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This study explores rough sets, which provide mathematical description for uncertain concepts that 
can not be defined clearly by traditional logic. The study further examines data mining, which helps to 
discover meaningful information from large data sets by incorporating it with rough set theory. An 
investigation in topology instruction was undertaken to exemplify the usability of rough set theory in 
qualitative data analysis. The study provides an example of educational application of data mining in a 
topology course. 
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INTRODUCTION 
 
Is Serkan a young person? This is an unfortunate 
question for Serkan who is 33 years old. Looking for the 
answer to this question in mathematics is meaningless 
for many mathematicians. Because, mathematics 
requires the concepts to be certain, or many scientists 
accept this situation like that. In other words, a concept is 
mathematical if it possesses a certainty (Frege, 1904). 

However, as in the question “Is Serkan a young 
person?” vague concepts are abundant in daily life. 
These vague, which we may also call uncertain know-
ledge, occupied the human mind for centuries. According 
to Frege (1904), uncertain concepts are those that are 
related to boundary-line view. That is, an uncertain 
concept is the one that has some objects not only outside 
or inside of it, but also on its boundary. Philosophers, 
psychologists, and currently computing engineers and 
mathematicians have shown interest in this topic. Now, 
we are faced with questions such as how can we 
understand uncertain knowledge? Or how can we 
formulate uncertain knowledge?  

Currently, scientists, particularly those who focus on 
artificial   intelligence  are  seeking  for  answers  to  such 
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questions. It is not an easy task to formulate uncertain 
concepts that may not involve mathematically definite 
results. Therefore, there is need for alternative mathe-
matical concepts for mathematical formulation of such 
concepts. To answer such questions, mathematicians 
have began to look for different fields of research.  

These new mathematical approaches are seen mostly 
in a fundamental concept of mathematics, sets. For this 
purpose, several set theories have been developed that 
are alternative to George Cantor’s leading set theory. The 
mereology theory by Lesniewski (1915), alternative set 
theory by Vopenka (1970), the penumbral set theory by 
Apostoli and Kanada (1999), Fuzzy, intuitive, and soft set 
theories by Zadeh (1965), and rough sets by Pawlak 
(1982) are some examples of the new set theories 
(Pawlak, 1997).  

The first successful application of uncertainty 
approaches is the Fuzzy sets, defined by Zadeh in 1965. 
In this approach, membership of an element in a set is 
defined via a membership function. In other words, in 
Fuzzy sets, one can not say that an element certainly 
belongs to a set or not, one can only say that an element 
belongs to a set at a certain degree. 

Another successful uncertainty approach is the rough 
sets defined by Pawlak (1982). After being introduced, 
these sets have been used as a mathematical tool to 
extract information from incomplete or uncertain data 
(Pawlak, 1991, 1995). Rough set theory  can  be  used  in 



 

 
 
 
 
data reduction, detection of dependences, estimation of 
the importance of data, forming control algorithms from 
data, approximate classification of data, detection of 
similarities and differences within data, detection of 
patterns in data, and detection of cause-effect relation-
ships (Pawlak and Slowinski, 1994; Aydo�an and Gencer 
2007). Rough sets are used for these purposes as 
illustrated in the literature (Kent, 1994; Lin and Cercone, 
1997; Nings et al., 1995; Pawlak et al., 1995; Polkowski 
and Skowron, 1998 a, b; Zhong and Showron, 2000; 
Yorek and Narli, 2009; Polkowski, 2002; Slowinski, 
1992). 
 
 
Educational data mining 
 
The field of education is a place where one can often 
face ambiguous situations. There is a growing interest 
among researchers that use data mining in educational 
technologies, or educational data mining (EDM). Baker 
(in press) defines EDM as a field of scientific research 
that focused on development of methods for investigating 
a particular type of data obtained from educational 
settings, and to use those methods to improve students’ 
learning and the context, in which they learn. EDM 
studies mostly concentrate on detecting patterns in edu-
cational data, but there are studies that investigate the 
ways of using these patterns in student modeling 
(Amarshi and Conati, 2009). 

