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In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular 
domain bounded by two moving porous walls which enable the fluid to enter or exit during successive 
expansions or contractions is solved analytically by using the differential transform method (DTM). 
Graphical results are presented to investigate the influence of the non-dimensional wall dilation rate 
and seepage Reynolds number on the velocity, normal pressure distribution and wall shear stress. The 
validity of our solutions is verified by the numerical results obtained by shooting method coupled with 
Runge–Kutta scheme. Since the transport of biological fluids through contracting or expanding vessels 
is characterized by low seepage Reynolds numbers, the current study focuses on the viscous flow 
driven by small wall contractions and expansions of two weakly permeable walls. 
 
Key words: Expanding or contracting porous walls, seepage Reynolds number, non-dimensional wall dilation 
rate, differential transform method. 

 
 
INTRODUCTION 
 
Most of the scientific problems and phenomena are 
modeled by non-linear ordinary or partial differential 
equations. In recent years, many powerful methods have 
been developed to construct explicit analytical solution of 
non-linear differential equations (He, 2006; Liao, 1992; 
Dinarvand, 2009, 2011a, 2010, 2011b). Zhou was the 
first one who introduced the differential transform method 
(DTM) as an efficient method to apply for electrical 
circuits in his paper entitled “differential transformation 
and its application for electrical circuits” (Zhou, 1986). It 
was used to solve both linear and nonlinear initial value 
problems in electric circuit analysis. The differential 
transform method (DTM) is an analytical method for 
solving ordinary differential equations, partial differential 
and integral equations. The method provides us with 
easily computable components and the solution is 
obtained in terms of convergent series. The main 
advantages of this method, compared to other analytic 
methods are controllable accuracy, and high efficiency 

which is exhibited by the rapid convergence of the 
solution. The DTM gives exact values of the nth 
derivative of an analytic function at a point in terms of 
known and unknown boundary conditions. This method 
constructs, for differential equations, an analytical 
solution in the form of a polynomial. It is different from the 
traditional high order Taylor series method which requires 
symbolic computations of the necessary derivatives of 
the data functions. The disadvantage of Taylor series 
method is that this method computationally has taken 
long time for large orders. 

The DTM is an iterative procedure for obtaining analytic 
Taylor series solutions of differential equations in a fast 
manner. The DTM methodology introduces a promising 
approach for many applications in various domains of 
nonlinear problems. Various applications of DTM can be 
found in Zhou (1986), Biazar and Eslami (2010), Subhas 
and Mahesha (2009), Ayaz (2004), Arikoglu and Ozkol 
(2005), Liu and Song (2007),  Kanth   and   Aruna (2009), 
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Odibat et al. (2010), Chen and Chen (2009), Hosseini et 
al. (2011) and Chang et al. (1989). Studies of fluid 
transport in biological organisms often concern the flow of 
a particular fluid inside an expanding or contracting 
vessel with permeable walls. For a valved vessel 
exhibiting deformable boundaries, alternating wall 
contractions produce the effect of a physiological pump. 
The flow behavior inside the lymphatics exhibits a similar 
character. In such models, circulation is induced by 
successive contractions of two thin sheets that cause the 
downstream convection of the sandwiched fluid. Seepage 
across permeable walls is clearly important to the mass 
transfer between blood, air and tissue Chang et al. 
(1989). Therefore, a substantial amount of research work 
has been invested in the study of the flow in a rectangular 
domain bounded by two moving porous walls which 
enable the fluid to enter or exit during successive 
expansions or contractions. Dauenhauer and Majdalani 
(1999) studied the unsteady flow in semi-infinite 
expanding channels with wall injection. They presented a 
procedure that leads to an exact similarity solution of the 
Navier–Stokes equations in semi-infinite rectangular 
channels with porous and uniformly expanding walls. 
They considered the case of expanding wall combined 
with injection through two opposing porous walls. 

