
International Journal of the Physical Sciences Vol. 6(19), pp. 4667-4673, 16 September, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.771
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

A hybrid Ant algorithm for the set covering problem

Broderick Crawford1,2*, Ricardo Soto1,3, Eric Monfroy2,4, Fernando Paredes5 and Wenceslao
Palma1

1Pontificia Universidad Católica de Valparaíso, Chile.

2Universidad Técnica Federico Santa María, Chile.
3Universidad Autónoma de Chile, Chile.

4CNRS, LINA, Université de Nantes, France.
5Escuela de Ingeniería Industrial, Universidad Diego Portales, Santiago, Chile.

Accepted 28 June, 2011

Set covering problem is the model for many important industrial applications. In this paper, we solve
some benchmarks of this problem with ant colony optimization algorithms using a new transition rule.
A look-ahead mechanism was incorporated to check constraint consistency in ant computing.
Computational results are presented showing the advantages to use this additional mechanism to ant
system and ant colony system.

Key words: Set covering problem, ant colony optimization, look-ahead techniques.

INTRODUCTION

Set covering problem (SCP) is a type of problem that can
model several real life situations, including crew
scheduling in railway and mass transit companies (Feo
and Resende, 1989). In this work, we solve several
benchmarks of SCP with ant colony optimization (ACO)
algorithms and some hybridizations of ACO with a
constraint programming (CP) look-ahead technique:
Forward checking (Bessiere, 2006; Rossi et al., 2006).

There exist problems for which ACO is of limited
effectiveness. Among them, a prominent role is played by
very strongly constrained problems. They are problems
for which neighborhoods contain a few solutions or none
at all, and local search is of very limited use. SCP and set
partitioning problem (SPP) are of such problems.

A direct implementation of the basic ACO framework is
incapable of obtaining feasible solutions for many
standard tested instances of SPP (Maniezzo and
Milandri, 2002). The root of the problem is that simply
following the random-proportional rule, that is, learning-
reforcing good paths is no longer enough, as this does
not check for constraint consistency.

There already exist some early approaches applying

*Corresponding author. E-mail: broderick.crawford@ucv.cl.

ACO to the SCP. In Leguizamon and Michalewicz (1999),
ACO has been used only as a construction algorithm and
the approach has only been tested on some small SCP
instances. More recent works (Rahoual et al., 2002;
Lessing et al, 2004; Gandibleux et al., 2004) apply ant
systems to the SCP and related problems using
techniques to remove redundant columns and local
search to improve solutions.

In this paper, we explore the addition to the ACO
algorithm of a look-ahead mechanism usually used in
complete techniques. Trying to solve larger instances of
SPP with the original ant system (AS) or ant colony
system (ACS) implementation derives in a lot of
unfeasible labeling of variables, and the ants can not
obtain complete solutions using the classic transition rule
when they move in their neighborhood.

We propose the addition of a look-ahead mechanism in
the construction phase of ACO in order that only feasible
solutions are generated. The look-ahead mechanism
allows the incorporation of information about the
instantation of variables after the current decision.

 The idea differs from that proposed by (Michel and
Middendorf, 1998; Gagne et al., 2001). These authors
proposed a look ahead function evaluating the pheromone
in the shortest common super-sequence problem and
estimating the quality of a partial solution of an industrial

4668 Int. J. Phys. Sci.

Begin
InitParameter();
while (remain iterations) do
for (k:=1 to nAnt s) do
while (solution is not completed and TabuList <> J) do
Choose next column j with Transition Rule Probability
for (each Row i covered by j) do
feasible(i):=Posting(j)
end for
if (feasible(i) for all i) then
AddColumnToSolution(j)
else
Backtracking(j) /*Set j uninstAnt iated
end if
AddColumnToTabuList(j);
end while
end for
UpdateOptimum();
UpdatePheromone();
end while
Return best solution founded
End

Algorithm 1. Procedure ACO for SCP and SPP.

scheduling problem.

Combining ACO and constraint programming, the work
that is closest to this study is that of Khichane et al.
(2010). They introduced an approach which combines
ACO and CP optimizer for solving combinatorial
optimization problems.

PROBLEM DESCRIPTION

The relevance to solve SCP and SPP lies in that they are
models for many important applications in the field of
Operational Research. For instance, they can be used to
describe scheduling or timetabling problems.

