
International Journal of the Physical Sciences Vol. 6(10), pp. 2541-2549, 18 May, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.307 
ISSN 1992 - 1950 ©2011 Academic Journals 

 
 
 
 

Full Length Research Paper 

 

A numerical study of steady state exothermic reaction 
in a slab with convective boundary conditions 

 

A. M. K.  Legodi and O. D. Makinde* 
 

Institute for Advance Research in Mathematical Modelling and Computations, Cape Peninsula University of Technology, 
P. O. Box 1906, Bellville 7535, South Africa. 

 
Accepted 4 April, 2011 

 

In this paper, we considered a steady state, exothermic nth order oxidation chemical reaction in a slab 
with reactant consumption in the presence of convective heat and oxygen exchange with the 
surrounding ambient at the slab surface. The coupled nonlinear differential equations governing the 
system are obtained and are solved numerically using the standard Newton–Raphson shooting method 
along with a fourth-order Runge–Kutta integration algorithm. A perturbation method together with a 
special type of Hermite-Padé series summation and improvement technique is also employed to tackle 
the problem. Important properties of the temperature field including the effects of embedded 
parameters on the thermal stability of the system are discussed. 
 
Key words: Rectangular slab, reactant consumption, thermal criticality, Hermite-Padé series, shooting method, 
convective boundary conditions. 

 
 
INTRODUCTION 
 
Studies related to thermal stability and heat transfer in a 
combustible material subjected to oxidation chemical 
reaction is aimed at ensuring the safety of its storage, 
transportation and usage. It is an important practical 
aspect of reactive hazard assessment (Lohrer et al., 
2005; Tanaka et al., 2003; Bowes, 1984). Many studies 
have been conducted to determine the critical conditions 
that separate explosive and non-explosive domains of a 
proceeding reaction and evaluation of induction period of 
an explosion if it appears (Simmie, 2003; Balakrishnan et 
al., 1996; Makinde, 2004). Two main approaches are 
used for obtaining the necessary data. They are based 
either on direct determination of the explosion 
characteristics by means of explosive experiments 
(Warnatz et al., 2001). or on application of theoretical 
calculations (Bebernes and Eberly, 1989). One of the 
most important advantages of theoretical methods is that 
they can be applied as soon as a kinetic model had been 
evaluated from data from laboratory scale kinetic 
experiments. In particular, they allow estimation of 
runaway parameters in the earliest stages of the life cycle 
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of a chemical product, thus ensuring elimination or 
significant reduction of the necessity for explosive 
experiments (Williams, 1985).  Moreover, the approach 
based on the mathematical theory of combustion unites 
the two branches of theoretical approach, that is, the 
family of semi-analytical methods and more sophisticated 
numerical simulation methods. The grounds for the semi-
analytical simplified theories developed by Semenov 
(1956). Frank-Kamenetskii (1969) and others are well 
known. They give convenient approximate analytical 
relations that do not require complicated calculations and 
are currently used as a rule for estimation of critical 
parameters. However, the application domain of these 
theories is essentially limited; therefore many practical 
problems cannot be solved due to high nonlinearity in 
their models without applying comprehensive techniques 
that require the use of numerical calculations. One such 
trend is related to a novel hybrid of numerical-analytical 
schemes known as Hermite-Padé approximation 
approach (Makinde and Osalusi, 2005; Makinde, 2006, 
2007; Sergeyev and Goodson, 1998). This approach, 
over the last few years, has proved itself as a powerful 
benchmarking tool and a potential alternative to 
traditional numerical techniques in various applications in 
sciences and engineering. 
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Figure 1. Geometry of the problem. 

 
 
 

The objective of this study is to investigate the 
combined effects of convective heat and oxygen 
exchange with the ambient on the nth order exothermic 
oxidation chemical reaction and thermal stability in a slab 
of combustible material. 
 
 
MATHEMATICAL MODEL 
 
The geometry of the problem is depicted in Figure 1. It is assumed 
that the combustible material is undergoing an nth order oxidation 
chemical reaction. The complicated chemistry involved in the 
problem is simplified by assuming a one-step finite-rate irreversible 
reaction between the combustible material (hydrocarbon) and the 
oxygen of the air, that is: 
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(Combustible material + oxygen → heat + carbon dioxide + water) 
 
Following Simmie (2003), Balakrishnan et al. (1996), Makinde 
(2004), Bebernes and Eberly (1989), and Williams (1985) the 
steady state nonlinear differential equations describing the energy 
balance and oxygen concentration in the combustible material can 
be written as: 
 