There are several fields from which EDM methods are 
derived such as data mining and machine learning, 
psychometrics and other areas of statistics, information 
visualization, and computational modeling. Romero and 
Ventura (2007) categorized EDM studies as the follows: 
 
1. Statistics and visualization 
2. Web mining: 
 
i) Clustering, classification, and outlier detection 
ii) Association rule mining and sequential pattern mining 
iii) Text mining 
 
A second viewpoint on educational data mining is given 
by Baker (in press), which classifies work in educational 
data mining as follows: 
 
1. Prediction: 
 
i) Classification 
ii) Regression 
iii) Density estimation 
 
2. Clustering 
3. Relationship mining: 
 
i) Association rule mining 
ii) Correlation mining 
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iii) Sequential pattern mining 
iv) Causal data mining: 
 
4. Distillation of data for human judgment 
5. Discovery with models 
 
EDM studies have focused mostly on tutoring systems 
where structured problem solving (e.g., (Sison et al., 
2000; Zaiane, 2002; Baker et al., 2008)) or drill and 
practice activities (e.g. (Beck, 2005)) are supported. EDM 
methods may differ from the broader data mining 
literature in explicitly utilizing the levels of meaningful 
hierarchy in educational data. 

As a data mining method, rough set data analysis is 
used in EDM. For instance, Narli (2010) discusses the 
usability of rough sets in the analysis of attitude data 
obtained in educational studies. In addition, there are 
biology literature that involve the modeling of the 
construction of life concept with the help of Fuzzy-rough 
sets (Yorek and Narli, 2009) and the use of rough sets in 
the classification of attitudes toward nature (Narli at al., 
2010). 

How students’ incorrect or partially correct ideas affect 
their learning is an important area of research. It is not an 
easy task to develop a theory to determine students’ 
misunderstandings. Questions such as ‘How student 
responses represent the level of their understanding? Are 
their responses similar to each other?’ These are 
important question in working toward explaining student 
ideas. This study seeks the usability of rough set data 
analysis to answer such questions. Therefore, in this 
study, rough sets and data analysis using rough sets are 
described and a sample rough set data obtained in a 
topology course are analyzed. 
 
 
PRELIMINARIES 
 
In the sense of traditional set concept, the set is a well 
defined collection of objects. In other words, an element 
either belongs to a set or not. For instance, the set of odd 
numbers is that kind of a set because a number is either 
odd or not. However, in daily life not everything can be 
seen or defined in this clarity.  

Let us think about a set of young people. Unlike the set 
of odd numbers, the set of young people can not be 
defined with precise boundaries. In fact, the majority of 
concepts often used in daily life are uncertain concepts, 
which have no definite boundaries. This situation forced 
researchers to investigate and look for alternative set 
theories. In the following section, rough sets, a successful 
example of the alternative set theories, will be explained. 
 
 
Rough sets 
 
Rough set theory is an extension of traditional set theory.  
In this set, a subset of a universal set  is  defined  by  two 
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sets called lower and upper approximations. The basic 
tool in Pawlak’s rough sets is an equivalence relation. 
The lower and upper approximations are built through 
equivalence classes (Aktas and Cagman, 2005). After 
Pawlak’s definition, other rough set theories are sug-
gested using different algebraic structures instead of an 
equivalence relation (Bonikowaski, 1995; Jiashang, 
Congxin and Degang, 2005; Kumar, 1993; Kuroki, 1997; 
Pomykala and Pomykala, 1998; Narli and Ozcelik, 2008).  

Scientists all over the world showed interest in 
Pawlak’s rough set theory. Pawlak defined rough sets as 
the follows: 
 
Let U be a finite universal set; R ⊂ UxU is an equivalence 
relation, and A ⊂ U: 
 
 i. The union of all equivalence classes, included in the 
set A, formed in U according to relation R is called the 
lower approximation of the set A according to relation R, 
(R*(A)); 
ii. The union of equivalence classes which formed in U 
according to relation R and which have non-empty inter-
section with the set A is called the upper approximation of 
the set A according to relation R, (R*(A)); 
iii. The difference of upper approximation set from the 
lower approximation set is called the boundary region of 
the set A according to relation R, (BR (A)). 
 
Now, let R(a) represent the equivalence class of the 
element a∈A and these can be defined with the following 
relations: 
 
R*(A)= ∪a∈U { R(a) : R(a) ⊂ A} 
R*(A)= ∪a∈U { R(a) : R(a)∩A�∅} 
BR(A)= R*(A)- R*(A). 
 
