jafri et al., 2012). It is difficult to reproduce all 
predicted values and the values of consequent membership 
functions for singleton and non-singleton type-1 FLSs in this 
manuscript. Therefore, we compared root mean square error, that 
is, RSMEs (BP) with RSMEns (BP) only for testing data (Jafri, 2008) 
and found for the non singleton type 1 back propagation designed 
sixteen rule FLS, better than singleton-type 1 (BP).  

It is worth mentioning that trainee pairs are obtained with testing 
data, therefore, the analysis of testing data will be the same for 
trainee data. We input predefined initial mean values of all 
antecedent membership functions (Table 1) in case of a singleton 
type-1 FLS, because we assume that there are no uncertainties in 
the data. But, we cannot totally ignore the noisy measurement 
environment; therefore, we tested our final FLS forecasters on 
noisy testing data, that is, 

 
x(k) = s(k) + n(k)                                                               (1) 

 
where n (K) is O dB (decibel) uniformly distributed noise.  

We accomplished this task for a Monte Carlo set of 60 
realizations. This entire process was repeated 60 times using 60 
independent sets of mean and standard deviation of 720 or 744 
hourly wind data. The predefined BP RMSEs (BP) (Chu and 
Mendel, 1994) for each of the six epochs of tuning is: 
 
RMSEs (BP) = {0.0548, 0.0431, 0.0322, 0.0261, 0.0237, 0.0232} (2) 

 
 
 
 
The non-singleton FLS shares most of the same parameters as the 
singleton FLS. So, we shall use the partially dependent BP design 
approach. In BP design, we use only two fuzzy sets for each of the 
four antecedents such that there are only 16 rules. Each rule is 
characterized by eight antecedent membership function parameters 
(the mean and standard deviation for each of the four Gaussian 

membership functions) and one consequent parameter, y . More 

specifically, we initially chose the mean of each and every 

antecedents, two Gaussian membership functions as xxm 2  

or xxm 2 , respectively, and the standard deviations of these 

membership functions as x2 . 

For the non-singleton type-1 FLS, we modeled each of the four 
noisy input measurements using a Gaussian membership function. 
Two choices are possible: (1) use a different standard deviation for 
each of the four input measurement membership functions, or (2) 
use the same standard deviation for each of the four input 
measurement membership functions. We tried both approaches 
and got similar results because the additive noise n(k) is stationary. 
The predefined average values and standard deviations of RMSEs 
(BP) and RMSEns (BP), for each of the 6 epoch, mentioned by 
Mendel 2001) are used. 
 
 
Theory 
 
We consider a type-1 FLS having p inputs: 
  
x1 Є X1,……………………..xp Є Xp and one output y Є Y. 
 
Let suppose that it has M rules, where the lth rule has the form: 
 

Rl: IF x1 is F1
l and……and xp is

l

pF ,  

 
Then y is Gl;  l=1,……M         (3) 
 
Equation 3 represents a type-1 fuzzy relation between the input 
space X1, X2…., Xp and the output space, Y, of the FLS. F stands 
for fuzzy sets of antecedents and G for fuzzy sets of the 
consequents. A multiple-antecedent multiple consequent rule can 
always be considered as a group of multi-input single-output rules. 
Equation 3 describes the generic rule structure which comprises of 
six rules. The first five rules, such as, incomplete IF rules, mixed 
rules, fuzzy statement rules, comparative rules and unless rules 
were deciphered (Wang, 1994). The sixth is the quantifier rule. We 
are not concerned with the details of the rules. The main objective 
is to rephrase the BP design analysis in its theoretical form. 

Suppose we are given a collection of N input-output numerical 
data training pairs (x(1):y(1)), (x(2):y(2)) …..(x(N),y(N)), where x is the 
vector input and y is the scalar output of a FLS. To begin, we must 
know how the training data can be interpreted as a collection of IF-

Then rules. Each rule is governed by Equation 3, where 
lF1

  are 

fuzzy sets described by Gaussian membership functions, that is, 
 

( )l
i

iF
x

=exp

2

( )1

2

l
i

l
i

i F

F

x m



  
 

  
    


         (4)  

 
where i=1,…..p and l=1,…..M. Each design method establishes 

how to specify the parameters 
l

iFm  and l
iF

 of these membership 
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Table 1. Initial values for the centers of the Gaussian antecedent membership functions and the centroid of the consequent set. 
 

Rule number Initial value for centers of the four antecedent membership functions Initial value for y
-l
 

1 0.3793 0.3793 0.3793 0.3793 0.5314 

2 0.3793 0.3793 0.3793 1.4272 0.3831 

3 0.3793 0.3793 1.4272 0.3793 0.0159 

4 0.3793 0.3793 1.4272 1.4272 0.8181 

5 0.3793 1.4272 0.3793 0.3793 0.6931 

6 0.3793 1.4272 1.4272 0.3793 0.1209 

7 0.3793 1.4272 1.4272 0.3793 0.4647 

8 0.3793 1.4272 1.4272 1.4272 0.9975 

9 1.4272 0.3793 0.3793 0.3793 0.9522 

10 1.4272 0.3793 0.3793 1.4272 0.6991 

11 1.4272 0.3793 1.4272 0.3793 0.2673 

12 1.4272 0.3793 1.4272 1.4272 0.7625 

13 1.4272 1.4272 0.3793 0.3793 0.6460 

14 1.4272 1.4272 0.3793 1.4272 0.6483 

15 1.4272 1.4272 1.4272 0.3793 0.3793 

16 1.4272 1.4272 1.4272 1.4272 0.8687 
 

m2 – 2σs = 0.3793 and ms + 2 σs = 1.4272. 

