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Most state of the art automatic speech recognition (ASR) systems are typically based on continuous 
Hidden Markov Models (HMMs) as acoustic modeling technique. It has been shown that the 
performance of HMM speech recognizers may be affected by a bad choice of the type of acoustic 
feature parameters in the acoustic front end module. For these reasons, we propose in this paper a 
dedicated isolated word recognition system based on HMMs which was carefully optimized specifically 
at the acoustic analysis and HMM acoustical modeling levels. Such conception was tested and valued 
on Hidden Markov model toolkit platform (HTK). Systems performances were evaluated using the TIMIT 
database. One comparative study was carried out using two types of speech analysis: The cepstral 
method referred to as Mel frequency cepstral coefficients (MFCC) and the perceptual linear predictive 
(PLP) coding are used for different tests so as to evaluate and reinforce our conception. The frame shift 
duration effect of the acoustic analysis as well as the addition of the dynamic coefficients of the 
acoustic parameters (MFCC and PLP) were carefully tested in order to look for high accuracy for our 
optimized isolated word recognition (IWR) system. Finally, various experiments related to the HMM 
topology have been carried out in order to get better recognition accuracies. In fact, the effect of some 
modeling parameters of HMM on the recognition accuracy of  the IWR system such as the number of 
states as well as the number of Gaussian mixtures were analyzed in order to get the optimal HMM topology.  
 
Key words: Isolated word recognition, perceptual linear predictive (PLP) coding, Mel frequency cepstral 
coefficients (MFCC) PLP, HMM, Hidden Markov model toolkit platform (HTK), 

 

 
 
INTRODUCTION 
 
Speech is the most natural form of communication for 
humans. Automatic Speech Recognition (ASR) systems 
generally assume that the speech signal is a realisation 
of some message encoded as a sequence of one or 
more symbols (Calliope, 1989; Boite et al., 2000). We 
learn to speak and recognise the speech of others at an  
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early age and without instruction. Modern speech 
recognition systems typically classify speech into sub-
units (word, phoneme, etc.). The art and science of 
speech recognition have been advanced to the state 
where it is now possible to communicate reliably with a 
computer by speaking to it in a disciplined manner using 
a vocabulary of moderate size. The scope and quality of 
automatic speech recognition (ASR) systems has 
increased considerably, moving from isolated word 
recognition with small vocabularies (Ben Messaoud et al., 
2005; Frikha, 2008) to large vocabulary continuous 
speech recognition systems. During the past few years, 
several studies investigated the potential of directly 
measured speech production parameters to improve the 
accuracy   of   automatic   speech   recognition    systems  



 

 
 
 
 
(Jankowski et al., 1995; Hermansky, 1990; Makhoul, 
1975; Davis and Mermelstein, 1980; Furui, 1986).  

The goal of ASR systems is to transcribe human 
speech into text, which can be further processed by 
machines or displayed for humans for reading in various 
applications. Up to now, the most efficient approach in 
speech recognition is the Hidden Markov Model (HMM) 
(Rabiner, 1989; Rabiner and Juang, 1986; Magdi and 
Gader, 2000; Ephraim and Merhav, 2002, Frikha et al., 
2005). Various laboratories use this technique as a 
potential tool for the conception of recognizing systems 
and commercial ASR systems are actually based on this 
theory (Young et al., 2002). In particular, HMM based on 
continuous probability distributions has better recognition 
rates than discrete HMM using vector quantization 
preprocessing.  

In this work, we were interested in the study of the 
HMM system topology regarding mainly the optimization 
of such recognizing system. We tried to modify the 
number of states of the HMM structure, the number of 
Gaussian components at each state and the frame shift 
duration analysis of one IWR system. Several 
experiments were performed using two kinds of acoustic 
features: the MFCC and PLP static coefficients eventually 
appended with their first and second differential 
derivatives. The ASR system was finally tested with HTK 
platform (Young et al., 2002). All words were extracted 
from TIMIT database (DARPA, 1990).  

This paper is organized as follows. Subsequently, the 
state of the art of speech recognition systems is exposed 
and the feature extraction and acoustical modeling 
modules which are the basic components of those 
systems are described, after which the optimization 
strategies followed at the acoustical analysis and 
acoustical modeling levels in the IWR task are presented. 
This is followed by a description of the experimental 
details, after which the results were supplied when the 
optimization techniques described here are applied. 
Finally, the summary and conclusions of the study are 
given. 
 
