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Set covering problem is the model for many important industrial applications. In this paper, we solve 
some benchmarks of this problem with ant colony optimization algorithms using a new transition rule. 
A look-ahead mechanism was incorporated to check constraint consistency in ant computing. 
Computational results are presented showing the advantages to use this additional mechanism to ant 
system and ant colony system. 
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INTRODUCTION 
 
Set covering problem (SCP) is a type of problem that can 
model several real life situations, including crew 
scheduling in railway and mass transit companies (Feo 
and Resende, 1989). In this work, we solve several 
benchmarks of SCP with ant colony optimization (ACO) 
algorithms and some hybridizations of ACO with a 
constraint programming (CP) look-ahead technique: 
Forward checking (Bessiere, 2006; Rossi et al., 2006). 

There exist problems for which ACO is of limited 
effectiveness. Among them, a prominent role is played by 
very strongly constrained problems. They are problems 
for which neighborhoods contain a few solutions or none 
at all, and local search is of very limited use. SCP and set 
partitioning problem (SPP) are of such problems. 

A direct implementation of the basic ACO framework is 
incapable of obtaining feasible solutions for many 
standard tested instances of SPP (Maniezzo and 
Milandri, 2002). The root of the problem is that simply 
following the random-proportional rule, that is, learning-
reforcing good paths is no longer enough, as this does 
not check for constraint consistency.  

There already  exist  some  early  approaches  applying 
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ACO to the SCP. In Leguizamon and Michalewicz (1999), 
ACO has been used only as a construction algorithm and 
the approach has only been tested on some small SCP 
instances. More recent works (Rahoual et al., 2002; 
Lessing et al, 2004; Gandibleux et al., 2004) apply ant 
systems to the SCP and related problems using 
techniques to remove redundant columns and local 
search to improve solutions.  

In this paper, we explore the addition to the ACO 
algorithm of a look-ahead mechanism usually used in 
complete techniques. Trying to solve larger instances of 
SPP with the original ant system (AS) or ant colony 
system (ACS) implementation derives in a lot of 
unfeasible labeling of variables, and the ants can not 
obtain complete solutions using the classic transition rule 
when they move in their neighborhood. 

We propose the addition of a look-ahead mechanism in 
the construction phase of ACO in order that only feasible 
solutions are generated. The look-ahead mechanism 
allows the incorporation of information about the 
instantation of variables after the current decision. 

 The idea differs from that proposed by (Michel and 
Middendorf, 1998; Gagne et al., 2001). These authors 
proposed a look ahead function evaluating the pheromone 
in the shortest common super-sequence problem and 
estimating the quality of a partial solution of  an  industrial
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Begin 
InitParameter(); 
while (remain iterations) do 
for (k:=1 to nAnt s) do 
while (solution is not completed and    TabuList <> J) do 
Choose next column j with Transition  Rule Probability 
for (each Row i covered by j) do 
feasible(i):=Posting(j) 
end for 
if (feasible(i) for all i) then 
AddColumnToSolution(j) 
else 
Backtracking(j) /*Set j uninstAnt iated 
end if 
AddColumnToTabuList(j); 
end while 
end for 
UpdateOptimum(); 
UpdatePheromone(); 
end while 
Return best solution founded 
End 
 
Algorithm 1. Procedure ACO for SCP and SPP.  

 
 
 
scheduling problem. 

Combining ACO and constraint programming, the work 
that is closest to this study is that of Khichane et al. 
(2010). They introduced an approach which combines 
ACO and CP optimizer for solving combinatorial 
optimization problems. 
 
 
PROBLEM DESCRIPTION  
 
The relevance to solve SCP and SPP lies in that they are 
models for many important applications in the field of 
Operational Research. For instance, they can be used to 
describe scheduling or timetabling problems. 

SPP is the problem of partitioning a given set into 
manually independent subsets while minimizing a cost 
function defined as the sum of the costs associated to 
each of the eligible subsets. 

In SPP, we have given a mxn matrix A = aij , in which all 
the matrix elements are either zero or one. Additionally, 
each column is given a non-negative cost cj. We say that 
a column j can cover a row i if aij = 1. Let xj be a binary 
decision variable which is one if column j is chosen and 
zero otherwise. The SPP can be defined formally as 
minimize (1) subject to (2). These constraints enforce that 
each row is covered by exactly one column. 