SPP is the problem of partitioning a given set into
manually independent subsets while minimizing a cost
function defined as the sum of the costs associated to
each of the eligible subsets.

In SPP, we have given a mxn matrix A = aij , in which all
the matrix elements are either zero or one. Additionally,
each column is given a non-negative cost cj. We say that
a column j can cover a row i if aij = 1. Let xj be a binary
decision variable which is one if column j is chosen and
zero otherwise. The SPP can be defined formally as
minimize (1) subject to (2). These constraints enforce that
each row is covered by exactly one column.

The SCP is a SPP relaxation. The goal in the SCP is to
choose a subset of the columns of minimal weight
formally using constraints to enforce that each row is
covered by at least one column as (3).

�
=

=
n

j
jj xcxf

1

)((1)

�
=

=
n

j
jij xa

1

1 mi ,...,1=∀ (2)

�
=

≥
n

j
jij xa

1

1 mi ,...,1=∀ (3)

SOLVING SPP AND SCP WITH ACO METAHEURISTIC

We solve SPP and SCP instances with Ant colony
optimization. Artificial Ant build problem solutions using a
constructive procedure driven by a combination of
artificial pheromone, heuristic information (problem data)
and a transition rule used to evaluate successive con-
structive steps. For solving SPP and SCP, the columns
are chosen as the solution components and have
associated a cost and a pheromone trail (Dechter and
Frost, 2002). Each column can be visited by an Ant only
once and then a final solution has to cover all rows. A
walk of an Ant over the graph representation corresponds
to the iterative addition of columns to the partial solution
obtained so far. Each Ant starts with an empty solution
and adds columns until a cover is completed (Algorithm
1).

�
∉

=

kSl
ll

jjk
j tp

β

β

ητ

ητ

)(

)(
)(if kSj ∉ (4)

j

j
j c

e
=η (5)

A pheromone trail �j and a heuristic information �j are
associated to each eligible column j. A column to be
added is chosen with a probability that depends of the
pheromone trail and the heuristic information.

The most common form of the ACO decision policy
(Transition Rule Probability) when the Ant s work with
components is defined in (4), where Sk is the partial
solution of the Ant k. The � parameter controls how
important � is in the probabilistic decision. In this work,
the pheromone trail �j is put on the problems component
(each eligible column j) instead of the problems
connections. Setting a good pheromone quantity is not a
trivial task either. The quantity of pheromone trail laid on
columns is based on the idea: The more pheromone trail
in particular item, the more profitable that item is
(Leguizamon and Michalewicz, 1999). Then, the
pheromone deposited in each component will be in
relation to its frequency in the Ant solutions. In this work,
we divided this frequency by the number of Ants obtaining
better results.

We use dynamic heuristic information that depends on
the partial solution of an Ant. It can be defined as (5),
where ej is the so called cover value, that is, the number
of additional rows covered when adding column j to the
current partial solution, and cj is the cost of column j.

Algorithm 1 describes the basic structure of ACO
algorithm to solve SCP and SPP. In other words, the
heuristic information measures the unit cost of covering
one additional row. An Ant ends the solution construction
when all rows are covered. We use two ACO instances:
Ant system (AS) and Ant colony system (ACS)
algorithms, the original and the most famous algorithms
in the ACO family. Generally ACS improves the search of
AS by using: a different transition rule in the constructive
phase, exploiting the heuristic information in a more rude
form (pseudorandom), a list of candidates to future
labeling and a different treatment of the pheromone.

A direct implementation of the Basic ACO framework is
incapable of obtaining feasible solution for many SPP
instances (Crawford et al., 2006). Each Ant starts with an
empty solution and adds column until a cover is
completed; but to determine if a column actually belongs
or not to the partial solution is not good enough.

The traditional ACO decision policy (4), does not work
for SPP because the Ants, in this traditional selection
process of the next columns, ignore the information of the
problem constraint when a variable is a instantiated. And
in the worst case, in the iterative steps, it is possible to

Crawford et al. 4669

assign values to some variable that will make it
impossible to obtain a complete solution. To improve it,
we use a procedure similar to the constraint propagation
technique from CP (Apt, 2003; Bessiere, 2006).

LOW LEVEL HYBRIDIZATION OF ANTS AND
CONSTRAINT PROGRAMMING

Hybrid algorithms provide appropriate compromises
between exact (or complete) search methods and
approximate (or incomplete) methods; some efforts have
been done in order to integrate constraint programming
(exact methods) to Ants algorithms (stochastic local
search methods) (Meyer and Ernst, 2004; Khichane et
al., 2010).