 
 
 

Table 2. Final  values for the centers of the Gaussian antecedent membership functions and the centroid of the consequent set, 
after six epoch of tuning. 
 

Rule number Final value for centers of the four antecedent membership functions Initial value for y
-l
 

1 0.4001 0.3613 0.3076 0.1694 0.4986 

2 0.3075 0.2707 0.1988 1.5524 0.3860 

3 0.4273 0.3821 1.3487 0.2121 0.0035 

4 0.2586 0.3205 1.3205 1.3434 0.8631 

5 0.3451 1.5229 0.3352 0.3297 0.6929 

6 0.2942 1.5375 0.2316 1.4938 0.1211 

7 0.3473 1.4700 1.4523 0.2704 0.4622 

8 0.5727 1.1876 1.2624 1.3675 1.2695 

9 1.5721 0.3604 0.3790 0.3960 0.9506 

10 1.4782 0.2994 0.2817 1.4598 0.7021 

11 1.4265 0.4093 1.3689 0.3367 0.2556 

12 1.4560 0.2404 1.4518 1.4497 0.7644 

13 1.4648 1.4641 0.2593 1.4445 0.6486 

14 1.4748 1.4641 0.2593 1.4445 0.6486 

15 1.4555 1.4210 1.3917 0.3730 0.3868 

16 1.3964 1.4352 1.4933 1.6955 0.8715 

 
 
 
functions, as well as the centers of the consequent membership 
functions: 

 

y(x) = fs(x) = 

1

( )
M

l

l

y x


                                           (5) 

 
where )(xl  is known as fuzzy basis function (FBF) (Wang, 1994). 

)(xl  = 

)(

)(

11

1

iF

p

i

M

l

iF

p

i

x

x

l
i

l
i














,  i=1,…..M     (6) 

 
Using the training pairs and with tuning, we abide by the commonly 
used design principle, that is, the number of rules M<N, that is, the 
number of input-output numerical data training pairs. In BP 
(steepest descent) design, none of the antecedent or consequent 
Parameters    are  fixed   ahead of time. They are   all tuned using a
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Table 3. Final values for the standard deviations of the Gaussian antecedent membership functions after six 
epoch of tuning. 
 

Rule number Final values of the standard deviations 

1 0.5649 0.5224 0.4531 0.2268 

2 0.4646 0.4094 0.2630 0.3728 

3 0.5403 0.5075 0.7142 0.1399 

4 0.3043 0.4044 0.6618 0.5931 

5 0.5109 0.3561 0.4589 0.4267 

6 0.4224 0.3640 0.2616 0.4736 

7 0.4987 0.4718 0.5109 0.2772 

8 0.6775 0.7240 0.6280 0.3527 

9 0.2497 0.5214 0.5362 0.5489 

10 0.4766 0.4106 0.3519 0.4872 

11 0.4682 0.5493 0.6171 0.2966 

12 0.5154 0.2404 0.5106 0.5082 

13 0.4408 0.4884 0.5000 0.4111 

14 0.4754 0.4926 0.2648 0.5216 

15 0.4618 0.5299 0.5777 0.3553 

16 0.5861 0.5408 0.4678 0.1198 

 
 
 
steepest descent method. Using Equation 6 in Equation 5, we have: 
 

y(x(i))= fs  (x
(i))= 

)( )(

1

i

l

M

l

xy
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I =1,…….N   (7) 
 
Given an input-output training pair (x(i):y(i)) , we design the FLS in 
Equation 7 such that the following error function is minimized. 
 

ei  =
2

1
[fs(x

i)-y(i)]2, i=1,….N                                                (8) 

 
It is evident from Equation 7 that fs is completely characterized  by  
 

ly , l
kF

m  and l
kF

 (l=1,….M and k=1,……p). 

 
Using the steepest descent algorithm to minimize e(i), it is straight 
forward to obtain the following recursions to update all the design 
parameters of this FLS (k=1…..,p, l=1, ….M and i=0,1,….): 

l
kF

m (i+1) = l
kF

m (i)- m[fs(x
(i))-y(i)][ 

ly (i)-

fs(x
(i))] )(

)(
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F
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x
i

mx

l
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il
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                                      (9) 

 

ly  (i+1)= 
ly (i)- y [fs(x

(i)-y(i)] l (x(i))                    (10) 

 
and 
 

l
kF

 (i+1)= l
kF

 (i)-  σ[fs(x
(i))-y(i)][

ly  (i)-fs(x
(i))] 

)(
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2
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F
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                                            (11) 

 

