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It is well known that initial-value problem for the Cauchy-Riemann system is ill-posed and the problem
with such Hadamard instability cannot be solved unless the initial data are analytic. In this paper, we
present the vectorial reduced differential transform (VRDT) method to solve initial-value problem for the
inhomogeneous Cauchy-Riemann system with analytic data. The VRDTM solution vector achieved is in
the form of infinite series whose compact form is in agreement with the exact solution vector.
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INTRODUCTION

This paper deals with the system of first-order linear
equations:
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for the desired vector [L:J *:Il involving real-valued
functions u(x v) and v(x.v}. Collectively, System (1) is

elliptic while individually both the partial differential
equations are hyperbolic for the ellipticity of the system
we refer to Wendland (1979). If fix.y) =0 = glx v],
Equation (1) is the Cauchy-Riemann system and
dependent variables u.v are analytic. Thinking of ¥ as a
time variable and of data for the vector [:'j :l as being
given on v =10, we are mainly concerned with the
inhomogeneous Cauchy-Riemann System (1) subject to
the following initial condition:
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where @(x) and ' (x} are analytic.

It is well known that initial value problem for the
Cauchy-Riemann system is ill-posed. The inherent
instability of this system, for the first time was discussed
by Hadamard (1923). Farmer and Howison (2006)
illustrate the ill-posed nature of the system in various
contexts.

The paper of Joseph and Saut (1990), which is the
main source of motivation to our present work, associates
the ill-posedness of Cauchy problem with the non-
existence of solution to the initial-value problem for non-
analytic data. They show that the problems which are
Hadamard unstable cannot be solved unless the initial
data are analytic. Reichel (1986) analyses several fast
numerical methods based on solving initial-value
problems for the Cauchy-Riemann system. She
discusses the techniques for analytic continuation of
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conformal mappings and indicates the available methods
for finding analytic continuations which use Taylor
coefficients or their approximations for the analytic
functions, see for example Baker and Graves-Morris
(1981), Gustafson (1978), Niethammer (1977) and
Henrici (1966). Reichel (1986) also shows the stability
and accuracy of her schemes through numerous
applications.

During the past couple of decades, researchers have
been engrossed to constructing the approximate analytic
solution for the partial differential equations. Zhou (1986)
introduced the differential transform method. To solve
Cauchy problem for various PDEs, the reduced
differential transform method has recently been used by
Keskin and Oturance (2009), Keskin (2010), Cenesiz et
al. (2010), Taha (2011) and Hesam et al. (2012).

In this paper, we present vectorial reduced differential
transform (VRDT) method to solve the initial-value
problem for the inhomogeneous Cauchy-Riemann
system. The method is applied in various situations of
Cauchy-Riemann system with a variety of initial data. The
VRDTM solutions are in the form of infinite series whose
compact forms are in agreement with exact solutions.

VECTORIAL REDUCED DIFFERENTIAL TRANSFORM
(VRDT)

Definition 1

Let u({x, v} be an analytic function (obviously sufficiently
smooth with respect to x and y in the domain of
definition). The reduced differential transform LU.(x} of

Ly

ulx, v} is defined as (Keskin and Oturance, 2009):
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The inverse-RDT, u(x. v} of Ux(x) is defined as:

@

From (3) and (4) the following result is obtained:

\J' 3

i
ulx, .,'}
A

SR ©)

The basic RDTs are given in Table 1 and can be proved
using Definitions (3) and (4), see for the details (Keskin,
2010).

The definition of reduced differential transform can be
extended to the vectors of analytic functions which are
given as follow:
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Definition 2

Let [u(r.y) wix.¥) ]7 denotes a column
vector with elements as analytic functions (obviously
sufficiently smooth with respect to x, ¥ in the domain of
definition). The vectorial reduced differential transform

v{x, ¥

(VRDT) of the vector [uix ¥} wix,y} wieyl 1%,
given by the vector [U,(x} Wiz} WLz} -7, is
defined as:

W) V() Walr) ---]?:;{%'u.r.| v(xy) wixy) ]] (6)

The inverse-VRDT vector, [u(x,y} v{x.y) wixy) -] of
vector [y (x) Vi(x) Wi (x) --]7is further defined by:
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The following result is immediately obtained from (6) and

(7).
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VRDT METHOD TO SOLVE INITIAL VALUE PROBLEM
FOR THE INHOMOGENEOUS CAUCHY-RIEMANN
SYSTEM

A proper posing of initial-value problem for the Cauchy-
Riemann system is very important since the existence of
a unique solution which is also guaranteed by the
Cauchy-Kowalevsky theorem (Walter, 1985), may not
continuously depend upon initial data (Hadamard, 1923).
Joseph and Saut (1990) show that the problems with
Hadamard instability cannot be solved unless the initial
data are analytic.