An hybridization of ACO and CP can be approached
from two directions: We can either take ACO or CP as the
base algorithm and then try to embed the respective
other method into it. A form to integrate CP into ACO is to
let it reduce the possible candidates among the not yet
instantiated variables participating in the same
constraints that the current variable. A different approach
would be to embed ACO within CP. The point at which
ACO can interact with CP is during the labeling phase
using ACO to learn a value ordering that is more likely to
produce good solutions.

In this work, ACO use CP in the variable selection
(when adding columns to partial solution). The CP
algorithm used in this paper is forward checking with
backtracking (Dechter and Frost, 2002). It performs arc
consistency between pairs composed of a not yet
instantiated variable and an instantiated variable, that is,
when a value is assigned to the current variable, any
value in the domain of a future variable which conflicts
with this assignment is removed from the domain.

The forward checking procedure, taking into account
the constraint network topology (that is, which sets of
variables are linked by a constraint and which are not),
guarantees that at each step of the search, all constraints
between already assigned variables and not yet assigned
variables are consistent; it means that columns are
chosen if they do not produce any conflicts with the next
column to be chose. Then, a new transition rule is
developer adding forward checking to ACO.

EXPERIMENTAL RESULTS

The computational experiments showed that AS+FC and
ACS+FC out performed AS and ACS. We have tested
SCP and SPP benchmark instances of Beasley or-library
(Beasley, 1990). Tables 1 and 2 and Figures 1 to 4 show
the result for solving SCP and SPP with AS and ACS,
respectively. The algorithms ran with the following
parameters settings: Influence of heuristic information � =
0.5 and evaporation rate � = 0.4.
 The number of Ants was set to 100 and the maximum

4670 Int. J. Phys. Sci.

Table 1. Experimental results of SCP benchmarks.

Problem m n Opt AS ACS AS+FC ACS+FC
scp410 200 1000 514 539 669 556 664
scpa1 300 3000 253 592 348 288 331
scpa2 300 3000 252 531 378 285 376
scpa3 300 3000 232 473 319 270 295
scpa4 300 3000 234 375 333 278 301
scpa5 300 3000 236 349 353 272 335
scpb1 300 3000 69 196 101 75 115
scpb2 300 3000 76 243 117 87 110
scpb3 300 3000 80 207 112 89 117
scpc1 400 4000 227 442 305 261 317
scpc2 400 4000 219 484 309 260 311
scpc3 400 4000 243 551 367 268 328
scpc4 400 4000 219 523 324 259 303
scpcyc07 672 448 144 272 321 148 321
scpcyc08 1792 1024 344 512 769 364 769
scpcyc09 4608 2304 780 1297 1723 816 1445
scpcyc10 11520 5120 1792 3123 4097 1969 3506
scpd1 400 4000 60 184 92 72 105
scpd2 400 4000 66 209 96 74 113
scpd3 400 4000 72 221 111 83 119

M, Number of rows (constraints); n, number of columns (decision variables); Opt, the best known cost
value for each instance (IP optimal), when applying Ant algorithms, AS and ACS, and combining them with
forward checking.

Table 2. Experimental results of SPP benchmarks.

Problem m n Opt AS ACS AS+FC ACS+FC
sppaa01 8233 8904 56137 96256 94270 60246 84435
sppaa02 531 5198 30494 39883 57632 37452 52211
sppaa03 825 8627 49649 63734 93304 55082 81177
sppaa05 801 8308 55839 61703 91134 58158 84362
sppaa06 646 7292 27040 42015 54964 33524 48703
sppnw06 50 6774 7810 9200 9788 8160 8038
sppnw08 24 434 35894 x x 35894 36682
sppnw09 40 3103 67760 70462 x 70222 69332
sppnw10 24 853 68271 x x x x
sppnw12 27 626 14118 15406 16060 14466 14252
sppnw15 31 467 67743 67755 67746 67743 67743
sppnw18 124 10757 51624 51624 73006 60224 62832
sppnw19 40 2879 10898 11678 12350 11060 11858
sppnw23 19 711 12534 14304 14604 13932 12880
sppnw26 23 771 6796 6976 6956 6880 6880
sppnw32 19 294 14877 14877 14886 14877 14877
sppnw34 20 899 10488 13341 11289 10713 10797
sppnw39 25 677 10080 11670 10758 11322 10545
sppnw41 17 197 11307 11307 11307 11307 11307

m, number of rows (constraints); n, number of columns (decision variables); Opt, the best known cost value for
each instance (IP optimal), when applying Ant Algorithms, AS and ACS, and combining them with forward
checking.

