

International Journal of Physical Sciences Vol. 5 (2), pp. 074-085, February, 2010
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 © 2010 Academic Journals

Full Length Research Paper

A soft computing approach for modeling of severity of
faults in software systems

Ebru Ardil1 and Parvinder S. Sandhu2*

1Department of Electrical and Electronics Engineering, Fatih University, Istanbul, Turkey.

2Head of Computer Science and Engineering and Information Technology Department, Rayat and Bahra Institute of
Engineering and Bio-Technology, Sahauran, Distt. Mohali (Punjab)-140104 India.

Accepted 25 January 2010

As the majority of faults are found in a few of its modules so there is a need to investigate the modules
that are affected severely as compared to other modules and proper maintenance need to be done in
time especially for the critical applications. In this present work, hybrid fuzzy-Genetic Algorithm and
Particle Swarm Optimization trained Neural Network techniques are empirically evaluated and earlier
published results of the Mamdani Based Fuzzy Inference System and Neuro-Fuzzy Based techniques
are also discussed for the comparative analysis in order to predict level of impact of faults in NASA’s
public domain defect dataset coded in Perl programming language. The results are recorded in terms
of accuracy, mean absolute error (MAE) and root mean squared error (RMSE). The results of Neuro-
Fuzzy model are also convincing but Fuzzy-GA based hybrid model provide relatively better prediction
accuracy as compared to other models and hence, it is proposed for the maintenance severity
prediction of the software systems.

Key words: Fuzzy, neuro-fuzzy, genetic algorithm, particle swarm optimization (PSO), accuracy, MAE, RMSE.

INTRODUCTION

When a software system is developed, the majority of
faults are found in a few of its modules. In most of the
cases, 55% of faults exist within 20% of source code. It is,
therefore, much of interest to find out fault-prone software
modules at early stage of a project (Benlarbi et al., 1999).
Using software complexity measures, the techniques
build models, which classify components as likely to
contain faults or not. Quality will be improved as more
faults will be detected. Predicting the impact of the faults
early in the software life cycle can be used to improve
software process control and achieve high software
reliability. Timely predictions of faults in software modules
can be used to direct cost-effective quality enhancement
efforts to modules that are likely to have a high number of
faults. Prediction models based on software metrics can
estimate number of faults in software modules.

Prediction of severity of faults:

*Corresponding author. E-mail: parvinder.sandhu@gmail.com.
Tel: +91-98555-32004.

(1) Supports software quality engineering through
improved scheduling and project control.
(2) Can be a key step towards steering the software
testing and improving the effectiveness of the whole
process.
(3) Enables effective discovery and identification of
defects.
(4) Enables the verification and validation activities
focused on critical software components.
(5) Used to improve software process control and achieve
high software reliability.
(6) Can be used to direct cost-effective quality
enhancement efforts to modules.

In the literature (Benlarbi et al., 1999; Lanubile et al.,
1995; Fenton et al., 1999; Denaro, 2000; Deodhar, 2002;
Bellini, 2005) made prediction of fault prone modules in
software development process and mostly used the
metric based approach with machine learning techniques
to model the fault prediction in the software modules.
Khoshgoftaar et al. (2001) used zero-inflated Poisson
regression to predict the fault-proneness of software

systems with a large number of zero response variables.
Munson et al. (1990) and Khoshgoftaar et al. (1990) also
investigated the application of multivariate analysis to
regression and showed that reducing the number of
“independent” factors (attribute set) does not significantly
affect the Accuracy of software quality prediction. Menzies
et al. (2003) compared decision trees, naïve Bayes and 1-
rule classifier on the NASA software defect data. Eman et
al. (2001) compared different case-based reasoning clas-
sifiers and concluded that there is no added advantage in
varying the combination of parameters (including varying
nearest neighbor and using different weight functions) of
the classifier to make the prediction Accuracy better.
 Many modeling techniques have been developed and
applied for software quality prediction (Hudepohl et al.,
1996; Khoshgoftaar et al., 1996; Khoshgoftaar et al.,
2002; Seliya et al., 2005). The software quality may be
analyzed with limited fault proneness data (Munson et al.,
1992).

In (Sandhu et al., 2007), the author has used various
machine learning techniques for an intelligent system for
the software maintenance prediction and proposed the
logistic model trees (LMT) and Complimentary Naïve
Bayes (CNB) algorithms on the basis of Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and
Accuracy percentage.