Shooting method, coupled with a Runge–Kutta 
integration scheme was utilized to numerically solve the 
resulting fourth-order differential equation. Majdalani and 
Zhou (2003) studied moderate to large injection and 
suction driven channel flows with expanding or 
contracting walls. They considered the incompressible 
laminar flow in a porous channel with expanding or 
contracting walls. They assumed the head-end to be 
closed by a compliant membrane and downstream end is 
left unobstructed. Along the uniformly expanding porous 
walls, the Navier–Stokes equations are reduced to a 
single, non-linear ordinary differential equation for 
symmetric injection or suction. Using perturbations in 
cross-flow Reynolds number Re, the resulting equation is 
solved both numerically and analytically. Boutros et al. 
(2011) studied the solution of the Navier–Stokes 
equations which described the unsteady incompressible 
laminar flow in a semi-infinite porous circular pipe with 
injection or suction through the pipe wall whose radius 
varies with time. Their analysis simulates the flow field by 
the burning of inner surface of cylindrical grain in a solid 
rocket motor in which the burning surface regresses with 
time. They applied Lie-group method to the equations of 
motion for determining symmetry reductions of partial 
differential equations. The resulting fourth-order non-
linear differential equation is then solved using small-
parameter perturbations (Terrill and Thomas, 1969; 
Terrill, 1973) and the results are compared with 
numerical solutions using shooting method coupled with 
Runge–Kutta scheme. A homotopy based solution of the 
Navier–Stokes equations for a porous channel with 
orthogonally moving walls has been presented  by  Xu  et  
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al. (2010). Si et al. (2011a) have recently examined the 
existence of multiple solutions for the laminar flow in a 
porous channel with suction at both slowly expanding and 
contracting walls. Besides, the flow of a micropolar fluid 
through a porous channel with expanding or contracting 
walls has been investigated by them in other study (Si et 
al., 2011b). Our motivation in the present study is to 
investigate the problem of incompressible viscous flow 
through slowly expanding or contracting permeable walls 
using the DTM. We also intend to compare the results of 
simulation using the DTM with the results of simulation 
using the numerical method (shooting method coupled 
with fourth-order Runge-Kutta). Therefore, the paper is 
organized as follow. Subsequently, the mathematical 
formulation is presented. After which we extend the 
application of the DTM to construct the approximate 
solutions of the governing equation. Describing of the 
numerical scheme is covered thereafter. Then, it contains 
the results and discussion. The conclusions are sum-
marized lastly. 
 
 
PROBLEM STATEMENT AND MATHEMATICAL FORMULATION 
 
Consider the laminar, isothermal, and incompressible flow in a 
rectangular domain bounded by two permeable surfaces that 
enable the fluid to enter or exit during successive expansions or 
contractions. A schematic diagram of the problem is shown in 
Figure 1. The walls expand or contract uniformly at a time-

dependent rate . At the wall, it is assumed that the fluid inflow 

velocity is independent of position. The equations of continuity 
and motion for the unsteady flow are given as follows: 
 

    (1) 
 

      (2) 
 

       (3) 
 

In the aforementioned equations,  indicate the velocity 

components in the  directions,  denotes the 

dimensional pressure,  are the density, kinematic 
viscosity and time, respectively. The boundary conditions will be: 
 

   (4) 

Where c ( ) is the wall permeance or injection/suction 
coefficient, that is a measure of wall permeability. The stream 
function and mean flow vorticity can be introduced by putting:\ 
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  (5) 
 
Due to mass conservation, a similar solution can be developed with 

respect to  Majdalani et al. (2002). Starting with: 
 

 (6) 
 
Substitution Equation 6 into Equation 5 yields: 
 

    (7) 
 
In order to solve Equation 7, one uses the chain rule to obtain: 
 

(8)  
 
With the following boundary conditions: 

 

        (9) 

 

Where,  is the non-dimensional wall dilation rate 
defined positive for expansion and negative for contraction. 

Furthermore,  is the seepage Reynolds number 
defined positive for injection and negative for suction through the 
walls. Equations 6, 8 and 9 can be normalized by putting: 

 

(10) 

 
and so 

 

     (11) 
 

    (12) 

 
The boundary conditions (Equation 9) will be: 

 

     (13) 

 
 
 
 
The resulting Equation 12 is the classic Berman’s formula (Berman, 

1953), with  (channel with stationary walls). 
After the flow field is found, the normal pressure gradient can be 

obtained by substituting the velocity components into Equation 1 to 
3. Hence, it is: 
 

    (14) 

 
We can determine the normal pressure distribution, if we integrate 

Equation 14. Let  be the centreline pressure, hence: 
 

    (15) 
 

Then, using  and  the 

resulting normal pressure drop will be: 

 

 (16) 
 
Another important quantity is the shear stress. The shear stress can 
be determined from Newton’s law for viscosity: 
 

     (17) 

 

Introducing the non-dimensional shear stress  we 
have: 
 

                                                                     (18) 