 
STATE OF THE ART IN SPEECH RECOGNITION 
 
The task of a speech recognition system is to produce an 
estimate of the word sequence associated with a given 
speech waveform (Calliope, 1989; Picone, 1990; 
Rabiner, 1989). A diagram of speech recognition process 
is shown in Figure 1. 

Produced speech is first converted into a specific form 
suitable for recognition processing, a process known as 
feature extraction.  
 
 
Feature extraction 
 

The purpose of feature extraction in speech recognition is 
to transform speech signals into a set of vectors  relevant  
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Figure 1.  Diagram speech recognition process. 
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Figure 2. Features’ extraction principle. 

 
 
 

for speech recognition while discarding unreliable parts. 
Almost all speech recognition systems use a parametric 
representation of speech rather than the waveform itself 
as the basis for pattern recognition. The parameters 
usually carry the information about the short-time 
spectrum of the signal. Firstly, a front-end para-
meterisation is needed which can extract from the speech 
waveform all of the necessary acoustic information in a 
compact form, compatible with the mathematical 
acoustical modeling tool. Hence, the feature extraction 
module would be one front end module which extracts 
from the input signal a sequence of observations or 
features referred to as O=o1,…,om of an overlapping 
frames. Each frame contains an acoustic feature vector 
O. Figure 2 shows the general process for feature vectors 
extraction. 

The majority of feature extraction techniques commonly 
used today is based on simplified vocal tract models. We 
used in our experiments the two dominant approaches of 
feature extraction, the Mel Frequency Cepstral 
Coefficient Analysis (MFCC) (Davis and Mermelstein, 
1980), and then perceptual linear predictive (PLP) Coding 
(Hermansky, 1990). The common approach for those 
representations is to modify the front end module to 
mimic the frequency map of the ear. The next subsection 
indicates the main steps followed in the extraction’s 
process. 
 
 

Acoustical modelling 
  
After speech has been encoded with  a  small  number  of
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Figure 3. Feature extraction process. 

 
 
 
parameters called features, a speech model has to be 
established in order to model characteristics and 
variations of speech and to further reduce the number of 
parameters. During the past few years, several acoustical 
modeling methods were used in speech recognition 
process. The most popular ones are the Hidden Markov 
Models referred to as ‘HMM’ and the artificial neural 
networks known as ‘ANN’. Experiments conducted in this 
work were obtained using only HMM based recognizers. 
HMM modeling tool supposed that speech is a piecewise 
stationary process, that is, a unit is modelled as a 
succession of discrete stationary states, with instanta-
neous transitions between these states (Picone, 1990; 
Rabiner, 1989; Rabiner and Juang, 1986). The 
widespread use of HMMs is due to the existence of 
efficient and powerful training and recognition algorithms 
(Jelinek, 1976; Baum, 1972). HMM may be due to the 
existence of an efficient training algorithm, the Baum-
Welch or forward-backward algorithm (Dempster et al., 
1977). Given the structure of HMM and training data, the 
algorithm finds the parameter values of the HMM 
according to the maximum likelihood (ML) criterion. The 
convergence of this iterative procedure to a local maxi-
mum of the objective function is guaranteed by an 
inequality discovered by Baum (1972). 

OPTIMIZATION IN ISOLATED WORD RECOGNITION 
 

Acoustical analysis 
 
Almost all speech recognition systems use a parametric 
representation of speech rather than the waveform itself 
as the basis for pattern recognition. The parameters 
usually carry the information about the short-time 
spectrum of the signal. Firstly, a front-end paramete-
rization is needed which can extract from the speech 
waveform all of the necessary acoustic information in a 
compact form compatible with the HMM based acoustic 
models. A front end module which extracts from a raw 
signal a sequence of observations or features O=o1,…,oN 
of overlapping frames. Each frame contains an acoustic 
feature vector O. Figure 3 shows the general process for 
feature vectors extraction. 
 
 
Mel frequency cepstrum coefficients 
 
MFCC analysis is considered as the standard method for 
feature extraction in speech recognition tasks. First, 
speech waveform is pre-emphasized with one coefficient 
finite impulse response (FIR) digital filter (Picone, 1993): 



 

 
 
 
 
Hpre(z)=1+aprez

-1
                                                 (1) 

 
apre is the pre-emphasis coefficient which value is close to 
-1. 