To solve the initial-value Problem (2) with analytic data
functions, for the inhomogeneous Cauchy-Riemann
System (1), the VRDT method proceeds as follows. The
VRDT on Problem (1) and (2) vyields the following
recurrence relations:
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Table 1. Basic reduced differential transforms.

S/IN Function Reduced Differential Transform
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Equations (9) and (10) straightaway produce all vectors
J'] iteratively. The inverse-VRDTs of the set of
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where n is the order of approximation for the solution.
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The exact solution vector [u

(2) then becomes:
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IMPLEMENTATION OF VRDT METHOD

The method is implemented on a variety of initial-value
problems for the homogeneous and inhomogeneous
Cauchy-Riemann systems. The data of the model
problems is given in the Table 2.

Model Problem-A

In this type of model problem, we consider the homoge-

neous Cauchy-Riemann system:

8 Tulxy 8 Tu(x
g :;r |l 0 1 ‘ [ :r |l e R0

By Lv{x y) -1 0Maxlv(xy) ‘ (13)
subject to the initial condition

[q {x EH] 0 ] -

v(x, 0) sinhxl" * 5™ (14)
having exact solution vector given by:

u(x,y)] _[sinycoshx

v{x, y) cosysinhxl’ (15)
The VRDT on (13) and (14) gives:
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Table 2. Data of model problems at a glance.
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Prob. flx,y) glxy) @(x) Wix)

A 0 0 0 sinhx

B 0 0 sin(x) cos(x)

C (a® — 1)e7¥ sin(ax) 0 sin{ox) o cos{ax)

D (a+ b)sin{ax) cos(by) {a — b)ecos(ax) sin( by) 0 cos(ax)

E 4y sin(dx) — 2(1 — ¥)sin (4y) 422 — x) cosldy) + 4v*cos (4x) 0 0

F 4y? sinlx) 4v% + yicos (x) 0.001 0.001
Using inverse-VRDTs of (18), we obtain the VRDTM - P e s is’m’r‘l T I
solution vector: [uu\r)] [s*um [wrll _[ sin(x) [um | [ul\rfll T

' V(x) cos(x)" LV (x) cos{x)) " LV(x) —cos:|’r‘| Wl ™ |- Loosmy| ™

. . 3 5 7
[u (2,9 |] B Ui(x) y® ¥ — o+ - .jcoshx (19)
v(x,¥) Zi=0 Vi (x)) 1-2.2_ lsinhx

whose compact form takes the form:

-

which is the same as exact solution vector.
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Model Problem-B

We consider the homogeneous Cauchy-Riemann system
(13) subject to initial condition:

. 0 .
:r |l S"‘ltrl R
v, ) cos(x) (20)
having the exact solution vector given by:
u(x, )] _ [e7¥ sin(x)
v, v Le Y eas(x)) 21)

Now we use the VRDT method to solve this problem. The
VRDT on (13), (20) gives:
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= .
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Using above iterative relation we obtain the following
vectors:

Finally the inverse-VRDTs of the above vectors give:
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A - Toor o -\"" - B - =¥ RS B
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which is the exact solution vector.

Model Problem-C

We consider the following inhomogeneous Cauchy-
Riemann system:

5 [
6}

where a is a given parameter, subject to initial condition

Iul

0 18
-1 olgy
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P =[ Tl xeR
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having the exact solution vector given by:
u(xy)] _ [ e~ ¥ sinfax)
vix,y) ~ lae ¥Yeos(ax)l’ (26)

It is interesting to note that the problem takes the form of
model problem-B if a = 1. The VRDT on (24) and (25)

gives:
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Using above iterative relation we obtain the following
vectors:

o cos{ax )’
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Finally the inverse-VRDTs of the above vectors give:

. = -~ IR TN PP e .
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which is the exact solution vector.