Soft-Computing algorithms have proven to be of great
practical value in a variety of application domains. Not
surprisingly, the field of software engineering turns out to
be a fertile ground where many software development
and maintenance tasks could be formulated as learning
problems and approached in terms of learning algorithms.
The Soft Computing (SC) paradigm also known as
Computational Intelligence differs from conventional com-
puting in that, techniques belonging to it can be tolerant of
imprecise, incomplete or corrupt input data. Some of
them can solve problems without requiring the solution
steps or reasoning process to be explicitly stated. Some
soft computing systems develop the capability to solve
problems through repeated observation and adaptation.
Some arrive at a solution through a process similar to
evolution in nature.

In more than one ways, the human mind is the role
model for soft computing techniques - for example, the
ability to solve problems expressed in vague terms, or
solving problems without making use of explicit solution
steps. Arriving at a solution through an evolutionary
process is commonplace in nature.

The predominant SC methodologies found in current
intelligent systems are:

(1) Artificial Neural Networks (ANN).
(2) Fuzzy Systems.
(3) Genetic Algorithms (GA).

Particle Swarm Optimization (PSO) shares many simi-
larities with evolutionary computation techniques such as

Ardil and Sandhu 075

genetic algorithms (GA). The system is initialized with a
population of random solutions and searches for optima
by updating generations. However, unlike GA, PSO has
no evolution operators such as crossover and mutation.
In PSO, the potential solutions, called particles, fly
through the problem space by following the current
optimum particles.

This paper is the extension of the earlier work (Ardil et
al., 2009) in which various machine learning algorithms
including Fuzzy and Neuro-Fuzzy based techniques are
experimented for the prediction of level of impact of faults
in the software modules. In this present work, hybrid
fuzzy-GA and PSO trained neural network techniques are
evaluated and results of the Fuzzy and Neuro-Fuzzy
based techniques are also discussed for the comparative
analysis in order to predict level of impact of faults in the
software modules.

In this paper, section two describes the methodology
part of work done, which shows the steps used in order to
reach the objectives and carry out the results. In the sec-
tion three, results of the implementation are discussed. In
the last section, on the basis of the discussion various
conclusions are drawn and the future scope for the
present work is discussed.

Fuzzy inference systems

A fuzzy inference system (FIS) is a way of mapping an
input space to an output space using fuzzy logic. A FIS
tries to formalize the reasoning process of human lan-
guage by means of fuzzy logic (that is, by building fuzzy
IF-THEN rules).

On wide categorization, following are the basic types of
fuzzy inference systems:

(1) Mamdani fuzzy inference system.
(2) Takagi-sugeno fuzzy inference system.
(3)Adaptive neuro-fuzzy inference system (ANFIS).

Mamdani fuzzy inference system

Mamdani's fuzzy inference method is the most commonly
seen fuzzy methodology. Mamdani's method was among
the first control systems built using fuzzy set theory. It was
proposed in 1975 by Mamdani et al. (1975) as an attempt
to control a steam engine and boiler combination by
synthesizing a set of linguistic control rules obtained from
experienced human operators. Mamdani's effort was
based on Lotfi Zadeh's 1973 paper on fuzzy algorithms
for complex systems and decision processes (Zadeh,
1973). Although the inference process described in the
next few sections differs somewhat from the methods
described in the original paper, the basic idea is much the
same.

Mamdani-type inference expects the output member-

076 Int. J. Phys. Sci.

ship functions to be fuzzy sets. After the aggregation
process, there is a fuzzy set for each output variable that
needs defuzzification. It is possible and in many cases
much more efficient, to use a single spike as the output
membership functions rather than a distributed fuzzy set.
This type of output is sometimes known as a singleton
output membership function and it can be thought of as a
pre-defuzzified fuzzy set. It enhances the efficiency of the
defuzzification process because it greatly simplifies the
computation required by the more general Mamdani
method, which finds the centroid of a two-dimensional
function. Rather than integrating across the two-
dimensional function to find the centroid, we use the
weighted average of a few data points. Sugeno-type
systems support this type of model. In general, Sugeno-
type systems can be used to model any inference system
in which the output membership functions are either linear
or constant.

According to Abraham (2005) NF computing is a
popular framework for solving complex problems. If one
has knowledge expressed in linguistic rules, one can build
a fuzzy inference system (FIS) and if one has data, or can
learn from a simulation (training) then one can use
artificial neural networks (ANNs). For building a FIS, one
has to specify the fuzzy sets, fuzzy operators and the
knowledge base. Similarly, for constructing an ANN for an
application the user needs to specify the architecture and
learning algorithm. An analysis reveals that the
drawbacks pertaining to these approaches seem comple-
mentary and therefore, it is natural to consider building an
integrated system combining the concepts. While the
learning capability is an advantage from the viewpoint of
FIS, the formation of linguistic rule base will be advantage
from the viewpoint of ANN.