According to rough set theory, the set R*(A), depending 
on the property defined by the relation R, is formed with 
elements, which definitely belong to set A. The elements 
of the set R*(A), depending on the property defined by the 
relation R, are the elements that potentially belong to set 
A. 

In view of these definitions, set A is called a crisp set if 
its boundary region is empty, and a rough set if its 
boundary region is non-empty. These definitions are 
schematically shown in Figure 1. 

Lower and upper approximation sets posses the 
following properties (Pawlak, 1997): 
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Figure 1. Schematic representation of a rough set. 
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Rough sets can also be defined via approach 
membership functions instead of lower and upper 
approximations. Accordingly, A  being the cardinality of 

the set A, approach membership function of the set A 

according to equivalence relation R, 
R
Aµ  is defined as 

follows: 
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Approach membership function, 
R
Aµ  determines the 

possibility of the element x being a member of the set A 
according to relation R. It is obvious that this possibility 
will be within closed interval [0,1] and using the 
membership function, the lower and upper approximation 
sets and boundary region can be represented as follows: 
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Table 1. Patients’ flu condition and the symptoms (Pawlak, 1997). 
 

Universal set Condition attributes Decision attribute 
Patient Headache Muscle ache Fever Flu 

H1 No Yes High Yes 
H2 Yes No High Yes 
H3 Yes Yes Very high Yes 
H4 No Yes Normal No 
H5 Yes No High No 
H6 No Yes Very high Yes 

 
 
 
In addition, rough sets can be characterized by a con-
stant that belong to closed interval [0, 1]. The constant 
that will determine the clarity of the approach, which is 
defined as: 
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It should be readily understandable that if 1)( =ARα  
then the set A is an exact set; otherwise it is a rough set. 
 
 
Rough set data analysis  
 
Data in rough set analysis are presented as an attribute-
value table such that every row in the table represents an 
object (or sample) and every column shows a property 
that characterizes the object. This table is called an 
information table or decision table. A simple example of 
an information table is shown in Table 1. 

It can be seen that there are three columns in the 
information table named as ‘universal set, condition 
attributes and decision attribute’. The universal set includes 
six patients. In rough set data analysis, there may be many 
condition attributes, but in this case there are three condition 
attributes namely headache, muscle ache and fever. 
Similarly, there may be a number of decision attributes. In 
the above example, only one decision attribute was 
determined, whether it is having flu or not. The rows of the 
information table contain individuals, objects, or samples. 
These are marked by the elements of the universal set. For 
instance, in Table 1, patients (H1, H2, H3, H4, H5, H6) 
constitute the rows and the condition, and decision attribute 
values for each patient are presented in the patient’s row 
(Munakata, 1998). Condition attributes altogether define 
equivalence relation R, which can also be named as 
indiscernibility relation. The lower and upper approximation 
sets are determined by equivalence classes formed 
according to this relation. 
 
 
Dependence of attributes 
 
Another important topic in rough set analysis is to determine  

the dependences among attributes. Intuitively, if a decision 
attributes set Q is determined by a condition attributes set P, 
then Q and P can be said to be dependent. In the above 
example, condition attributes and decision attribute can be 
defined as P = { Headache, Muscle ache, Fever} and Q = 
{Flu} respectively. In this case, whether a patient is flu or 
not may depend on to what degree he/she shows the P 
attributes. In cases such as this, the relationship between 
P and Q attribute sets can be determined functionally 
using rough set theory: 

Let P and Q be the condition and decision attributes, 
respectively. If k is calculated as shown, Q is said to be 
dependent to P at the level of k (0 ≤  k ≤  1) and is 
represented as P=>kQ: 
 

k=
U

QPOS
QP P )(

),( =γ  

 
where POSP(Q), is called positive region of the division 
U/D according to P and is defined as:  
 
POSP(Q)= �

QUX
altP

/∈

(X). 

 
If k = 1, Q is totally dependent on P, if k < 1, Q is partially 
dependent on P. ),( QPγ defines the closeness of the 
division U/Q and estimation of it according to conditions 
in P. The coefficient k represents the degree of 
dependence (Pawlak, 1997). 
 