In Equation 11, we update l
kF

  instead of l
kF

 2, because l
kF

 2 

must be positive (that is, l
kF

 2 is constrained) whereas l
kF

 can 

be positive or negative (that is, l
kF

  is unconstrained). We then 

square up l
kF

 to obtain l
kF

 2. Values for l
kF

m (0), 
ly (0) and 

l
kF

 (0) must be provided to initialize Equations 9 to 11. To make 

these equations application dependent, we used predefined initial 
untrained values of mean, final trained values of mean for six 
epochs, final trained values of standard deviation for six epochs 

and the centers of the values of the consequents, that is, 
ly  or 

height defuzzifier (Tables 1, 2 and 3). The learning parameters 
 m,  y and ασ must be chosen  with  care.  Frequently,  they  are 



 
 
 
 
chosen to be the same, say α. The choosing of learning parameters 
for an algorithm to converge much faster was studied by Chu and 
Mendel (1994). Wang (1992) was the first to show that the FLS 
described by Equations 4 and 5 could also be viewed as a layered 
architecture, one with three layers. Equations 9 to 11 are therefore 
referred to as a back-propagation algorithm, because of their 
dependence on error fs(x)(i)-y(i), which propagates from the output 
layer of the FLS down into lower layers. A drawback in BP design is 
the choice for selecting the number of feedback fuzzies (FBFs) and 
M. The SVD-QR method can resolve this drawback (Mendel, 2001). 
With comparison of a non-singleton type-1 FLS with a singleton 
type-1 FLS using BP design, we found out that the non-singleton 
FLS shares most of the parameters same as the singleton FLS. 
Therefore, we shall use the partially dependent design approach. 
We assume that all the antecedent, consequent, or input 
measurement membership function’s parameters are to be tuned. 
Many of the results described in the aforementioned paragraph are 
similar but the associated equations in non-singleton type-1 FLS for 
BP design are somewhat different. Hence, we briefly describe the 
tuning method for a non-singleton type-1 FLS for BP design 
because the training pairs are noisy. The FLS, for a non-singleton 
type-1 is represented as: 
 

y(x) = f ns(x) = )(
1

xl

M

k




                                      (12) 

 

where )(xl  is FBF, given as: 
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where k = 1,…p and l =1,….M. 
 
Equation 14 shows that, in the special case of Gaussian 
membership functions and product t-norm, it is possible to interpret 
the non-singleton FLS as a singleton FLS. Thus, 
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where i=1,…N. We wish to design the FLS in Equation 15 such that 
the following  error funcion is minimized: 
 

e
(i)

 = 
2

1
[fns(x

(i)
)-y

(i)
]
2
, i=1,…….N (16) 
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It is evident from Equation 17 that fns is completely characterized by 

ly , )( il
kF

m , l
kF


 and x  (l=1,…M and k=1,….,p). Using a 

steepest descent algorithm to minimize e(i), it is straightforward to 
obtain the following recursions to update all the design parameters 
of this FLS (k=1,….,p, l=1,2,…M and i=0,1,…). 
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and 
 

x (i+1)= x (i)-  x[fns(x
(i))-y(i)][
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We update l
kF

 and x  instead of l
kF

 2 and 

x 2, because l
kF

 2 

and x 2 must be positive values whereas l
kF

 and x can be 

positive or negative. We then square up l
kF

 and x  to obtain 

l
kF

 2 . Equations 17 to 20 need to be initiated by )( il
kF

m (0), 
ly (0) 

, l
kF

  (0) and x (0). The choosing of  in a non-singleton type-1 

FLS is the same as in a singleton type-1 FLS. If 
l

kx max, cannot be 

computed due to non-availability of specific choice for membership 
functions, than a different kind of optimization algorithm, that is, 
random search algorithm must be used to minimize e(i) (Mendel, 
2001). 

 
 
RESULTS AND DISCUSSION

 

 
We considered the month of    March    (Spring   Season; 
February to April) of Quetta (Pakistan), while the results 
of the remaining months of the years 1985 to 2004 are 
mentioned elsewhere (Jafri, 2008). 

Table 4   shows the unpredicted six hundred hourly 
averaged values of wind data of March, 1985 to 2004 
(data read  column-wise).  Table  5  shows  the  predicted
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Table 4. Unpredicted hourly averaged wind speed (m/s) values of March, 1985 to 2004.   
 

3.0864 1.0288 0.0000 4.1152 9.2592 8.2304 3.0864 7.2016 17.4800 0.0000 2.0576 0.0000 

3.0864 1.0288 0.0000 4.1152 9.2592 7.2016 2.0576 7.2016 17.4800 1.0288 1.0288 0.0000 

3.0864 1.0288 1.0288 3.0864 8.2304 6.1728 3.0864 6.1728 16.4600 1.0288 1.0288 0.0000 

3.0864 3.0864 5.1440 4.1152 5.1440 3.0864 4.1152 5.1440 2.0576 0.0000 2.0576 0.0000 

1.0288 3.0864 2.0576 3.0864 5.1440 0.0000 2.0576 5.1440 15.4300 1.0288 2.0576 0.0000 

0.0000 1.0288 4.1152 3.0864 4.1152 0.0000 2.0576 4.1152 15.4300 0.0000 2.0576 0.0000 

0.0000 0.0000 7.2016 3.0864 3.0864 0.0000 3.0864 9.2592 9.2592 0.0000 0.0000 0.0000 