The resulting signal is then windowed with a specified 
window function. A commonly used window is the 
Hamming. It is calculated as (Boite et al., 2000): 
 

;
2πn

W(n) 0.54 0.46 cos For  0 n N-1
N-1

= − ≤ ≤
 
 
                    (2) 

 
where N is the length of the Hamming window. 

For each frame, the fast Fourier transform (FFT) is 
performed to estimate its power spectrum which is then 
fitted to a bank of Mel-filters modeling the hair spacing 
along the basilar membrane of the ear. 

Mel-scale cepstral coefficients are extracted in two 
stages. First, narrow-band filter energies are determined 
using a Mel-scale filter bank centred at Mel frequencies 
given by the equation (Boite et al., 2000): 
 

10

f
logMel(f) = 2595x 1+

700

 
 
 

                                      (3)  

        
Next, these filter energies are coded using a Fourier 
transform. This is the cepstral analysis stage of 
processing (Kammoun et al., 2006). A specified number 
of overlapping triangular filters with center frequencies 
equally spaced in the corresponding mel-frequency scale 
are placed in a limited predefined frequency range (Davis 
and Mermelstein, 1980). The Mel frequency scale is 
based on results from psychophysical studies on 
humans. Each interval on the Mel-scale corresponds to 
the perceived relative pitch of a reference tone. The Mel-
scale filter bank can be considered to be one of a set of 
possible spectral estimation techniques. 

The MFC coefficients can be then computed using a 
decorrelation transform usually discrete cosine transform 
(DCT) of the log amplitude of the filter bank amplitudes 
{mj} (Kammoun et al., 2006): 
 

( )
N

ji
j=1

2 πi
= cos j-0.5 For 1 i qC m

N N
; ≤ ≤

 
∑  

 
            (4)

   
 

where, N is the number of filter banks and q is the 
number of MFCCs 
 
 

Perceptual linear predictive 
 

The PLP analysis method is more adapted to human 
hearing, in comparison to the classic linear prediction 
coding (LPC) (Makhoul, 1975). The procedure for 
computing the PLP coefficients is largely the same as the  

Frikha et al.          5067 
 
 
 
procedure for determining the LP cepstral coefficients 
(Hermansky, 1990; Morgan et al., 1995). The primary 
difference is that, before performing the all-pole 
modeling, the power spectrum is warped, smoothed and 
compressed based on concepts from auditory perception. 
In the PLP analysis, the speech processing is based on 
some biological analogies and physiological charac-
teristics of human hearing (Hermansky, 1990). The 
method is inspired of the principle of the combined linear 
prediction by a representation of the word signal that 
follows a ladder of the human audition. A conversion from 
frequency to Bark, which represents a better 
representation of the human hearing resolution in 
frequency, the Bark frequency corresponding to an audio 
frequency is given by: 
 

 

2
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                          (5) 

    
The resulting spectrum is convoluted with the power 
spectrum of the critical band-masking curve, which act 
like a bank of filters centred at Bark frequencies given by 
the last equation. The last operation prior to the all-pole 
modeling is the cubic-root amplitude compression 
(intensity–loudness conversion), which simulates the 
non-linear relation between the intensity of sound and its 
perceived loudness. Autoregressive modeling is the final 
stage of the PLP analysis, which consists of 
approximating the spectrum by an all-pole model, using 
the autocorrelation method. An inverse discrete fourier 
transformation is applied to the spectrum samples, 
resulting in the dual autocorrelation function. 

 
 
Spectral dynamics 

 
Dynamic features capture the rate of change (speed) and 
acceleration of spectral components (delta ∆ and double 
delta ∆∆ parameters). It was shown that those features 
greatly improve speech recognition rates when they are 
taken together with traditional features (Jankowski et al., 
1995; Furui, 1986). Dynamic features need not be 
extracted from the data itself, they can rather be 
determined from a set of static features such as LP 
cepstral coefficients or MFCCs. Since static features 
generally give information on the time-localized spectral 
envelope, changes in static features give information 
about the spectral dynamics of a signal. 

Dynamic features are determined using a simple first 
difference between static feature vectors or by applying 
regression analysis. The delta coefficients are computed 
using the following regression formula (Young et al., 
2002): 
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where Dt is the delta coefficient at frame t, and ct-w and 
ct+w are static parameters before and next to the current 
frame ct, respectively. The dynamic feature calculation 
represents then a finite impulse response (FIR) filtering of 
the time trajectories of static feature coefficients. 
 