In the simplest way, a cooperative model can be
considered as a preprocessor wherein ANN learning
mechanism determines the FIS membership functions or
fuzzy rules from the training data. Once the FIS
parameters are determined, ANN goes to the background
(Jang et al., 1995). The rule based is usually determined
by a clustering approach (self organizing maps) or fuzzy
clustering algorithms. Membership functions (MF) are
usually approximated by neural network from the training
data.

In a concurrent model, ANN assists the FIS con-
tinuously to determine the required parameters especially
if the input variables of the controller cannot be measured
directly. In some cases the FIS outputs might not be
directly applicable to the process. In that case ANN can
act as a postprocessor of FIS outputs (Abraham, 2005).

In fused NF architecture, ANN learning algorithms are
used to determine the parameters of FIS. Fused NF
systems share data structures and knowledge represen-
tations. A common way to apply a learning algorithm to a
fuzzy system is to represent it in a special ANN like
architecture. However, the conventional ANN learning
algorithms (gradient descent) cannot be applied directly

Figure 1. Mamdani fuzzy inference system structure
(Abraham, 2005).

to such a system as the functions used in the inference
process are usually non differentiable. This problem can
be tackled by using differentiable functions in the infe-
rence system or by not using the standard neural learning
algorithm. Some of the major woks in this area are
GARIC (Bherenji et al., 1992), FALCON (Lin et al., 1991),
ANFIS (Jang, 1992), NEFCON, FUN (Sulzberger et al.,
1993), SONFIN (Feng 1998), FINEST, EFuNN (Kasabov
et al., 1999), dmEFuNN (Kasabov et al., 1999), evolu-
tionary design of Neuro-Fuzzy systems and many others.

Architecture of Mamdani fuzzy inference system is
illustrated in Figure 1. The detailed function of each layer
is as follows:

Layer-1 (Input layer): No computation is done in this
layer. Each node in this layer, which corresponds to one
input variable, only transmits input values to the next layer
directly. The link weight in layer 1 is unity.

Layer-2 (Fuzzification layer): Each node in this layer
corresponds to one linguistic label (excellent, good, etc.)
to one of the input variables in layer 1. In other words, the
output link represents the membership value, which
specifies the degree to which an input value belongs to a
fuzzy set, is calculated in layer 2. A clustering algorithm
will decide the initial number and type of membership
functions to be allocated to each of the input variable. The
final shapes of the MFs will be fine tuned during network
learning.

Layer-3 (Rule antecedent layer): A node in this layer
represents the antecedent part of a rule. Usually a T-
norm operator is used in this node. The output of a layer 3

node represents the ring strength of the corresponding
fuzzy rule.

Layer-4 (Rule consequent layer): This node basically
has two tasks. To combine the incoming rule antecedents
and determine the degree to which they belong to the
output linguistic label (high, medium, low, etc.). The
number of nodes in this layer will be equal to the number
of rules.

Layer-5 (Combination and defuzzification layer): This
node does the combination of all the rules consequents
using a T-conorm operator and finally computes the crisp.

Takagi-Sugeno fuzzy inference system

Abraham (2005) discussed Takagi-Sugeno fuzzy
inference systems make use of a mixture of back
propagation to learn the membership functions and least
mean square estimation to determine the coefficients of
the linear combinations in the rule's conclusions and that
makes it Takagi-Sugeno neuro-fuzzy system. A step in
the learning procedure got two parts: In the first part, the
input patterns are propagated and the optimal conclusion
parameters are estimated by an iterative least mean
square procedure, while the antecedent parameters
(membership functions) are assumed to be fixed for the
current cycle through the training set. In the second part,
the patterns are propagated again and in this epoch, back
propagation is used to modify the antecedent parameters,
while the conclusion parameters remain fixed (Jang et al.,
2004). This procedure is then iterated. Architecture of
Takagi-Sugeno neuro-fuzzy system is illustrated in Figure
2.

The detailed functioning (Abraham, 2005) of each layer
is as follows:

Layers 1, 2 and 3: These layers functions the same way
as Mamdani FIS.

Layer 4 (Rule strength normalization): Every node in
this layer calculates the ratio of the ith rule's firing strength
to the sum of all rules firing strength.