The SCP is a SPP relaxation. The goal in the SCP is to 
choose a subset of the columns of minimal weight 
formally using constraints to enforce that each row is 
covered by at least one column as (3).  
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SOLVING SPP AND SCP WITH ACO METAHEURISTIC 
 
We solve SPP and SCP instances with Ant colony 
optimization. Artificial Ant build problem solutions using a 
constructive procedure driven by a combination of 
artificial pheromone, heuristic information (problem data) 
and a transition rule used to evaluate successive con-
structive steps. For solving SPP and SCP, the columns 
are chosen as the solution components and have 
associated a cost and a pheromone trail (Dechter and 
Frost, 2002). Each column can be visited by an Ant only 
once and then a final solution has to cover all rows. A 
walk of an Ant over the graph representation corresponds 
to the iterative addition of columns to the partial solution 
obtained so far. Each Ant starts with an empty solution 
and adds columns until a cover is completed (Algorithm 
1). 
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A pheromone trail �j and a heuristic information �j are 
associated to each eligible column j. A column to be 
added is chosen with a probability that depends of the 
pheromone trail and the heuristic information. 

The most common form of the ACO decision policy 
(Transition Rule Probability) when the Ant s work with 
components is defined in (4), where Sk is the partial 
solution of the Ant k. The � parameter controls how 
important � is in the probabilistic decision. In this work, 
the pheromone trail �j is put on the problems component 
(each eligible column j) instead of the problems 
connections. Setting a good pheromone quantity is not a 
trivial task either. The quantity of pheromone trail laid on 
columns is based on the idea: The more pheromone trail 
in particular item, the more profitable that item is 
(Leguizamon and Michalewicz, 1999). Then, the 
pheromone deposited in each component will be in 
relation to its frequency in the Ant solutions. In this work, 
we divided this frequency by the number of Ants obtaining 
better results. 

We use dynamic heuristic information that depends on 
the partial solution of an Ant. It can be defined as (5), 
where ej is the so called cover value, that is, the number 
of additional rows covered when adding column j to the 
current partial solution, and cj is the cost of column j. 

Algorithm 1 describes the basic structure of ACO 
algorithm to solve SCP and SPP. In other words, the 
heuristic information measures the unit cost of covering 
one additional row. An Ant ends the solution construction 
when all rows are covered. We use two ACO instances: 
Ant system (AS) and Ant colony system (ACS) 
algorithms, the original and the most famous algorithms 
in the ACO family. Generally ACS improves the search of 
AS by using: a different transition rule in the constructive 
phase, exploiting the heuristic information in a more rude 
form (pseudorandom), a list of candidates to future 
labeling and a different treatment of the pheromone. 

A direct implementation of the Basic ACO framework is 
incapable of obtaining feasible solution for many SPP 
instances (Crawford et al., 2006). Each Ant starts with an 
empty solution and adds column until a cover is 
completed; but to determine if a column actually belongs 
or not to the partial solution is not good enough.  

The traditional ACO decision policy (4), does not work 
for SPP because the Ants, in this traditional selection 
process of the next columns, ignore the information of the 
problem constraint when a variable is a instantiated. And 
in the worst case, in the iterative  steps,  it  is  possible  to  
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assign values to some variable that will make it 
impossible to obtain a complete solution. To improve it, 
we use a procedure similar to the constraint propagation 
technique from CP (Apt, 2003; Bessiere, 2006). 
 
 
LOW LEVEL HYBRIDIZATION OF ANTS AND 
CONSTRAINT PROGRAMMING 
 
Hybrid algorithms provide appropriate compromises 
between exact (or complete) search methods and 
approximate (or incomplete) methods; some efforts have 
been done in order to integrate constraint programming 
(exact methods) to Ants algorithms (stochastic local 
search methods) (Meyer and Ernst, 2004; Khichane et 
al., 2010). 

An hybridization of ACO and CP can be approached 
from two directions: We can either take ACO or CP as the 
base algorithm and then try to embed the respective 
other method into it. A form to integrate CP into ACO is to 
let it reduce the possible candidates among the not yet 
instantiated variables participating in the same 
constraints that the current variable. A different approach 
would be to embed ACO within CP. The point at which 
ACO can interact with CP is during the labeling phase 
using ACO to learn a value ordering that is more likely to 
produce good solutions. 

In this work, ACO use CP in the variable selection 
(when adding columns to partial solution). The CP 
algorithm used in this paper is forward checking with 
backtracking (Dechter and Frost, 2002). It performs arc 
consistency between pairs composed of a not yet 
instantiated variable and an instantiated variable, that is, 
when a value is assigned to the current variable, any 
value in the domain of a future variable which conflicts 
with this assignment is removed from the domain. 

The forward checking procedure, taking into account 
the constraint network topology (that is, which sets of 
variables are linked by a constraint and which are not), 
guarantees that at each step of the search, all constraints 
between already assigned variables and not yet assigned 
variables are consistent; it means that columns are 
chosen if they do not produce any conflicts with the next 
column to be chose. Then, a new transition rule is 
developer adding forward checking to ACO. 
 