 

Acoustical model 
 

Hidden Markov modeling of speech assumes that speech 
is a piecewise stationary process, that is, a unit is 
modelled as a succession of discrete stationary states, 
with instantaneous transitions between these states 
(Rabiner, 1989; Ephraim and Merhav, 2002). Those 
states are connected by transitions. Each transition 
carries two sets of probabilities: 
 

(1) A transition probability which provides the probability 
of going from one state (i) to another state (j) within the 
model denoted by aij. 
(2) The output probability density function which defines 
the conditional probability of observing a speech feature 
when a particular transition takes place.  
 

The optimal decoder (speech recognizer) which achieves 
expected minimum word recognition error rate is the 
following maximum a posteriori MAP decoder which is 
referred to as optimal MAP decision rule: 
 

w

*W = argmax P(W/O)                                                (7)

    
where, P(W/O) is  known  as  the  a  posterior  probability  

since it represents the probability of occurrence of a 
sequence of words W after observing the acoustic signal 
O. W* is then the recognised word sequence.  

Because of the complexity of the speech production 
mechanisms, there is no simple parametric 
representation of P(W/O) that involves both acoustic and 
linguistic information. The basic approach is to first divide 
the problem into acoustic and linguistic components that 
can be handled separately. This is achieved using a 
Bayesian reformulation: 
 

 * P(O/W ).P(W )
W = argmax

P(O)w                                 (8)     
       
P(O/W) encodes the statistical distribution of speech 
acoustics given the linguistic labelling. P(W) is the 
probability assigned by the language model which 
encodes the a priori linguistic information. P(O/W) is 
provided by an acoustic model as HMMs. Equation 7 
indicates that to find the most likely sequence of words W 
= {w1,w2,……,wk}, the word sequence which maximises 
the likelihood  P(O/W) must be found.  

A simple HMM is illustrated in Figure 5. Essentially, an 
HMM is a stochastic automaton, with a stochastic output 
process attached to each state. Thus we have two con-
current stochastic processes: a Markov process modeling 
the temporal structure of speech and a set of state output 
process, modeling the stationary character of the speech 
signal. Most speech recognition systems use continuous 
observations, HMM with diagonal covariance to model 
the temporal sequence of feature vectors. 

An input feature vector ot at time frame t is associated 
with state i with a probability which can be calculated 
from the transition and the output probabilities. The next 
input feature vector at time frame t+1 may be associated 
with the same state i again (with self-transition probability 
aii) or state j (with transition probability aij, i≠j). In this way 
a sequence of input feature vectors is associated with the 
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Table 1. Isolated recognition system vocabularies for the training and testing corpus. 
 

Number of words Words to recognise Train corpus (words) Test corpus (words) 

7 She, had, all, ask, rag, like, wash 33223311  661166  

8 She, had, all, ask, rag, like, wash, carry 33669933  770044  

9 She, had, all, ask, rag, like, wash, carry, that 44115555  779922  

10 She, had, all, ask, rag, like, wash, carry, that, dark 44661177  888800  
 

 
 
states. Several different sequences of states can 
correspond to a particular input sequence. If aii is large, 
the next state will more likely be the same state i, so state 
i will be associated with more input feature vectors 
representing a unit segment that is longer in time. If aii is 
small, the input feature vectors for that segment tend to 
be shorter in time. Because a transition is given by a 
probability, an HMM can represent input feature vectors 
with different lengths. 

Most state-of-the-art HMM systems use Gaussian 
mixtures to represent the output probabilities. The speech 
parameter vector ok is generated from the output 
probability function bj(ok) which is computed using the 
following formula: 
 

bj(ok) ( )
M

jik jiji
j=1

, ,µo= Nc Σ∑                           (9)

        
where: bj(ok)=bj(k), is the output probability for state j; cji is 
a mixing weight; µji is a mean vector, and Σji is a 
covariance matrix for i

th
 Gaussian in state j.  

Each individual Gaussian component is given by 
(Rabiner, 1989): 
 

N(ok, µ, Σ) = ( ) ( )
t 1

k
n

-µo
(2π)

1 -1
exp -µok2

−

Σ
Σ

 
 
 

         (10)

   

where n is the dimensionality of ok and Σ  is the 

determinant of  Σ. More details about HMMs can be 
found in (Rabiner, 1989; Rabiner and Juang, 1993).   