 
Reduced attribute sets 
 
Let the set of condition attributes in an information table 
be P, the set of decision attributes Q, and the 
indiscernability (equivalence) relation defined by the set P 
be IND(P). If the attribute subset B⊂P encloses indis-
cernability relation IND(P), then P-B attributes can be 
disregarded. These attributes are redundant and disre-
garding them does not deteriorate the classification. The 
subsets that do not include attributes that could be 
disregarded are called attribute sets. Reduced attribute 
set of an information table can be presented as follows: 
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If 
 
IND(B) = IND(P) 
 
and 
 
IND(B-{a}) ≠ IND(P)  
    
then                                                                                             
 
B ⊆ P is the smallest attribute set. 
 
The intersection of all reduced attribute sets is called 
core. The core can be an empty set. The set of all 
reduced sets of an attribute set P is denoted as RED(P).  
 
 
METHODS (APPLICATION IN A TOPOLOGY COURSE) 
 
The sample 
 
The sample of this study consists of pre-service mathematics 
teachers in a state university in Turkey. In total, 70 students who 
enrolled in a topology course were administered a written test and 
the data were analyzed using rough set theory. 
 
 
Materials and procedure 
 
All the students completed a written test, which was developed by 
the researcher (SN). The content validity of the test was provided 
by two mathematicians who have taught topology courses before. 
The expert opinions were positive about the test’s validity in 
measuring the intended concepts. The written test is provided as 
follows:  
 
 
The questionnaire 
 
Let R be the set of real numbers; Q the set of rational numbers; Z 
the set of whole numbers; N the set of natural numbers and (R,U) 
the usual topological space: 
 
Q1. According to usual topology, what is the interior of the set of 

natural numbers N (
o

N
   

)? 
Explain your answer: ------------------------------------------------------------ 
 
Q2. According to usual topology, what will be the boundary of the 
set of rational numbers Q ( Q ∂ )? 
Explain your answer: ------------------------------------------------------------ 
 
Q3. According to usual topology, what are the isolation points of the 
set of whole numbers Z? 
Explain your answer: ------------------------------------------------------------ 
 
Q4. According to usual topology, determine the closure points of 
the set of whole numbers Z. 
Explain your answer: ------------------------------------------------------------ 
 
Q5. Is the family of τ = {Z∩T:T∈U} a topological structure on Z? 
Explain your answer: ------------------------------------------------------------ 
 
Students were given 90 minutes to complete the test. A rubric was 
developed by the researchers to score students’ papers. The data  

 
 
 
 
obtained were analyzed using rough sets. The intention of this 
analysis was to investigate to what degree the first four questions 
can explain the last (fifth) question. 
 
 
Rough sets analysis of the questions 
 
As explained earlier, in rough set analysis, data were 
tabulated in an attribute-value table such that rows in the 
table include an object or sample, and columns include 
attributes that characterize the object. The attribute 
values are obtained either by measurement or human 
experience. In this study, each question in the test is set 
as an attribute and responses to the questions are 
regarded as measurement of the attributes. Students’ 
scores are determined using a rubric and they were 
grouped as 2, 1, 0 with respect to their answers such that 
students who provided completely correct answer were 
put into group 2, those who had partially correct answer 
into group 1, and those who provided completely wrong 
answer into group 0.  

Provided by additional information that come from an 
expert or in most situations resulting from classification, 
in other words, condition attribute, which are concepts 
family to be estimated is chosen as the fifth question in 
the study. According to previous descriptions, the 
information table for the present study is presented in 
Table 2. 

It can be seen in Table 2 that the students who have 
same scores in the first four questions, might have 
different scores from the decision class that is the fifth 
question. For instance, students x1, x6, and x7 provided 
completely correct answers to all four questions. 
However, student x1 could partially answer the last 
question, student x6 who answered the last question was 
completely correct, and student x7 could not provide a 
correct answer to the fifth question. How can one argue 
that student x6 have the complete correct solution to the 
fifth question, or that student x7 do not know the solution, 
and that x1 partially knows the solution? How precise this 
argument can be? For instance, student x2 got no points 
from the second question, and he/she obtained partial 
points from the questions one, three, and four. However, 
he/she provided completely the correct answer to the fifth 
question. Can one argue that student x2 is less 
successful than students x1, x6, or x7? To what degree is 
the success in the first four questions related to success 
in the fifth question? The answers to such questions are 
sought via rough set data analysis. 
 