4.1152 0.0000 6.1728 3.0864 4.1152 0.0000 2.0576 9.2592 5.1440 0.0000 2.0576 0.0000 

5.1440 4.1152 5.1440 2.0576 2.0576 0.0000 2.0576 8.2304 2.0576 0.0000 0.0000 4.1152 

7.2016 5.1440 3.0864 6.1728 3.0864 2.0576 2.0576 7.2016 2.0576 0.0000 8.2304 0.0000 

8.2304 7.2016 2.0576 7.2016 4.1152 2.0576 0.0000 5.1440 0.0000 0.0000 7.2016 2.0576 

5.1440 8.2304 2.0576 7.2016 2.0576 0.0000 0.0000 5.1440 1.0288 0.0000 6.1728 2.0576 

7.7160 5.1440 5.1440 7.2016 2.0576 2.0576 0.0000 7.2016 2.0576 0.0000 5.1440 2.0576 

5.1440 7.7160 4.1152 6.1728 0.0000 0.0000 0.0000 7.2016 2.0576 2.0576 5.1440 5.1440 

2.0576 5.1440 3.0864 5.1440 2.0576 0.0000 0.0000 8.2304 1.0288 1.0288 10.2880 5.1440 

1.0288 2.0576 4.1152 5.1440 1.0288 0.0000 1.0288 8.2304 4.1152 2.0576 11.3100 5.1440 

1.0288 1.0288 5.1440 4.1152 0.0000 0.0000 2.0576 9.2592 6.1728 8.2304 10.2880 1.5432 

2.0576 1.0288 0.0000 2.0576 0.0000 0.0000 3.0864 10.2880 8.2304 8.2304 10.2880 5.1440 

1.0288 2.0576 4.1152 2.0576 1.0288 3.0864 1.0288 13.3700 7.2016 8.2304 10.2880 4.1152 

0.0000 1.0288 3.0864 2.0576 2.0576 4.1152 5.1440 13.3700 5.1440 10.2880 8.2304 2.0576 

0.0000 0.0000 1.0288 1.0288 2.0576 1.0288 9.2592 13.3700 7.2016 8.2304 10.2880 3.0864 

0.0000 0.0000 1.0288 2.0576 5.1440 2.0576 9.2592 13.3700 7.2016 4.1152 9.2592 3.0864 

0.0000 0.0000 3.0864 5.1440 4.1152 8.2304 9.2592 8.2304 7.2016 3.0864 9.2592 4.1152 

0.0000 0.0000 5.1440 3.0864 5.1440 7.2016 7.2016 4.1152 6.1728 0.0000 8.2304 2.0576 

0.0000 0.0000 6.1728 10.2880 1.0288 7.2016 4.1152 8.2304 5.1440 1.0288 10.2880 4.1152 

0.0000 0.0000 7.2016 3.0864 6.1728 7.2016 3.0864 9.2592 5.1440 0.0000 8.2304 2.0576 

0.0000 0.0000 9.2592 8.2304 6.1728 6.1728 1.0288 10.2880 4.1152 4.1152 8.2304 3.0864 

0.0000 0.0000 8.2304 8.2304 4.1152 5.1440 1.0288 9.2592 3.0864 1.0288 7.2016 4.1152 

0.0000 0.0000 9.2592 8.2304 4.1152 1.0288 0.0000 7.2016 3.0864 0.0000 7.2016 2.0576 

0.0000 0.0000 10.2880 7.2016 3.0864 1.0288 0.0000 4.1152 1.0288 1.0288 5.1440 6.1728 

0.0000 0.0000 9.2592 8.2304 4.1152 0.0000 0.0000 4.1152 0.0000 0.0000 4.1152 5.1440 

0.0000 0.0000 8.2304 5.1440 3.0864 0.0000 1.0288 3.0864 0.0000 0.0000 5.1440 4.1152 

2.0576 0.0000 7.2016 4.1152 3.0864 1.0288 0.0000 8.2304 0.0000 0.0000 4.1152 5.1440 

6.1728 5.1440 6.1728 4.1152 2.0576 2.0576 1.0288 7.2016 0.0000 1.0288 5.1440 5.1440 

6.1728 6.1728 6.1728 3.0864 2.0576 2.0576 0.0000 8.2304 0.0000 1.0288 3.0864 10.2880 

5.1440 6.1728 6.1728 5.1440 2.0576 0.0000 0.0000 2.0576 0.0000 2.0576 3.0864 9.2592 

2.0576 5.1440 5.1440 4.1152 0.0000 0.0000 0.0000 7.2016 0.0000 4.1152 1.0288 9.2592 

2.0576 0.0000 5.1440 2.0576 0.0000 0.0000 0.0000 11.3168 0.0000 7.2016 2.0576 10.2880 

2.0576 2.0576 4.1152 1.0288 2.0576 0.0000 0.0000 10.2880 0.0000 9.2592 2.0576 9.2592 

1.0288 2.0576 3.0864 0.0000 2.0576 0.0000 1.0288 1.0288 4.1152 10.2880 2.0576 10.2880 