Crawford et al. 4671

Figure 1. Experimental results for SCP with AS and AS+FC.

Figure 2. Experimental results for SCP with ACS and ACS+FC.

number of iterations to 150, so the number of generated
candidate solutions was limited to 15000. The
performance of our previous work was improved due a
better parameters setting. For ACS Q0 = 0.5 and the list
size was 300. Algorithms were implemented using ANSI
C, GCC 3.3.6, under Microsoft Windows XP Professional
version 2002.

DISCUSSION

We solved SCP and SPP using a new ACO transition rule
algorithm. Results obtained show that a good idea is to
use both incomplete (ACO) and complete (CP)
techniques together. In general, when problems are easy
enough to allow searching for the optimal solution,

4672 Int. J. Phys. Sci.

Figure 3. Experimental results for SPP with AS and AS+FC.

Figure 4. Experimental results for SPP with ACS and ACS+FC.

complete techniques (CP) can be used. When problems
become harder, incomplete techniques (ACO) represent
a good alternative in order to solve approximately the
problem.

The effectiveness of the proposed rule was tested on
benchmark problems and the results were compared with
pure ACO algorithms.

About efficiency, the computational effort required is
almost the same. Ongoing research will investigate a
self-tuning parameter proposal.

REFERENCES

Apt K (2003). Principles of Constraint Programming. Cambridge
University Press. ISBN: 0521125499 0511062494 9780521125499.

Beasley JE (1990). Or-library: distributing test problems by electronic
mail. J. Oper. Res. Soc., 41(11):1069-1072.

Bessiere C (2006). Constraints propagation. In Handbook of Constraint
Programming, pp. 29-84.

Crawford B, Castro C, Monfroy E (2006). A hybrid Ant algorithm for the
airline crew pairing problem. Lecture Notes in Computer Science.
4293: 381-391.

Dechter R, Frost D (2002). Backjump-based backtracking for constraint
satisfaction problems. Artif. Intell., 136(2): 147-188.

Feo T, Resende G (1989). A probabilistic heuristic for a computationally

difficult set covering problem. Oper. Res. Lett., 8(2): 67-71.
Gagne C, Gravel M, Price W (2001). A Look-Ahead Addition to the Ant

Colony Optimization Metaheuristic and its Application to an Industrial
Scheduling Problem. In Proceedings of the Fourth Metaheuristics
International Conference (MIC’01), pp. 79-84.

Gandibleux X, Delorme X, T’Kindt V (2004). An Ant colony optimisation
algorithm for the set packing problem. Lecture Notes in Computer
Science. 3172: 49-60.

Khichane M, Albert P, Solnon C (2010). Strong Combination of Ant
Colony Optimization with Constraint Programming Optimization.
Lecture Notes in Computer Science. 6140: 232-245.

Leguizamon G, Michalewicz Z (1999). A new version of Ant system for
subset problems. In Proceedings of Congress on Evolutionary
Computation (CEC99). IEEE Press, 3(2): 124-141.

Lessing L, Dumitrescu I, Stutzle T (2004). A comparison between aco
algorithms for the set covering problem. Lecture Notes in Computer
Science. 3172: 1-12.

Crawford et al. 4673

Maniezzo V, Milandri M (2002). An Ant -based framework for very

strongly constrained problems. Lecture Notes in Computer Science.
2463: 222-227.

Meyer B, Ernst AT (2004). Integrating aco and constraint propagation.
Lecture Notes in Computer Science. 3172:166-177.

Michel R, Middendorf M (1998). An island model based Ant system with
look ahead for the shortest super sequence problem. Lecture Notes
in Computer Science. 1498: 692-701.

Rahoual M, Hadji R, Bachelet V (2002). Parallel Ant system for the set
covering problem. Lecture Notes in Computer Science. 2463: 262-
267.

Rossi F, Van Beek P, Walsh T (2006). Handbook of Constraint
Programming. Elsevier, pp. 29-84.