Model Problem-D

For the inhomogeneous Cauchy-Riemann system:
1 8 funy)
1 04 6x

7 [ st
[u\o + b) sinfax) cos(by)

- . Ll XERYEU
¢ . Frne™ adin f Traa b
[b'\r v vlx, .l (o —b) cos(ax) sin(by) (29)

where o, b are given parameters, we prescribe the
following initial condition:

ufx, 0) 0
. l = [ P re R,
v, ) cos{ax) (30)
whose exact solution vector is given by:
ulx y) sin{ax) sin(by)
: = I B 31
[L{r ¥ |] [cu:us{arfl IZIIISI:H:."I] (31)

Now we use VRDT method to solve this initial-value
problem. The VRDT on (29) and (30) gives:
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The above iterative relations then vyield the following
vectors:

5 3 .
ORI, T . e TTTE 0 . o, .

U [ 0 [UW _ IU s..“l(cr]l utx) _{ # [‘-"\IJ _ [—j sinfax)

meal T faeil el ~ Horeal T 122 rei| e T = L

Eyn cosiaril LVix) L T 7 cosiax)) Wix)l, 0 | (34)

Finally the inverse-VRDTSs of vectors in (34) give:
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which is the exact solution vector.

Model Problem-E

In this problem, VRDT method is applied on
inhomogeneous Cauchy-Riemann system for the
homogeneous initial data. We consider the following
inhomogeneous Cauchy-Riemann system:

0 fu(ry)] u(ry)] [ 4y sinlde) - 201 - x)sin(4y)
[,r| l [,r| 4\7 ) |..1\..]J' ’n.]"r.-R':"H'
v I‘I‘ | ‘I‘ 4 |I|
fy 0or 12 =) cos V7005 (4 (35)
subject to initial condition:
ufx, 0)
e ] =[], sem
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having exact solution vector given as:
u(xny)] [ ysin(4r) l
v, y] x(2 — x) sinldy) 37)

Now we use the VRDT method to solve this problem. The
VRDT on (35) and (36) gives:

3
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Using above iterative relation we obtain the following
vectors:
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The inverse-VRDTs of the above vectors finally give:
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which is the exact solution vector.



Model Problem-F

In this problem, experimentation is made with initial data
0001
0.001
inhomogeneous Cauchy-Riemann system:

instead of homogeneous. We consider the

5 u(xy) 0 1718 [u(xy) [ 4y? sinlx) _

. ol eRy=0
dylv(ey)l -1 Maxlv(ny)l  Wy? £ yicos (v) : (38)
subject to initial condition:

u(x 0] _ro.001y o
v(x,0)] " lo.oorlr FE™ (39)
having exact solution vector given by:
ulx,vl] _ [;.';s’.n'ir:l +0.001
vix,y)l L y*+0.001 I (40)

Now we use the VRDT method to solve this problem. The
VRDT on (38) and (39) gives:

7

=15 dllie

0.001
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[ 4sin(x) 8k = 3)
J|\J.|

460k =3+ cos(e) 6k — 4 (41)

&k +1) [

TTs
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Using iterative relations (41) and (42) we obtain the
following vectors:

<[ =B o) =l = g <l
The inverse-VRDTs of the above vectors finally give:
u(x, ) _ —g U ';'J'l'.‘:"

Ll = Ea v o) =P

which is the exact solution vector.

It is noticed that all the model problems yield the
VRDTM solution vectors in the form of infinite series
whose compact forms are in agreement with the exact
solutions. The results reveal that the technique is
computationally less expensive in terms of mathematical
manipulations as compared to other ones (for example,
Adomian method, homotopy perturbation method and
differential transform method). The VRDT method is a
reliable and quite powerful technique that neither requires
discretization nor perturbation.
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Conclusion

For solving an initial-value problem for the Cauchy-
Riemann system with analytic data, vectorial reduced
differential transform (VRDT) method has been
presented. The technique has been tested on a variety of
homogeneous and inhomogeneous Cauchy-Riemann
systems with various types of initial data. The VRDTM
solution vector achieved, in each case, is in the form of
infinite series whose compact form is in agreement with
the exact solution vector. The technique is quite reliable
and powerful.
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