 
 

ANALYTICAL APPROXIMATIONS BY MEANS OF DTM 
 

The differential transform method is an analytical method for a vast 
variety of differential equations including ODEs and PDEs (Zhou, 
1986). This method uses polynomials form to approximate the exact 
solutions. We now take a brief review to the DTM. The differential 

transform of the kth derivative of function  is defined as 
follows: 
 

   (19) 
 

Where  is the base function and  is the transformed 

function. The differential inverse transform of  is defined as: 
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Equations 19 and 20 give the following: 
 

   (21) 
 
This shows that differential transform is derived from Taylor series 
expansion, but the method does not evaluate the derivatives 
symbolically. However, relative derivatives are calculated by an 
iterative way which is described by the transformed equations of the 

base function. We approximate  by a finite series and 
Equation 20 can be written as: 
 

    (22) 
 
The main steps of the DTM are the following. First, we apply the 
differential transform (Equation 19) to the given differential equation 
or a system of differential equations to obtain a recursive relation. 
Secondly, solving the recursive relation and then using the 
differential inverse transform (Equation 20), we obtain the solution 
of the problem. Using Equations 19 and 20, the following theorems 
can be deduced as follows: 
 
 
Theorem 1 
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If  then  
 
 
Theorem 2 
 

If  then  where  is a constant. 
 
 
Theorem 3 
 

If  then  

 
 
Theorem 4 

If  then  
 
 
Theorem 5 
 

If  then  
 
Taking differential transform from Equation 12, one can obtain: 

(23) 
 
The boundary conditions (Equation 13) are transformed into: 
 

   
            (24) 
 

We approximate  using 25 terms and ignore the rest. 
 
 
NUMERICAL SIMULATION 
 
The shooting method works by considering the boundary conditions 
as a multivariate function of initial conditions at some point, 
reducing the boundary value problem to finding the initial conditions 
that give a root. The advantage of the shooting method is that it 
takes advantage of the speed and adaptivity of methods for initial 
value problems. The basic concept of the shooting method can be 
obtained from Roberts and Shipman (1972). In this paper, the 
shooting method coupled with the fourth-order Runge-Kutta 
scheme is used for solving the flow of a viscous incompressible 
fluid through slowly expanding or contracting permeable walls. 

RESULTS AND DISCUSSION 
 

In Table 1, the function obtained by the differential 
transform method is compared with the numerical results 
for the different values of seepage Reynolds number and 
wall dilation rate. We can see a very good agreement 
between the purely analytic results of the DTM and 
numerical results. Figures 1 to 4 illustrate the behaviour 
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Table 1. The analytic results of ( )F y compared with the numerical results for the different values of seepage Reynolds number and wall 

dilation rate. 
 

y   

0.8  0.6  0.4  0.2  Re  

Num DTM Num DTM Num DTM Num DTM   

0.93161 0.93162 0.76449 0.76448 0.53779 0.53778 0.27678 0.27677 1 

1 

0.93279 0.93278 0.76679 0.76679 0.54007 0.54007 0.27815 0.27814 0.5 

0.93388 0.93388 0.76895 0.76895 0.54224 0.54224 0.27944 0.27944 0 

0.93490 0.93490 0.77097 0.77097 0.54428 0.54428 0.28068 0.28067 0.5 

0.93583 0.93584 0.77287 0.77286 0.54621 0.54620 0.28184 0.28183 1 

          

0.94292 0.94292 0.78973 0.78973 0.56563 0.56563 0.29454 0.29454 1 

0 

0.94348 0.94348 0.79091 0.79091 0.56686 0.56686 0.29530 0.29530 0.5 

0.94400 0.94400 0.79200 0.79200 0.56800 0.56800 0.29600 0.29600 0 

0.94446 0.94446 0.79299 0.79299 0.56904 0.56904 0.29664 0.29664 0.5 

0.94488 0.94488 0.79390 0.79390 0.57001 0.57001 0.29724 0.29724 1 

          

0.95526 0.95525 0.81968 0.81967 0.60063 0.60062 0.31765 0.31764 1 

1 

0.95490 0.95489 0.81886 0.81885 0.59972 0.59972 0.31707 0.31707 0.5 

0.95458 0.95458 0.81812 0.81812 0.59891 0.59891 0.31655 0.31655 0 

0.95430 0.95430 0.81747 0.81747 0.59818 0.59818 0.31609 0.31609 0.5 

0.95405 0.95406 0.81689 0.81689 0.59753 0.59754 0.31567 0.31568 1 

 
 
 

 
 
Figure 1. Two-dimensional domain with expanding or contracting porous walls. 