 
EXPERIMENTAL RESULTS 
 
The computational experiments showed that AS+FC and 
ACS+FC out performed AS and ACS. We have tested 
SCP and SPP benchmark instances of Beasley or-library 
(Beasley, 1990). Tables 1 and 2 and Figures 1 to 4 show 
the result for solving SCP and SPP with AS and ACS, 
respectively. The algorithms ran with the following 
parameters settings: Influence of heuristic information � = 
0.5 and evaporation rate � = 0.4. 
     The number of Ants was set to 100 and the  maximum
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Table 1. Experimental results of SCP benchmarks. 
 

Problem m n Opt AS ACS AS+FC ACS+FC 
scp410 200 1000 514 539 669 556 664 
scpa1 300 3000 253 592 348 288 331 
scpa2 300 3000 252 531 378 285 376 
scpa3 300 3000 232 473 319 270 295 
scpa4 300 3000 234 375 333 278 301 
scpa5 300 3000 236 349 353 272 335 
scpb1 300 3000 69 196 101 75 115 
scpb2 300 3000 76 243 117 87 110 
scpb3 300 3000 80 207 112 89 117 
scpc1 400 4000 227 442 305 261 317 
scpc2 400 4000 219 484 309 260 311 
scpc3 400 4000 243 551 367 268 328 
scpc4 400 4000 219 523 324 259 303 
scpcyc07 672 448 144 272 321 148 321 
scpcyc08 1792 1024 344 512 769 364 769 
scpcyc09 4608 2304 780 1297 1723 816 1445 
scpcyc10 11520 5120 1792 3123 4097 1969 3506 
scpd1 400 4000 60 184 92 72 105 
scpd2 400 4000 66 209 96 74 113 
scpd3 400 4000 72 221 111 83 119 

 

M, Number of rows (constraints); n, number of columns (decision variables); Opt, the best known cost 
value for each instance (IP optimal), when applying Ant algorithms, AS and ACS, and combining them with 
forward checking. 

 
 
 

Table 2. Experimental results of SPP benchmarks.  
 

Problem m n Opt AS ACS AS+FC ACS+FC 
sppaa01 8233 8904 56137 96256 94270 60246 84435 
sppaa02 531 5198 30494 39883 57632 37452 52211 
sppaa03 825 8627 49649 63734 93304 55082 81177 
sppaa05 801 8308 55839 61703 91134 58158 84362 
sppaa06 646 7292 27040 42015 54964 33524 48703 
sppnw06 50 6774 7810 9200 9788 8160 8038 
sppnw08 24 434 35894 x x 35894 36682 
sppnw09 40 3103 67760 70462 x 70222 69332 
sppnw10 24 853 68271 x x x x 
sppnw12 27 626 14118 15406 16060 14466 14252 
sppnw15 31 467 67743 67755 67746 67743 67743 
sppnw18 124 10757 51624 51624 73006 60224 62832 
sppnw19 40 2879 10898 11678 12350 11060 11858 
sppnw23 19 711 12534 14304 14604 13932 12880 
sppnw26 23 771 6796 6976 6956 6880 6880 
sppnw32 19 294 14877 14877 14886 14877 14877 
sppnw34 20 899 10488 13341 11289 10713 10797 
sppnw39 25 677 10080 11670 10758 11322 10545 
sppnw41 17 197 11307 11307 11307 11307 11307 

 

m, number of rows (constraints); n, number of columns (decision variables); Opt, the best known cost value for 
each instance (IP optimal), when applying Ant  Algorithms, AS and ACS, and combining them with forward 
checking. 
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Figure 1. Experimental results for SCP with AS and AS+FC. 

 
 
 

 
 
Figure 2. Experimental results for SCP with ACS and ACS+FC. 

 
 
 
number of iterations to 150, so the number of generated 
candidate solutions was limited to 15000. The 
performance of our previous work was improved due a 
better parameters setting. For ACS Q0 = 0.5 and the list 
size was 300. Algorithms were implemented using ANSI 
C, GCC 3.3.6, under Microsoft Windows XP Professional 
version 2002.  

DISCUSSION 
 
We solved SCP and SPP using a new ACO transition rule 
algorithm. Results obtained show that a good idea is to 
use both incomplete (ACO) and complete (CP) 
techniques together. In general, when problems are easy 
enough to allow searching for the optimal solution,
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Figure 3. Experimental results for SPP with AS and AS+FC. 

 
 
 

 
 
Figure 4. Experimental results for SPP with ACS and ACS+FC. 

 
 
 
complete techniques (CP) can be used. When problems 
become harder, incomplete techniques (ACO) represent 
a good alternative in order to solve approximately the 
problem. 

The effectiveness of the proposed rule was tested on 
benchmark problems and the results were compared with 
pure ACO algorithms. 

About efficiency, the computational effort required is 
almost the same. Ongoing research will investigate a 
self-tuning parameter proposal. 
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