0)(
02

2

=−







+

−
RT

E

n

m

eCC
l

KT
QA

yd

Td
k

υ
,              (1) 

 

0)(
02

2

=−







−

−
RT

E

n

m

eCC
l

KT
A

yd

Cd
D

υ
,              (2) 

 
with convective boundary conditions as Tshehla et al. (2010). 
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where T is the absolute temperature, Ta is the ambient temperature, 
Ca is the oxygen concentration in the surrounding air, C0 is the initial 
concentration of oxygen in the material, T0 is the slab initial 
temperature, k is the thermal conductivity of the material, Q is the 
exothermicity, A is the rate constant, E is the activation energy, R is 
the universal gas constant, l is the Planck’s number, K is the 
Boltzmann’s constant, v is the vibration frequency, a is the slab half 

width, y  is the distance measured in the transverse direction, h1 is 

the heat transfer between the material and its surroundings, D is 
the diffusivity of oxygen in the material, h2 is the transfer of oxygen 
from the material to its surroundings, n is the chemical reaction 
order and m is the numerical exponent such that m ={-2, 0, ½} 
represent numerical exponent for Sensitized, Arrhenius and 
Bimolecular kinetics respectively (Balakrishnan et al., 1996; 
Makinde, 2004; Bebernes and Eberly, 1989). We introduce the 
following dimensionless variables into Equations 1 to 4.  
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and we obtain the dimensionless governing equations as: 
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The associated boundary conditions (3) to ( 4) become: 
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where λ, ε, β, γ,  Bi  represent the Frank-Kamenetskii parameter, 
activation energy parameter, Oxygen consumption rate parameter, 
mass Biot number and the thermal Biot number respectively. A 
body of material releasing heat to its surroundings may achieve a 
safe steady-state where the temperature of the body reaches some 
moderate value and stabilizes. However, when the rate of heat 
generation of the material exceeds the rate of heat loss to the 
surroundings, then ignition can occur. In the study, Equations 6 to 9 
are solved using perturbation method. 
 
 
PERTURBATION METHOD  
 
Due to the nonlinear nature of the temperature and reacting species 
concentration Equations in (6) and (7), it is convenient to seek a 

solution in the form a power series expansion in parameter λ,  that 
is: 
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Substituting the solution series in Equation (10) into Equations (6) 

to (9) and collecting the coefficients of like powers of λ, we obtained 
the followings: 
 
 
Order zero (that is, coefficient of λ to power zero from the 
series) 
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Order one (that is, coefficient of λ to power one from the 
series) 
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Order two (that is, coefficient of λ to power two from the 
series) 
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and so  on.  The  above  equations  for  the  coefficients  of  solution 
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series are solved iteratively for the temperature fields and reacting 
species concentration, we obtain: 
 

     (19) 

 

        (20) 

 
Using a computer symbolic algebra package (MAPLE), the first 
few terms of the above solution series in Equations (19) to (20) 
are obtained. We are aware that these power series solutions 

are valid for very small parameter values of λ. However, using 
Hermite-Padé series summation and improvement technique,  we  
have  extended  the  usability  of  the  solution  series  beyond  
small parameter values as illustrated in the following section. 

 
 
HERMITE-PADÉ APPROXIMATION TECHNIQUE  
 
From the application point of view, it is very important to determine 
the appearance of criticality or non-existence of steady-state 
solution for certain parameter values. In order to achieve this, we 
first derived a special type of Hermite-Padé approximant (Makinde, 
2004, 2007; Sergeyev and Goodson, 1998). Let:  
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be a given partial sum. It is important to note here that Equation 
(21) can be used to approximate any output of the solution of the 
problem under investigation (example, the series for the wall heat 

flux parameter in terms of Nusselt number Nu = - dθ/dy at y = 1), 
since everything can be Taylor expanded in the given small 

parameter. Assume U (λ) is a local representation of an algebraic 

function of λ in the context of nonlinear problems, we seek an 
expression of the form: 
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of degree d ≥ 2, such that: 
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The requirement (23) reduces the problem to a system of N linear 

equations for the unknown coefficients of F
d

. The entries of the 

underlying matrix depend only on the N given coefficients a
n

 and 

we shall take N d d= + −( ) /
2

3 2 2 , so that the number of 

equations equals the number of unknowns. The polynomial F
d

 is 

a    special   type   of   Hermite-Padé   approximant   and    is    then
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Table 1. Comparison between analytical and numerical results (λ=β=γ=0.1, ε =0, n=2, Bi=θa =1). 
 