 
 
 

lower axial velocity near the centre and the higher near 
the wall because the flow toward the wall becomes 
greater and as a result the axial velocity near the wall 
becomes greater. Furthermore, Figures 2 to 4 indicate the  

greater sensitivity to wall expansion in comparison with 
wall contraction. This behavior is greater sensible for 
suction case ( ). 

The normal pressure distribution for  seepage Reynolds 

Re  



 
 
 
 

 
 
Figure 2. The effect of wall dilation rate  on axial velocity 

profiles ( ( )F y ) for Re 4.   

 
 
 

 
 

Figure 3. The effect of wall dilation rate  on axial velocity 

profiles ( ( )F y ) for Re 0.  

 
 
 

number  over a range of non-

dimensional wall dilation rate  are plotted in Figures 5 
and 6, respectively. From Figures 5 and 6, for every level 
of injection or suction, the  absolute  pressure  change  in  
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Figure 4. The effect of wall dilation rate   on axial velocity 

profiles ( ( )F y ) for Re 4.  

 
 
 

  
 

Figure 5. The effect of wall dilation rate  on the normal 

pressure drop ( np ) for Re 4.   

 
 
 

the normal direction ( ) is lowest near the central 
portion. For every level of suction, in case of expanding 

wall ( ), increasing  leads to lower  and in 

case of contracting wall ( ), increasing  leads to 

higher  The effect of seepage Reynolds number on 
the normal pressure distribution for wall dilation rate 

 is illustrated in Figures 7 and 8, 

respectively. The wall shear stress ( ) for 

seepage Reynolds number  over a 

range of non-dimensional wall dilation rate  are plotted 
in Figures 9 to 10, respectively. Figures  9  to 10 illustrate 

Re 4 and Re 4,  



np

    np

   

.np

1 and 1   

(1) Re/w xF  

Re 4 and Re 4  


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Figure 6. The effect of wall dilation rate  on the normal pressure 

drop ( np ) for Re 4.  

 
 
 

 
 

Figure 7. The effect of seepage Reynolds number on the normal 

pressure drop ( np ) for 1.    

 
 
 

that the absolute shear stress along the wall surface 
increases in proportion to x. Furthermore, in case of 

expanding wall ( ), the wall shear stress (absolute 

value) increases as  decreases, while it increases as

 increases in  case  of  contracting  wall  ( ). The 
effect of  seepage Reynolds  number  on  the  wall  shear 

 
 
 
 

 
 

Figure 8. The effect of seepage Reynolds number on the normal 

pressure drop ( np ) for 1.   

 
 
 

 
 

Figure 9. The effect of wall dilation rate  on the wall shear stress 

( w ) for Re 4.   

 
 
 

stress for wall dilation rate  is illustrated 
in Figures 11 and 12, respectively. 
 
 
Conclusions 
 
In this article, the differential transform method (DTM) is 
employed to study the laminar, isothermal, incompressible 

  



   

1 and 1   



 
 
 
 

 
 

Figure 10. The effect of wall dilation rate  on the wall shear stress 

( w ) for Re 4.  

 
 
 

 
 

Figure 11. The effect of seepage Reynolds number on the wall 

shear stress ( w ) for 1.    

 
 
 

and viscous flow in a rectangular domain bounded by two 
moving porous walls presented by Majdalani et al. 
(2002). Since the transport of biological fluids through 
contracting or expanding vessels is characterized by low 
seepage Reynolds numbers,  the  current  study  focuses 
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Figure 12. The effect of seepage Reynolds number on the wall 

shear stress ( w ) for 1.   

 
 
 
on the viscous flow driven by small wall contractions and 
expansions of two weakly permeable walls. The DTM 
results are compared with the numerical solution 
obtained using shooting method, coupled with Runge–
Kutta scheme. The obtained solutions, in comparison 
with the numerical solutions, demonstrate remarkable 
accuracy. The results show that the DTM does not 
require small parameters in the equations, so the 
limitations of the traditional perturbation methods can be 
eliminated. Besides, the reliability of the method and 
reduction in the size of computational domain give this 
method a wider applicability. Therefore, this method can 
be applied to many nonlinear integral and differential 
equations without linearization, discretization or per-
turbation. 
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