 
Indiscernibility relation  
 
The universal set in this study is the set of students, U = { 
x1, x2,..., x70}. Considering all “condition attributes” in 
Table 2, the equivalence relation (indiscernibility relation) 
R determined by these attributes will divide the set of 
students U into the following equivalence classes: 
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Table 2. Information system for topology dataset. 
 

Condition attributes Decision class 
Students 

Q1 Q2 Q3 Q4 Q5 
x1 2 2 2 2 1 
x2 1 0 1 1 2 
x3 2 0 2 0 1 
x4 0 0 0 0 0 
x5 2 2 1 2 2 
x6 2 2 2 2 2 
x7 2 2 2 2 0 
x8 2 2 2 2 0 
x9 0 0 0 0 0 
x10 2 2 2 2 1 
x11 2 2 2 2 0 
x12 2 0 2 2 1 
x13 2 2 2 2 1 
x14 2 0 2 2 0 
x15 2 0 2 2 1 
x16 2 1 0 0 0 
x17 1 0 0 0 0 
x18 1 0 0 0 1 
x19 0 0 0 0 0 
x20 1 0 2 0 1 
x21 0 0 0 0 0 
x22 0 0 0 1 0 
x23 1 0 0 1 0 
x24 0 1 0 0 0 
x25 0 0 1 1 0 
x26 1 0 0 0 1 
x27 0 0 1 0 1 
x28 2 2 2 2 0 
x29 2 0 2 2 2 
x30 0 0 0 2 0 
x31 0 0 0 0 0 
x32 1 0 1 1 0 
x33 1 0 2 0 1 
x34 2 0 2 1 0 
x35 0 0 0 0 0 
x36 2 2 2 2 0 
x37 2 2 1 1 0 
x38 0 0 0 1 1 
x39 0 1 0 1 0 
x40 0 0 0 0 0 
x41 1 0 0 1 1 
x42 0 0 2 2 1 
x43 0 0 1 1 0 
x44 0 0 0 1 1 
x45 2 0 1 0 0 
x46 1 0 0 0 0 
x47 1 0 0 1 1 
x48 2 0 2 2 0 
x49 2 0 2 0 0 
x50 2 2 1 1 1 
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Table 2. Cont. 
 

x51 1 0 0 2 0 
x52 2 0 0 2 0 
x53 1 0 2 0 1 
x54 2 0 2 0 0 
x55 0 0 0 1 0 
x56 2 0 2 2 1 
x57 0 0 0 1 1 
x58 1 0 0 1 0 
x59 0 0 1 0 0 
x60 0 0 0 0 0 
x61 2 2 2 2 0 
x62 2 0 2 0 1 
x63 1 0 0 2 0 
x64 0 0 0 0 0 
x65 2 0 0 2 0 
x66 0 0 1 1 0 
x67 2 0 2 2 0 
x68 1 0 0 2 0 
x69 2 0 2 0 0 
x70 1 0 0 1 1 

 
 
 
U/R ={{x1, x6, x7, x8, x10, x11, x13, x28, x36, x61}, {x5}, {x16}, 
{x24}, {x30}, {x34}, {x39}, {x42}, {x45},{x37, x50}, {x12, x14, x15, 
x29, x48, x56, x67}, {x3, x49, x54, x62, x69}, {x52, x65}, {x20, x33, 
x53}, {x2, x32}, {x51, x63, x68}, {x23, x41, x47, x58, x70}, {x17, x18, 
x26, x46}, {x25, x43, x66}, {x27, x59}, {x22, x38, x44, x55, x57}, {x4, 
x9, x19, x21, x31, x35, x40, x60, x64}}.  
 
Lower and upper approximation sets are important 
concepts that are defined with the help of the equivalence 
relation of rough set theory. Approximation sets of this 
study are defined next. 
 
 
Lower and upper approximation sets 
 
The universal set U, which includes students, can be 
divided into three subsets with respect to students’ 
responses to the last question. Let us represent the set of 
students who were group 2 with the set T (true), those 
who were group 1 with the set M (medium), and the stu-
dents who coded as 0 with the set F (false). The following 
section will describe the lower and upper approximation 
sets of the sets T, M, and F.  
 