 

 
 
 

Table 2. Computations showing the criticality procedure rapid convergence (β = 0.1, γ = Bi=θa =n =1, ε=0). 
 

d N θθθθmax λλλλcN 

2 4 2.133563429 0.111399437253 

3 8 2.245843906 0.111399418112 

4 13 2.245636361 0.111399421506 

5 19 2.245636371 0.111399421512 

6 26 2.245636371 0.111399421512 

 
 
 
investigated for bifurcation and criticality conditions using Newton 
diagram, Vainberg and Trenogin [16]. 

 
 
NUMERICAL APPROACH 
 
The numerical technique chosen for the solution of the coupled 
ordinary differential Equations (6) and (7) is the standard Newton–
Raphson shooting method along with a fourth-order Runge–Kutta 
integration algorithm. Equations (6) to (7) are transformed into a 
system of first order differential equations as follows: 
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subject to the following initial conditions: 
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The unspecified initial conditions s1 and s2 are guessed 
systematically and Equation (24) is then integrated numerically as 
initial valued problems until the given  boundary  conditions  at  y =1 

are satisfied. For each set of parameter values for λ, ε, β, γ and  Bi,  
the procedure is repeated until conditions at the y = 1 are satisfied 
and the desired degree of accuracy (namely 10

-7
) of the results 

obtained is achieved. 
 
 
RESULTS AND DISCUSSION 
 
In this study, we validate the above theoretical results 
using physically realistic values of various embedded 
parameters in the numerical experiment. It is important to 

note that increasing parameter value of λ  indicates an 
increase in the rate of exothermic chemical kinetics in the 
slab. A comparison between the results obtained using 
the partial sum involving the first 20 terms of the 
perturbation series solution and purely fourth-order 
Runge–Kutta numerical integration coupled with shooting 
method at small and moderate values of embedded 
parameters are shown in Table 1. Generally, the 
difference is of order 10

-8
 and a perfect agreement is 

noticed. 
In order to obtain the thermal stability criterion in the 

reacting slab, the Hermite-Padé approximation procedure 
in Hermite-Padé approximation technique was applied to 
the first few terms of the solution series in perturbation 
method.and we obtained the results as shown in Tables 2 
and 3. 

The results in Table  2  reveal the rapid convergence of  

y 
        θθθθ(y) 
Perturbation results 

         θθθθ(y) 
Numerical results .. perturbnumer θθ −  

0 1.32892926 1.32892929 3.0×10
-8 

0.1 1.32780785 1.32780788 3.0×10
-8 

0.2 1.32444550 1.32444553 3.0×10
-8 

0.3 1.31884776 1.31884779 3.0×10
-8 

0.4 1.31102389 1.31102392 3.0×10
-8 

0.5 1.30098675 1.30098677 2.0×10
-8 

0.6 1.28875273 1.28875276 3.0×10
-8 

0.7 1.27434168 1.27434170 2.0×10
-8 

0.8 1.25777674 1.25777676 2.0×10
-8 

0.9 1.23908423 1.23908425 2.0×10
-8 

1.0 1.21829349 1.21829351 2.0 ×10
-8
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Table 3. Computations showing thermal ignition criticality for different parameter values. 
 

Bi γγγγ ββββ n θθθθa m εεεε θθθθmax λλλλc 

0.1 1 0.01 1 1.0 0.0 0.00 2.0172018519 0.01310984287 

1 1 0.01 1 1.0 0.0 0.00 2.1163034602 0.10058516043 

10 1 0.01 1 1.0 0.0 0.00 2.2127440013 0.27532575932 

100 1 0.01 1 1.0 0.0 0.00 2.2200715856 0.32658480960 

∞ 1 0.01 1 1.0 0.0 0.00 2.2205606260 0.33330414740 

1 5 0.01 1 1.0 0.0 0.00 2.1098592062 0.09999778812 

1 10 0.01 1 1.0 0.0 0.00 2.1090640021 0.09992508139 

1 1 0.05 1 1.0 0.0 0.00 2.1666489097 0.10496770865 

1 1 0.10 1 1.0 0.0 0.00 2.2456363719 0.11139942151 

1 1 0.01 3 1.0 0.0 0.00 2.1395726916 0.10267041887 

1 1 0.01 5 1.0 0.0 0.00 2.1638439062 0.10484446876 

1 1 0.01 1 0.5 0.0 0.00 1.6163034602 0.16583689354 

1 1 0.01 1 0.1 0.0 0.00 1.2163034602 0.24739957357 

1 1 0.01 1 1.0 0.0 0.01 2.1633708697 0.10474696724 

1 1 0.01 1 1.0 0.5 0.01 2.1572733201 0.10368955515 

1 1 0.01 1 1.0 -2.0 0.01 2.1884248614 0.10911552331 

1 1 0.01 1 1.0 0.0 0.10 2.7942887760 0.15217860387 

 
 