We use the compact notation λ=(A, B, ∆) to indicate the 
complete parameter set of the model; where: 

 

A={aij}, aij is the state transition probability distribution. 
B={bj(k)}, bj(k) is the observation probability distribution. 
 π = {πi}, πi is the initial state distribution. 
 

For a given test pattern (or a sequence of input feature 

vectors) O=[o1,o2,…,oT], the likelihood P(O| λm) of the 

pattern O being generated from a model λm∆∆ 
representing the m

th
 word is calculated. If a particular 

model λm∆∆ has larger likelihood than all other models, 
the test pattern is determined to be the m

th
 word.  There 

are  three  main  problems  that  have   to   be  solved   in  

order to use hidden Markov models for speech 
recognition: 
 
 

Probability evaluation 
 

Computation of P(O∆λ), that is, the probability that the 
model λ gives rise to the observation sequence O.  
 
 
State sequence  
 
Finding the most likely state sequence q, This problem 
tries to look ‘inside’ the HMM to understand the way the 
observation sequence comes about. There is no unique 
solution to this problem since different state sequences 
can result in the same observation. Hence, it is only 
possible to find a most likely one. 
 
 
Model training  
 
Computing the parameters (A,B,λ) for the model λ. This 
step corresponds to the training of the recognizer 
because given a labeled observation sequence O, this 
algorithm finds the ‘optimum’ model parameters. The 
solution to this task is a re-estimation technique that finds 
the optimum solution iteratively. 

The task of the training problem to find the parameter 
set, most likely to yield the observation sequence, is a 
standard maximum likelihood problem from estimation 
theory (Dempster et al., 1977). Iterative maximization 
procedures must be used. One such solution was 
determined by Baum and colleagues, and is generally 
referred to as the Baum or Baum-Welch re-estimation 
algorithm.    
 
 
EXPERIMENTAL PROCEDURE 
 
Recognition system description 
  
The objective of the isolated word recognition system is to 
recognize isolated words extracted from TIMIT database (DARPA, 
1990). A vocabulary of 7, 8, 9 and 10 words was used as indicated 
in Table 1. The train and core sets were constructed from the 
training and testing sets of the TIMIT database. The recognition 
system has been conceived and tested under the Cambridge 
University  toolkit  HTK  (Hidden  Markov  Model   Toolkit)   platform 
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Table 2.  Word accuracy (in %) for various number of words in vocabulary using different feature sets. 
 

 7 words 8 words 9 words 10 words 

MFCC 97.24 97.73 96.21 96.02 

PLP 98.21 97.3 95.83 95.11 

MFCC_E 98.86 98.15 97.1 97.39 

PLP_E 98.7 97.87 97.22 96.93 

MFCC_0 98.05 97.59 96.72 96.7 

MFCC_D 99.19 99.29 98.86 98.41 

PLP_D 99.19 99.29 98.74 98.51 

MFCC_D_A 99.51 99.57 98.99 98.52 

PLP_D_A 99.35 99.43 98.86 98.41 

MFCC_E_D_A 99.51 99.29 98.48 98.3 

PLP_E_D_A 99.51 99.29 98.36 98.3 

MFCC_0_D_A 99.19 99.15 98.61 98.52 

 
 
 
(Young et al., 2002). HTK is composed of a set of tools enabling 
definition, initialization, re-estimation, and editing of sets of 
continuous mixture Gaussian HMMs.  

HTK provides an analysis tool called HCopy which converts a 
specific train and test speech wave files into appropriate sequence 
of feature vectors. Typically, a speech recognition feature vector 
consists of 12 static coefficients (C1, C2,…, C12) to which might be 
added one of the following component: a log energy (_E), first 
derivative (_D), log energy and first derivative (_D_E), first 
derivative and second derivative (_D_A), log energy, first derivative 
and second derivative (_E_D_A). If the mel cepstral coefficient of 
order 0 (C0) has to be considered, then the qualifier (_0) is used. 