Lower and upper approximation sets of set T: Lower and 
upper approximation sets of set T = { x2, x5, x6, x29} are: 
  
R*(T)= ∪a∈U { R(a) : R(a) ⊂ T}={x5} 
R*(T)= ∪a∈U { R(a) : R(a)∩T�∅}={x1, x2, x5, x6, x7, x8, x10, 
x11, x12, x13, x14, x15, x28, x29, x32, x36, x48, x56, x61, x67} 
respectively. 

It can be seen in the lower and upper approximation sets 
that even though the elements of the set {x1, x7, x8, x10, 
x11, x12, x13, x14, x15, x28, x32, x36, x48, x56, x61, x67} do not 
belong to set T, they are members of the upper 
approximation set. Therefore, these elements are poten-
tial members of set T.  

Thus, it can be said that students {x7, x8, x11, x14, x28, 
x32, x36, x61, x48, x67} who could not solve the last question 
and those {x1, x10, x12, x13, x15, x56} who could partially 
solve it, potentially belong to set T and thus it can be said 
that they could potentially solve the last question. The 
only student x5 who were included in the lower 
approximation set can be said to be definitely successful 
in solving the last question. 
 
Lower and upper approximation sets of set M: Lower and 
upper approximation sets of set M= {x1, x3, x10, x12, x13, 
x15, x18, x20, x26, x27, x33, x38, x41, x42, x44, x47, x50, x56, x57, 
x62, x70} are presented as follows: 
 
R*(M)= ∪a∈U { R(a) : R(a) ⊂ M}={x42} 
R*(M)= ∪a∈U { R(a) : R(a)∩M�∅}={x1, x3, x6, x7, x8, x10, x11, 
x12, x13, x14, x15, x17, x18, x20, x22, x23, x26, x27, x28, x29, x33, 
x36, x37, x38, x41, x42, x44, x46, x47, x48, x49, x50, x53, x54, x55, 
x56, x57, x58, x59, x61, x62, x67, x69, x70}  
 
The set of students who were included in the upper 
approximation of M, but were not a member of M is {x6, 
x7, x8, x11, x14, x17, x22, x23, x28, x29, x36, x37, x46, x48, x49, x53, 
x54, x55, x58, x59, x61, x67, x69}. These students are 
potentially a member of set M. 



 

 
 
 
 
Lower and upper approximation sets of set F: The 
students who could not answer the last question are a 
member of set F={ x4, x7, x8, x9, x11, x14, x16, x17, x19, x21, 
x22, x23, x24, x25, x28, x30, x31, x32, x34, x35, x36, x37, x39, x40, 
x43, x45, x46, x48, x49, x51, x52, x53, x54, x55, x58, x59, x60, x61, 
x63, x64, x65, x66, x67, x68, x69}.  
Lower and upper approximation sets of F are given as: 
 
R*(F)= ∪a∈U { R(a) : R(a) ⊂ F}={ x4, x9, x16, x19, x21, x24, x25, 
x30, x31, x34, x35, x39, x40, x43, x45, x51, x52, x60, x63, x64, x65, 
x66, x68} 
R*(F)= ∪a∈U { R(a) : R(a)∩F�∅}= U-{x5, x42} respectively. 
 
Since the boundary sets BR(T), BR(M), and BR(F) of the 
three sets of which lower and upper approximation sets 
as defined above are different from empty set; T, M, and 
F are rough sets. These sets can also be characterized 
by a constant within the closed interval [0.1]. As defined 
in section two, this constant that will determine the clarity 

of the approximation is defined as 
)(
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AB
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AR ∗

∗=α . The 

constants for the three sets are calculated as: 
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)( ≅=MRα ,  

 

338,0
68
23

)( ≅=FRα .  

 
This indicates that answers for the first four questions 
explain the answers for the last question via a weak 
relationship.  
 
Interdependence of questions: An important topic in data 
analysis is to detect dependences among attributes. The 
primary focus of this study was on to what degree the first four 
questions determine the last question. Let the first four 
questions represent attributes set C and the last question 
represent set D, then to what degree the set C explains the set 
D, or the degree of dependence of the set D to set C can be 
found as: 
 

k=
U

DPOS
DC C )(

),( =γ . 