1.0288 2.0576 2.0576 0.0000 0.0000 0.0000 1.0288 12.3400 6.1728 10.2880 5.1440 10.2880 

2.0576 1.0288 2.0576 1.0288 2.0576 3.0864 4.1152 12.8600 0.0000 9.2592 2.0576 11.3100 

2.0576 1.0288 1.0288 0.0000 0.0000 5.1440 5.1440 15.4300 7.2016 9.2592 4.1152 10.2880 

1.0288 2.0576 3.0864 0.0000 1.0288 5.1440 9.2592 23.1500 9.2592 6.1728 5.1440 11.3100 

0.0000 2.0576 0.0000 3.0864 2.0576 5.1440 9.2592 23.1400 8.2304 5.1440 2.0576 10.2880 

1.0288 2.0576 1.0288 1.0288 2.0576 4.1152 10.2880 18.0040 9.2592 0.0000 1.0288 10.2880 

0.0000 0.0000 0.0000 0.0000 3.0864 5.1440 9.2592 18.0040 7.2016 1.0288 2.0576 10.2880 

0.0000 0.0000 2.0576 3.0864 9.2592 7.2016 5.1440 15.4320 5.1440 1.0288 2.0576 10.2880 

0.0000 0.0000 2.0576 5.1440 7.2016 8.2304 5.1440 17.4800 1.0288 2.0576 0.0000 9.2592 

0.0000 0.0000 2.0576 8.2304 8.2304 7.2016 5.1440 16.4600 0.0000 2.0576 0.0000 8.2304 
 

Data are read columnwise. 
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Table 5. Predicted values of averaged wind data for the month of March (1985-2004). 
 

S/N x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 1.0288 0 1.0288 4.1152 5.1440 

2 2.0576 0 3.0864 5.1440 2.0576 

3 2.0576 0 3.0864 7.2016 1.0288 

4 1.0288 0 1.0288 8.2304 1.0288 

5 0 1.0288 0 5.1440 2.0576 

6 1.0288 1.0288 0 7.7160 1.0288 

7 0 1.0288 4.1152 5.1440 0 

8 0 3.0864 5.1440 2.0576 0 

9 0 3.0864 7.2016 1.0288 0 

10 0 1.0288 8.2304 1.0288 0 

11 1.0288 0 5.144 2.0576 0 

12 1.0288 0 7.7160 1.0288 0 

13 1.0288 4.1152 5.144 0 0 

14 3.0864 5.144 2.0576 0 0 

15 3.0864 7.2016 1.0288 0 0 

.      

.      

.      

591 5.1440 9.2592 8.2304 2.0576 0 

592 5.1440 9.2592 6.1728 2.0576. 0 

593 4.1152 10.288 5.1440 2.0576 1.0288 

594 4.1152 1.0288 1.0288 2.0576 2.0576 

595 10.288 2.0576 1.0288 2.0576 3.0864 

596 9.2592 2.0576 1.0288 3.0864 2.0576 

597 9.2592 1.0288 1.0288 0 3.0864 

598 9.2592 2.0576 2.0576 0 7.2016 

599 10.288 2.0576 3.0864 1.0288 2.0576 

600 9.2092 1.0288 0 2.0576 8.2304 
 
 
 

six hundred hourly values of wind data of March, 1985 to 
2004 (x(t+6) is read column wise) (Jafri, 2008; Jafri et al., 
2012). Tables 6 and 7 are the corresponding values of 
the singleton consequent membership functions, fs(x

k
) 

(read column wise) and the non-singleton consequent 
membership functions, fns(x

k
) (read column wise) for BP 

designed type-1 FLS forecasters, respectively for the 
month of March, 1985 to 2004. Values for other months 
of the year 1985 to 2004 are not shown in this paper. 
NaN in singleton type-1 FLS for values of consequent 
membership functions, that is, Table 6 shows that 
fuzzifiers are not working. One may ascribe this ‘anomaly’ 
to non-existence of centroid of the consequent set or 
height defuzzifier for all the corresponding four Gaussian 
antecedent membership functions; and indeed for sixteen 
rules in a BP design. Defuzzification produces a crisp 
output for FLS, from the fuzzy sets that appear at the 
output. Therefore, one can conjecture that NaN is 
producing an empty or null set, as an output. An empty or 
null set is also a subset of a set; therefore, NaN is a sub-
crisp output which needs further handling on a fuzzy rule. 

We   considered  the  120  or  144  predicted  values  of 

testing data over the months of 1985 to 2004, obtained 
the corresponding values of both the singleton and non-
singleton consequent membership functions, that is, fs 
(x

k
) and fns(x

k
), respectively. The parameters of input-

output training data were tuned both for singleton and 
non-singleton type-1 FLS for Gaussian antecedent 
membership functions, and for six epochs by using 
sixteen rules in a BP design (Jafri, 2008). 

Stochastic simulation and time series models were 
studied and developed to forecast synthetic sequences of 
wind speed and global solar radiations, respectively 
(Kamal and Jafri, 1996, 1997).The fuzzy autoregressive 
(FAR) model can never be described by the stochastic 
model (Kezuhiro et al., 1997). 