All ASR systems, using HTK, operate in two phases. First, there 
is a training phase during which the system learns the reference 
patterns representing the different speech sounds (phrases, words, 
syllables, or phones) that constitute the vocabulary of the 
application. Each reference is learned from spoken examples and 
stored either in the form of templates obtained by some averaging 
procedure or models that characterize the statistical properties of 
the speech pattern. Second, there is a recognition phase during 
which an unknown speech signal is identified using the stored 
reference patterns. The training and testing phases are 
accomplished as follows: 

 
 
Training phase 

 
A prototype model is first created by specifying the HMM design 
considerations, that is, the number of states, the transition matrix 
and the parameters for the observation pdfs. Then a model 
initialization is performed using the tool HCompV. Finally, all the  
HMMs  are updated simultaneously using the embedded re-
estimation tool HERest.   This tool has to be executed several 
times, because it only performs one iteration at a time. 

 
 
Testing phase 

 
The re-estimated models are tested by confronting them with so far 
unknown test data using the tool HVite. HVite takes as input, a 
network describing the allowable words, a dictionary defining how 
each word is pronounced and a set of HMMs. It operates by 
converting word network to unit network and then attaching the 
appropriate HMM definition to each unit instance. The best 
matching  word  is  found  according  to  the  Viterbi-based   speech 

recognition algorithm (Rabiner, 1989) and the output is stored in a 
master label file. Finally, the HR results were compared to the 
correct transcription with the output of HVite and used to computes 
error statistics. 
 
 
Experiment 
 

The left to right HMM word prototype models was used. The 
observation probability distribution is a Gaussian mixture density 
with diagonal covariance matrix. 12 static coefficients vectors were 
computed using 25 ms Hamming window, shifted with 10 ms steps 
and a pre-emphasis factor of 0.97. Two kinds of acoustic features 
were adopted for all our experiments (MFCC and PLP).  

The HMM word models were initialized using the ‘flat-start’ 
procedure which uses the Baum-Welch algorithm to find the most 
likely state sequence that corresponds to each training sample. 
They were later refined using the Baum-Welch (forward-backward) 
algorithm (Rabiner and Juang 1993; Magdi and Gader, 2000), in 
order to find the optimal parameters for the recognition phase. The 
Viterbi decoder was used for recognition. To achieve a very good 
recognition performance, we tried throughout our experiments to 
modify the number of states in each HMM, the number of Gaussian 
Mixture components and the frame shift duration of each system. 
 

 

RESULTS AND DISCUSSION 
 

Comparison between different kinds of acoustic 
analysis 
 

For our first experiment, we tried to study the effect of the 
energy and dynamic features when appended to the 
static MFCC and PLP vector components. For that, we 
gradually augment the vocabulary size from 7 to 10 
words. The probability distribution functions (pdf) 
associated with each emitting state is one Gaussian 
mixture. The period of frame analysis is maintained equal 
to 10 ms. All our experimental results are gathered in 
Table 3. Figures 4 and 5 shows the recognition accuracy 
(RA) of the recognition systems for the MFCC and PLP 
feature kinds, respectively. When we compare the 
obtained  experimental  results  of  the  two  kinds  of  the 
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Table 3.  Recognition accuracy (in %) as a function of a number of words in vocabulary for 
different HMM’s number of states.  
 

Number of words 4 5 6 7 8 

7 98.7 99.51 99.68 99.68 99.68 

8 98.58 99.57 99.72 99.86 99.72 

9 96.59 98.99 99.24 99.37 99.37 

10 96.25 98.52 98.75 98.98 99.2 

 
 
 

 
 
Figure 4. Performance (word accuracy in %) for PLP features appended by dynamic features for various 
vocabulary sizes. 
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Figure 5. Performance (word accuracy in %) for MFCC features appended by dynamic 
features for various vocabulary sizes.  
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Figure 6. Performance (word accuracy in %) for MFCC_D_A features 
for different HMM’s number of state.  

 
 
 

Table 4. Recognition accuracy (in %) as a function of a number of words in vocabulary for different Gaussian 
mixtures.  
 

Number of words 1 2 4 8 16 

7 99.51 99.68 99.80 99.84 99.84 

8 99.57 99.74 99.78 99.86 99.86 

9 98.99 99.37 99.62 99.87 99.86 

10 98.52 99.20 99.66 99.77 99.66 

 
 
 
tested analysis, we remark that the dynamic coefficients 
which model the sequential properties of the speech 
signal and increases the performance of the recognition 
system. In fact, when apprehending the first and second 
derivatives features to the static components, a 
significant amount of temporal information of feature 
vectors is known. This yields to an improvement in 
recognition accuracy. Best results are hence obtained 
with the parameterization based on MFCC appended with 
dynamic coefficients (MFCC_D_A). Results given by PLP 
analysis are close to those obtained by the MFCC 
analysis since the procedure for extracting the 
corresponding feature vectors is motivated by the 
workings of the human auditory system. For the PLP 
parameterization, good results are obtained by PLP 
appended with the first order regression coefficient 
(PLP_D). 