 
Hermite-Padé approximation procedure with gradual 
increase in the number of series coefficients utilized in 
the approximants. In Table (3), it is noteworthy that the 

magnitude of thermal ignition criticality (λc) increases with 
an increase in the thermal Biot number (Bi >0) due to 
convective cooling and a decrease in the oxygen supply 
from the surrounding ambient represented by a decrease 

in parameter value of γ. This invariably will lead to a delay 
in the development of thermal runaway in the reacting 
slab and enhances thermal stability. Similar effect of 
thermal stability enhancement is observed with 

increasing parameter values of β, n, ε and a decrease in 

the value of ambient temperature parameter θa. Thus, 
higher order oxidation chemicals kinetic augment thermal 
stability. It is worth mentioning that a combined increase 

in the parameter values of γ, θa together with a decrease 

in the parameter values of Bi, β, n, and ε can cause a 
decrease in the magnitude of thermal criticality parameter 

(λ), leading to early development of thermal ignition in the 
system. Furthermore, it is interesting to note from Table 
(3) that thermal ignition occur faster in a bimolecular 
(m=0.5) type of exothermic oxidation reaction as 
compared to the Arrhenius (m=0) and sensitized (m=-2) 
type of reaction. A slice of the bifurcation diagram for 

0≤ ε << 1 in the (λ,θmax) plane is shown in Figure (2). It 
represents the qualitative change in the thermal system 

as the parameter (λ) increases. 

In particular, for 0≤ε<<1,  Bi > 0, β  > 0, γ > 0 and  n 

 
 

Figure 2. A slice of approximate bifurcation diagram in the (λ , 

θmax) plane when  β = 0.1, ε = 0, γ = Bi=θa =n =1. 

 
 
 

> 0, there  is  a  critical  value  λ
c   (a  turning  point)  such  

that,  for  0 < λ  < λc  there  are   two   solutions  (labeled  I
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Figure 3. Temperature profiles for n =2, β=λ=γ=Bi=θa=1, ε=0.1.  

 
 
 

 
 

Figure 4. Temperature profiles for m=0.5, β=λ=γ=Bi=θa=1, ε=0.1.  
 
 
 

and II). The upper and lower solution branches occur 
due to the nonlinearity in the temperature dependent 
chemical kinetics in the governing equations for energy and 
concentration balance. When  λ >  λc the system  has  no real 

solution  and  displays  a  classical  form  indicating 
thermal runaway. As exothermic reaction due to 
oxidation chemical kinetics increases, the slab 
temperature increases uncontrollably until it ignites. 
 
 
Effect of various parameters on temperature 
profiles 
 
Figures   (3)   to   (8)   illustrate  the  effects   of  various 

thermophysical parameters on the steady state slab 
temperature profiles. The temperature is maximum 
along the slab centerline and minimum at the slab 
surface due to convective heat transfer to the ambient. 
Figure (3) shows that the slab temperature is highest 
during bimolecular reaction (m = 0.5) and lowest for 
sensitized reaction (m=-2), hence confirming the earlier 
results in the literature (Makinde, 2004). This 
observation is also in agreement with the results 
highlighted in Table (3). In Figures (4) to (6), we 
observe that the slab temperature decreases with an 
increase in the values of reaction order index (n), Biot 
number (Bi) and the oxygen consumption rate 

parameter (β). This  confirms  the  results  in  Table   (3) 

___ 2−=m  

oooo 0=m   

++++  5.0=m  
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oooo 2=n   
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Figure 5. Temperature profiles for n=2, m=0.5, β=λ=γ=θa=1, 

ε=0.1. 

 
 
 

 
 

Figure 6. Temperature profiles for n = 2, m=0.5, λ=Bi=γ=θa=1, 

ε=0.1. 

 
 
 
that a higher order exothermic oxidation chemical 
reaction will be more thermally stable than a lower one. 
The decrease in the slab temperature with increasing 
Biot number can be attributed to the action of 

convective cooling at the slab surface. As β  increases 
the oxygen concentration in the interior of the slab 
decreases leading to a decrease in the slab 
temperature. Figures (7) to (8) show that the slab 
temperature increases with an increase in the 

parameter values of λ and γ. As the Frank-Kamenetskii 

parameter (λ) increases, the slab internal heat 
generation due to exothermic oxidation reaction 
increases, this invariably leads to an elevation in the 
slab temperature. An increase in the parameter value of 

γ implies an increase in the supply of  oxygen  from  the 
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Figure 7. Temperature profiles for n = 2, m = 0.5, β = Bi = γ = θa= 

1, ε = 0.1. 