 
In this study, the value for this dependence is calculated 
as: 
 

357,0
70
25)(

),( ≅==
U

DPOS
DC Cγ  
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Table 3. Approximation qualities. 
 

Attributes γ  

Q1 0.000 
Q2 0.042 
Q3 0.000 
Q4 0.000 

Q1, Q2 0.042 
Q1, Q3 0.057 
Q1, Q4 0.042 
Q2, Q3 0.042 
Q2, Q4 0.042 
Q3, Q4 0.114 

Q1, Q2, Q3 0.010 
Q1, Q2, Q4 0.010 
Q1, Q3, Q4 0.342 
Q2, Q3, Q4 0.157 

 
 
 
This value indicates the degree to which first four 
questions together explain the last question. In addition, 
this value can be calculated for individual questions or 
any two or three-question combination. Table 3 displays 
these values. 

When Table 3 was examined, considering C = {S1, S2, 
S3, S4}, one can obtain RED(C) = {{S1, S2, S3, S4}} and 
Core(C) = ∩Red(C)= {S1, S2, S3, S4}. One can say that 
C attributes set is not a reducible set.  
 
 
Conclusion 
 
Data mining, referred to as knowledge discovery in 
databases (KDD), is the area of detecting useful infor-
mation from large data sets. Data mining has application 
in many fields such as retail sales, bioinformatics and 
counter-terrorism. Recently, there has been growing 
interest in using data mining in educational research, 
which is referred to as educational data mining. The use 
of alternative means such as Fuzzy sets or rough sets is 
becoming increasingly common in analyzing vague data. 
These concepts are also seen in data analysis of edu-
cational research in recent years (Yorek and Narli, 2009). 

As exemplified in the present study, approach sets, 
which have a great number of application areas, seems 
to interpret today’s vague information. Loslever and 
Lepoutre (2004) suggest that humans have intuitively 
multivariate and complex behavior. According to this 
context, it may be argued that it will not be easy to 
evaluate humans within ‘exact’ and ‘definite’ categories. 
The most common data analyses procedures used in 
educational research are descriptive statistics, 
ANOVA/MANOVA, correlation, regression, t-test, and 
psychometric statistics (Hsu, 2005). Rough set data 
analysis can be either an alternative to these statistics, or 
at least a supplemental method to these statistics.  
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The students were placed into three groups according 
to analysis of the last question. The results of this study 
indicate that it is possible mathematically to determine, in 
which other groups the students could be included. For 
each of these typologies, the degree of vagueness, 

represent with 
|Rup(X)|
|Rlow(X)|

)( =XRα  were calculated. It 

was determined that there were 25 students who 
definitely belong to one of the four typologies. It may be 
said that there can be no clear boundary drawn for the 
remaining 45 students. The fact that the values of 

050,0)( ≅TRα , 022,0)( ≅MRα , and 338,0)( ≅FRα  
are close to zero indicate and support that the sets T, M, 
and F are far from being exact. Similar results were 
obtained in Narli (2010), where he analyzed fennema-
sherman attitude scale using rough set theory. Studies by 
Yörek and Narli (2009) and Narli et al. (2010) on using 
rough sets in educational research also revealed more 
exploratory results. These types of results seem to be 
impossible to obtain using other statistical means. In this 
context, rough set data analysis provides great 
advantage.  

In addition, it is determined that first four questions 
explain the last question at a degree of 0.357. This may 
be interpreted as there is no significant relation between 
the first four questions and the last question. Moreover, 
when data reduction is carried out, this value gets 
smaller. In other words, no question can be removed 
from the attribute set C consisting of four questions. 
When a question is emoved from the set C, the new attri-
bute set will explain the last question even at a weaker 
level. 

As a result, after it has been introduced by Pawlak, 
rough sets have been used in many fields such as 
mathematical morphology, genetic algorithm, artificial 
intelligence, Petri network, decision tables, probability, 
drug industry, engineering, control systems and social 
sciences. It is thought that rough sets can also be used to 
better understand via analyzing behavior, attitude, 
achievement, beliefs, etc. data obtained from humans. 
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