We will consider only (MFCC_D_A) for the remaining 
experiments in which we plan to explore the effects of the 
number of states of HMM as well as the number of 
Gaussian mixture and period of frame on the 
performance  of  the  isolated  word  recognition   system. 

Effect of the number of states 
 
For the second experiment, All HMMs are one mixture 
Gaussians. The frame shift is fixed at 10 ms. We varied 
the number of states in HMMs from 4 to 8. Table 3 
summarizes all the obtained experimental results. 

Figure 6 shows the word accuracy rate of the 
recognition system as a function of the number of states, 
HMM. When analysing the obtained experimental results, 
we noticed that, for better recognition rate, the number of 
states increases along with the number of the recognised 
words. In fact, for 8 and 9 words, the best accuracies are 
obtained for HMM models with seven states.  
 
 
Effect of the number of Gaussian mixture 
 
For the third experiment, we fixed the number of HMM 
states to five. The frame period is maintained equal to 10 
ms. We varied the number of Gaussian Mixture (GM) 
from 2, 4, 8 and 16. Table 4 summarizes all the 
experimental results. 
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Figure 7. Performance (word accuracy in %) for MFCC_D_A 
features for different Gaussian mixtures.  

 
 
 

Table 5. Recognition accuracy (in %) as a function of a number of words in vocabulary  for different frame’s shift 
duration.  
 

Number of words 5 (ms) 10 (ms) 15 (ms) 20 (ms) 25 (ms) 

7 98.86 99.51 99.51 99.19 99.19 

8 99.15 99.57 99.57 99.29 99.20 

9 97.47 98.99 99.12 98.86 99.12 

10 96.59 98.52 98.86 98.86 98.75 

 
 
 

Figure 7 shows the word recognition accuracy as a 
function of the number of Gaussian mixtures. From the 
depicted experimental results, we observed that the 
increase of the number of GMs produces better 
recognition accuracy for HMM models with 8 GMs.  
 
 
Effect of the frame shift duration 
 
For the forth experiment, the HMM emission probability 
distributions associated to each state are modelled with 
one Gaussian mixture. The number of states for HMMs is 
fixed equal to 5. We varied the frame shift of the 
Hamming analysis window from 5 to 25 ms with 5 ms 
step. The Table 5 summarizes all our experimental 
results.           

Figure 8 shows the word recognition accuracy as a 
function of the frame shift. From the obtained results, the 
best word recognition accuracy is reached with frame 
shift of 10 ms. 
 
 
Conclusion 
 

We proposed in this research, several optimization 
strategies    for    HMM   classifiers    using   Baum-Welch  

These optimization strategies were validated with several 
experiments using different vocabulary sizes extracted 
from TIMIT database. For our first experiment, we used a 
single Gaussian mixture distribution for each of the three 
emitting states of the left to right HMM. Here we chose to 
fix the frame shift duration to 10 ms. We confirmed 
similarity in performance of MFCC and PLP features 
which were both based on psychophysical studies on 
human auditory perception. The dynamic coefficients 
delta and acceleration enhanced the recognition   
accuracy. In fact, an average relative improvement in 
performance of 1.7% over the MFCC baseline system is 
obtained with MFCC appended by first and second 
derivatives (MFCC_D_A).  In the second experiment, we 
modified the number of states in the left to right HMM 
topology with only one Gaussian mixture associated to 
each state. For the selected MFCC_D_A feature, the best 
recognition performance is achieved with seven HMM 
states.  In the third experiment, we used five states left to 
right models and we modified the number of mixtures in 
each state. For one 10 ms fixed period of frame, the best 
word accuracy was reached with eight HMM states. 
Finally, for the forth experiment, we explored the effect of 
the frame shift duration analysis for the MFCC_D_A 
features when left to right five HMM states classifier with 
one  Gaussian  mixture  in   each   state   used.   In   such 
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Figure 8. Performance (word accuracy in %) for MFCC_D_A 
features for different frame’s shift duration.  

 
 
 
conditions, we showed that 10 ms frame shift duration 
was the optimal choice as far as the word accuracy 
criterion was concerned.  
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