 
 
 

 
 

Figure 8. Temperature profiles for n = 2, m=0.5, β=Bi=λ=θa=1,ε 
=0.1. 

 
 
 

ambient to support the reaction process (since oxygen 
is needed and very essential for this exothermic 
chemical reaction), leading to more internal heat been 
generated in the system and high temperature of the 
slab. 
 
 
Effect of various parameters on Oxygen 
concentration profiles 
 
Figures (9) to (14) illustrate the oxygen concentration 
profiles within the slab for different values of physical 
parameters. The concentration of oxygen is lowest  along 
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Figure 9. Oxygen concentration profiles for n=2, 

β=λ=γ=Bi=θa=1, ε=0.1.  

 
 
 

 
 
Figure 10. Oxygen concentration profiles for m=0.5, 

β=λ=γ=Bi=θa=1, ε=0.1.  

 
 
 
slab centerline and highest at the slab surface due to 
exchange of oxygen at the slab surface with its 
surrounding ambient. Figure (9) shows that the oxygen 
concentration in the slab is lowest during bimolecular 
reaction (m = 0.5) and highest for sensitized reaction (m 
= -2). This can be attributed to the fact that oxygen 
consumption within the slab is highest during bimolecular 
chemical reaction leading to large internal heat 
generation and high depletion in oxygen concentration. In 
Figures (10) to (12), we observe that the oxygen 
concentration in the slab increases with an increase in 
the values of reaction order index (n), Biot number (Bi) 

and the slab surface oxygen supply rate parameter (γ). 
This implies that less oxygen is consumed in the system 
during   a   higher   order  exothermic  oxidation  chemical 

 
 
 
 

 
 

Figure 11. Oxygen concentration profiles for n = 2, m=0.5, 
β=λ=γ=θa=1, ε=0.1. 

 
 
 

 
 
Figure 12. Oxygen concentration profiles for n = 2, m=0.5, 

β=Bi=λ=θa=1,ε =0.1. 

 
 
 
reaction, leading to a high level of oxygen concentration 
in the system than that of a lower reaction order. The 
increase in the oxygen concentration with increasing 
values Biot number and slab surface oxygen transfer 
parameter can be attributed to the combined effect of 
convective cooling and continuous supply of oxygen from 
the ambient at the slab surface. Figures (13) to (14) show 
that the oxygen concentration in the slab decreases with 

an increase in the parameter values of λ and β. As Frank-

Kamenetskii parameter (λ) increases, more oxygen is 
consumed to support high rate of chemical reaction, this 
invariably leads to a depletion in the slab oxygen 
concentration. Similarly, as parameter value of  β  increases, 

___ 2−=m  

oooo 0=m   

++++  5.0=m  

 

___ 1=n  

oooo 2=n   

++++  3=n  

……. 4=n  

___ 1=Bi  

oooo 2=Bi   

++++  4=Bi  

……. 8=Bi  

___ 1.0=γ  

oooo 5.0=γ   

++++  1=γ  

……. 2=γ  



 
 
 
 

 
 
Figure 13. Oxygen concentration profiles for n = 2, m=0.5, 

β=Bi=γ=θa=1, ε =0.1. 

 
 
 

 
 
Figure 14. Oxygen concentration profiles for n = 2, m=0.5, 

λ=Bi=γ=θa=1, ε=0.1. 

 
 
 
oxygen consumption increases, leading to a decrease in 
the slab oxygen concentration. 
 
 
Conclusion 
 
Analysis has been carried out for steady state nth order 
exothermic chemical reaction in a slab of combustible 
material, taking the diffusion and consumption of the 
reactant into account. The nonlinear differential equations 
governing the problem are solved numerically using 
Newton–Raphson shooting method along with a fourth-
order Runge–Kutta integration algorithm. A bifurcation 
study by analytic continuation of a perturbation series in 
the bifurcation parameter for a particular solution branch 
is performed using a special type of Hermite-Padé series 
summation and improvement  technique.  The  procedure 
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reveals accurately the steady state thermal criticality 
conditions as well as the solution branches. The effects 
of various embedded parameters on the system are 
displayed graphically. Our results reveal among others, 
that the slab temperature is highest while the oxygen 
concentration is lowest during bimolecular reaction in 
comparison to Arrhenius and sensitized types of chemical 
reaction. 
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