The fuzzy parameters for autoregression are 
determined by linear programming (operations research). 
FAR model represents a possibility of occurrence of a 
certain set of data in future when the present data are 
dependent to some degree on the past data (Ozawa and 
Niimura, 1999). We do not find in recent years, any 
significant analysis on fuzzy time series and its prediction 
modeling. A parallel  structure  fuzzy  system  (PSFS)  for
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Table 6. Values of the consequent membership functions (m/s), f(x), for BP designed singleton type-1 FLS of March 1985 to 2004. 
 

1.1181 1.1181 11.547 4.0017 6.4113 8 8 8 8 8 13.999 13.999 

1.1181 1.1181 4 8 8 8 8 8 8.0011 12 13.087 13.087 

1.1181 1.1181 4 8 8 8 8 NaN 8 12 10.284 10.284 

1.1181 1.1181 6.7195 8 8 8 8 NaN 8 12.533 9.1834 9.1834 

1.1181 1.1181 4 8 8 8.3477 8 NaN 8 14 10.084 10.084 

1.1181 1.1181 4 8 8 14.87 8 8 8 4 4.0414 4.0414 

1.1181 1.1181 4 8 8.0003 8.5774 8 8 8.0582 4 9.7513 9.7513 

1.1181 1.1181 7.9996 8.0001 8 8.0015 8 8 9.1834 4 11.55 11.55 

1.1181 1.1181 7.9995 8 8.0025 8 4.0036 8 4 4 5.1938 5.1938 

1.1181 8.214 8 8 8 8 4 8 4 4 4.0001 4.0001 

1.1181 8 8 8.0002 8 12.3 7.9991 8 4 4 4.003 4.003 

1.1181 8 8 8 11.656 14 7.9991 8 4 4 4.1005 4.1005 

1.1181 8 8.3447 8 8.0794 14 4 8 4 4 8 8 

1.1181 8.0005 8 14 13.875 14 4 4 4.003 4 4.0002 4.0002 

1.1181 8 8 13.823 4 4 8 8 4 4 4.0026 4.0026 

1.1181 14 8 14 4 4.0284 8 8 3.0006 4 7.9908 7.9908 

1.1181 8 14 12.493 4 11.879 8 8 3.9192 4 4.0001 4.0001 

1.1181 13.629 8 12 4 9.2626 8 8.0169 3 4 8 8 

1.1181 14 14 4.0103 4 3.0056 8 4.0002 4 8 8 8 

1.1181 14 14 11.982 11.984 3.0337 8 8 8.0007 8 8 8 

1.1181 4 8 12 3.5532 3 8 8 8 8 8.0008 8.0008 

1.1181 4 12 9.2626 4.0049 3.4133 8 8 8 8 14 14 

1.1181 4 12 13.042 7.0023 3.5072 8 8 8 8 7.9999 7.9999 

1.1181 4 8.2238 4.9683 7.99 8 8 8.0543 8 8 8.0004 8.0004 

1.1181 4 8 7.9999 4.7289 8 8 8 8 8 8 8 

1.1181 12 8 8 7.9908 8 8 8 8.0583 8 8 8 

1.1181 8 8 8 8 8 8 8 8.0008 8 4 4 

1.1181 4 4.0011 8 8 8 8 8 8 8 12 12 

1.1181 8 8 10.272 8 13.187 8 8 8.0002 8 4 4 

1.1181 8 8 8.0005 8 8.6149 8 8 12 8 4 4 

1.1181 8 8 8 8.0001 8 8 8 14 8 4 4 

1.1181 8 8 8 9.028 8.0015 8 8.0009 13.995 8 4 4 

1.1181 8 8 11.177 8 8.0001 8 14 4.038 8 4 4 

1.1181 8 8 8.0003 8.0001 11.656 14 8.0089 4 8 4 4 

1.1181 8 8 13.187 12 11.726 12 12.404 4 8 4 4 

1.1181 8 8.5998 8.0413 12 14 NaN 13.602 4 8 4 4 

1.1181 8 8 8.0001 13.032 4 NaN 13.779 8.0006 8 4 4 

1.1181 8 8 8.0021 13.999 4 14 4.215 3 8 4 4 

1.1181 8 8 13.988 13.941 4 NaN 6.0662 3.0423 8 8 8 

1.1181 8 8 4.1984 4 4 4 4.0414 3.5299 8.0003 8 8 

1.1181 8 8.0001 13.365 4 4 NaN 4.0049 8 11.955 8 8 

1.1181 8 14 12.234 4 4 NaN 3.0001 8 8.2304 8 8 

1.1181 8 12 13.144 4.0009 4 NaN 3.0006 8 14.87 8 8 

1.1181 8.203 12.235 4.0001 9.1971 4 NaN 8 8 10.838 8 8 

1.1181 8.0129 13.944 7.8612 9.2626 4 NaN 8 8 8.5998 8 8 

1.1181 8 12 7.9834 4.2819 4.902 8 3.1214 8 14.916 8 8 

1.1181 10.678 12 3.005 8 8 NaN 8 8 13.187 8 8 

1.1181 8 4 3.0005 8 8 NaN 8 8 8.8366 8 8 

1.1181 11.863 7.9951 3.0033 8 8 NaN 8 8 13.087 8 8 

1.1181 10.338 4 3.2795 8 8 8 8 8 12.591 8 8 
 

Data are read column-wise. 
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Table 7. Values of the consequent membership functions (m/s), f(x), for BP designed non-singletion type- 1 FLS of March, 1985 to 2004.   
 

7.611 7.611 9.232 8.282 9.032 9.443 10.419 11.788 12.267 12.029 10.927 13.995 

7.611 7.611 9.959 9.722 11.075 11.445 11.656 14.053 8.907 12.211 9.213 14.212 

7.611 7.611 9.317 9.696 9.473 12.156 12.181 13.257 11.240 12.498 9.826 13.573 

7.611 7.611 10.369 10.032 10.044 12.014 13.407 14.469 11.393 11.627 10.265 14.229 

7.611 7.611 9.296 11.567 10.684 11.298 13.632 14.926 11.130 10.968 8.829 14.074 

7.611 7.611 9.851 10.558 10.388 10.478 13.891 14.537 11.830 8.457 8.480 13.994 

7.611 7.611 8.978 9.863 10.695 11.173 13.527 14.612 11.185 8.746 9.458 13.541 

7.611 7.611 10.547 10.938 12.451 12.228 11.989 13.508 10.265 8.548 9.012 13.567 

7.611 7.611 10.293 11.866 11.112 11.834 11.920 14.554 8.780 9.426 8.001 11.867 

7.611 8.937 10.229 12.433 11.130 11.606 11.582 14.419 8.016 9.520 8.201 12.909 

7.611 10.024 11.243 12.543 11.662 10.065 12.397 14.822 8.016 9.109 8.164 13.327 

7.611 9.793 11.240 12.589 11.138 9.529 12.397 14.416 8.588 9.315 8.332 13.297 

7.611 9.901 10.382 12.115 10.574 10.049 11.817 13.447 8.622 7.960 9.443 12.071 

7.611 11.488 11.833 11.354 9.877 10.603 11.259 9.911 8.164 10.134 8.394 12.116 

7.611 9.993 11.509 11.430 8.508 9.181 11.808 13.310 8.857 10.244 8.624 8.623 

7.611 10.528 11.310 10.528 8.009 9.347 11.511 13.652 8.148 10.283 8.871 12.153 

7.611 12.847 11.156 9.942 8.796 9.615 13.009 12.895 8.217 8.763 8.903 12.580 

7.611 12.184 11.147 10.282 8.353 9.459 12.878 11.503 8.517 10.391 9.322 11.878 

7.611 11.287 10.355 9.783 8.103 9.191 12.329 9.758 8.630 9.546 11.544 10.115 

7.611 10.644 12.255 10.285 9.262 9.475 12.074 10.521 8.726 13.108 9.543 10.489 

7.611 10.416 12.598 10.454 9.287 8.635 12.266 9.879 9.848 12.884 9.732 10.981 

7.611 9.109 12.057 9.459 8.273 9.036 12.530 10.586 9.583 12.758 10.502 12.806 

7.611 11.703 11.928 9.358 10.102 8.379 12.719 10.900 9.634 12.188 10.475 12.348 

7.611 11.080 11.739 8.958 9.300 9.372 12.700 10.534 10.835 12.435 11.198 12.333 

7.611 9.957 11.220 10.021 8.558 9.783 12.385 10.310 10.452 14.040 11.594 13.507 

7.611 10.696 11.482 10.070 8.871 10.353 12.672 11.703 9.944 14.297 11.687 13.102 

7.611 11.596 11.700 9.315 9.757 10.712 13.710 12.497 12.010 14.083 9.809 12.770 

7.611 9.358 10.281 9.443 9.460 10.889 13.301 12.710 11.448 14.007 11.234 13.138 

7.611 11.752 10.998 8.913 10.889 9.200 14.466 12.094 11.697 13.943 11.249 12.276 

7.611 11.456 10.199 10.561 11.353 11.038 14.185 11.380 11.959 13.497 9.607 10.507 

7.611 10.618 10.502 10.696 9.792 11.660 14.362 11.870 12.442 13.899 10.507 11.968 

7.611 10.629 10.968 11.580 10.234 11.891 14.509 11.918 10.313 13.654 10.600 10.863 

7.611 11.667 12.257 10.987 11.675 11.481 12.769 11.973 9.597 13.611 10.079 10.310 

7.611 12.553 11.455 11.337 11.341 11.138 10.850 10.756 8.370 12.932 9.866 10.731 

7.611 12.894 13.762 9.200 11.183 10.010 11.754 10.496 8.715 13.061 10.952 10.792 

7.611 13.244 10.742 11.370 11.183 9.804 9.598 10.484 8.393 12.950 9.222 11.028 

7.611 13.441 12.538 11.728 11.099 8.531 10.910 10.058 10.377 12.604 10.418 12.201 

7.611 13.034 12.252 10.639 10.927 8.786 12.860 9.780 8.746 12.444 10.777 12.933 

7.611 13.082 11.922 10.429 8.997 8.076 10.139 9.963 8.273 12.379 10.102 13.484 

7.611 13.462 12.459 10.181 8.814 8.397 8.096 8.480 9.224 11.337 11.840 13.123 

7.611 12.938 12.487 10.057 8.301 8.449 7.788 8.273 9.308 10.441 11.733 12.510 

7.611 12.932 10.987 9.666 8.381 8.753 7.627 8.055 9.997 11.224 11.123 12.560 

7.611 12.159 10.485 10.240 8.923 8.109 8.124 8.148 10.155 10.478 11.876 12.128 

7.611 11.713 10.124 9.763 9.332 8.704 7.728 9.262 10.371 10.777 11.626 11.950 

7.611 11.262 9.577 9.372 9.459 8.456 9.400 9.801 10.455 10.742 13.667 13.793 

7.611 11.592 11.086 9.851 9.238 9.480 9.997 8.182 10.911 10.000 13.215 13.668 

7.611 10.884 10.536 8.201 9.619 9.699 8.974 9.529 11.950 9.200 13.755 13.361 

7.611 11.404 9.421 8.428 9.654 10.168 8.441 9.679 12.707 9.971 13.937 13.082 

7.611 10.406 9.593 9.788 9.502 9.787 8.571 9.518 12.898 9.213 13.720 13.206 

7.611 10.179 8.524 9.827 9.088 10.191 8.459 11.757 11.937 8.945 13.982 12.374 
 

Data are read column-wise. 
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Table 8. RMSE values. 
 

Month RMSEs (BP) RMSEns (BP) 

January 4.1089 3.7623 

February 4.2079 3.6529 

March 3.9876 3.5976 

April 3.8988 3.4271 

May 3.4423 3.5613 

June 3.3399 3.2376 

July 3.4765 3.3219 

August 3.4498 3.3754 

September 3.4569 3.1226 

October 3.5678 3.3578 

November 3.7629 3.2866 

December 3.7628 3.5674 

 
 
 
prediction of time series, especially the chaotic time 
series data (like Lorenz time series and Laser time 
series) was developed (Kim and Kong, 2001). The PSFS 
consists of multiple numbers of fuzzy systems connected 
in parallel. Each component fuzzy system in the PSFS 
predicts the same future data independently based on its 
past time series data with different embedding dimension 
and time delay. We observed chaos in our wind data 
(Jafri et al., 2012); therefore, PSFS could be used more 
beneficially for prediction of short term time series data 
as compared to other models. Tsai and Wu (2001) 
developed a model to improve the performance of the 
root mean square error of the forecast. They followed 
fuzzy time series models of Song and Chissom (1993) 
which employ fuzzy relational equations, definition of 
various time series, properties of fuzzy time series and a 
step by step procedure for the implementation of the 
fuzzy time series with linguistic values. These methods 
are, however, based on linguistic values of fuzzy rules 
and are not suitable for chaotic heavy set of data, like 
wind. The second order modeling of fuzzy time series 
(Chao et al., 1999) can be extended and applied to the 
prediction of traditional (stationary) numerical time series. 

We did not find any comparison with BP designed 
singleton type-1 with non-singleton type-1 FLS in any 
literature known to us. Although, we did not establish any 
comparison with OP designed 500 rule type-1 FLS, yet 
we conformed on the basis of RMSE  values (Table 8) 
that the BP-designed 16 rules non-singleton type-1 for 
chaotic data seemed relatively better than singleton type-
1 FLS (Jafri, 2008). 

We assumed that there are no uncertainties in BP 
designed singleton type-1 FLS. But, our data is chaotic 
and have too many unraveled0/hidden uncertainties. The 
BP design is a solution to handle data where 
uncertainties exist. We identified two kinds of 
uncertainties, that is, stable attractor and the other non-
stationarity in wind data (Jafri, 2008; Kamal and Jafri, 
1996;    Jafri   et   al.,   2012).   Valenzuela   et  al.  (2008)  

 
 
 
 
exploited hybridization of intelligent techniques and 
ARIMA model for time series prediction. We conjecture 
that there is a dire need to include cascade correlation 
algorithm in FLSs to make the forecaster more efficient 
than BP designed FLS. Moreover, the hybridization of 
intelligent techniques with FLS could also be a promising 
solution for efficient and reliable forecasters. 

We infer from the present study the following 
conclusions: 
 
1) The BP designed non-singleton type-1 FLS is a better 
forecaster to handle data where uncertainties exist (such 
as in our data which is chaotic). 
2) The wind data have too many unraveled/hidden 
uncertainties, such as, non-stationarity and stable 
attractors. These uncertainties do not influence the 
predicted values as confirmed by Mackey glass 
simulation (Jafri et al., 2008). 
3) An anomaly (NaN) for some of the hourly wind data, 
especially for a singleton type-1 FLS forecaster exists. 
This confirms to the fact that fuzzifiers for consequents 
are not working. 
4) The parallel structure fuzzy system (PSFS) if opted for 
our wind data would have produced better results as a 
short duration forecaster. The chaos can be effectively 
resolved through time- delays in a time series data. 
5) The introduction of cascade correlation algorithm in 
fuzzy logic systems can make the forecaster more 
reliable, efficient and sustainable than BP designed FLS. 
6) Hybridization of intelligent systems with fuzzy logic 
(FL) is an alternate option for developing new 
forecasters. 
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