1 2

, 1, 2...i
i i

ωω
ω ω

= =
+

 (1)

Layer-5 (Rule consequent layer): Every node i in this
layer is with a node function

2()i i i i i i if p x q x rω ω= + + (2)

Where; �i is the output of layer 4 and {fi; qi; ri} is the
parameter set. A well established way is to determine the
consequent parameters using the least means squares
algorithm.

Ardil and Sandhu 077

Figure 2. Tagaki-Sugeno neuro-fuzzy system structure (Ardil
et al., 2009).

Figure 3. Architecture of ANFIS implementing Tsukamoto fuzzy
inference system (Jang, 1992).

Layer-6 (Rule inference layer): The single node in this
layer computes the overall output as the summation of all
incoming signals Overall output = Xi

�

�
� ==

i
i

i
i

i

i
ii

f
fputOverallOut

ω
ω

ϖ (3)

Adaptive network based fuzzy inference system
(ANFIS)

ANFIS proposed by Jang (1992), is perhaps the first
integrated hybrid neuro-fuzzy model and the architecture
is very similar to Figure 2, a modified version of ANFIS
which is shown in Figure 3 is capable of implementing the
Tsukamoto fuzzy inference system as depicted in Figure
4. Hence, ANFIS have non-linear antecedent parameters
and linear consequent parameters. These consequent
and antecedent parameters are learned using hybrid
learning algorithm. More specifically, in the forward pass

078 Int. J. Phys. Sci.

Figure 4. Tsukamoto fuzzy reasoning (Jang, 1992).

of the hybrid learning algorithm, functional signals go
forward till layer 4 and consequent parameters are
identified by the least square estimates. In the backward
pass, the error rates propagate backward and the
premise parameters are updated by the gradient descent.
In the Tsukamoto FIS, the overall output is the weighted
average of each rules crisp output induced by the rules
firing strength (the product or minimum of the degrees of
match with the premise part) and output membership
functions. The output membership functions used in this
scheme must be monotonically non-decreasing. The first
hidden layer is for fuzzification of the input variables and
T-norm operators are deployed in the second hidden
layer to compute the rule antecedent part. The third
hidden layer normalizes the rule strengths followed by the
fourth hidden layer where the consequent parameters of
the rule are determined. Output layer computes the
overall input as the summation of all in coming signals. In
ANFIS, the adaptation (learning) process is only
concerned with parameter level adaptation with in fixed
structures. The structure of ANFIS ensures that each
linguistic term is represented by only one fuzzy set.

In most fuzzy systems, fuzzy rules were obtained from
the human expert. However, every expert does not want
to share his knowledge and there is no standard method
that exists to utilize expert knowledge. As a result, ANNs
were incorporated into fuzzy systems to be able to
acquire knowledge automatically by learning algorithms.
The learning capability of the NNs was used for automatic
fuzzy if-then rules generation (Czogala et al., 2000).

PROPOSE METHODOLOGY

Find the structural code and design attributes

The first step is to find the structural code and design attributes of
software systems that is, software metrics. The real-time defect
data sets are taken from the NASA’s MDP (Metric Data Program)
data repository. The dataset is related to the safety critical software
systems being developed by NASA.

Select the suitable metric values as representation of
statement

The suitable metrics like product module metrics out of these data
sets are considered. The term product is used referring to module
level data.

Analyze and refine metric values

In the next step, the metrics are analyzed and refined and then
used for modeling of software fault severity in software systems.

Empirical evaluation of different machine learning algorithms

In this step, the aim is to find the best algorithm for classification of
software components into different levels of impact of fault. In order
to model the polished dataset of the previous step, Hybrid Fuzzy-
GA and PSO-trained neural network techniques are explored along
with the earlier experimented fuzzy and neuro-fuzzy techniques as
discussed in (Sandhu et al., 2007).

Fuzzy and neuro-fuzzy techniques

According to (Jang et al., 1995), a fuzzy system can be considered
to be a parameterized nonlinear map, called f, which can be
expressed as (4):

()

()� ∏

� ∏

= =

= =

�
�

�
�
�

�

�
�

�
�
�

�

=
m

l
i

n

i

m

l
i

n

i

l

x

xy

A

A
xf

l

i

l

i

1 1

1 1)(

µ

µ
 (4)

Where; yl is a place of output singleton if Mamdani reasoning is
applied or a constant if Sugeno reasoning is applied. The
membership function µAi

l(xi) corresponds to the input x = [x1, x2,
x3,… xm] of the rule l. The “and” connective in the premise is carried
out by a product and defuzzification by the center-of-gravity
method. Consider a Sugeno type of fuzzy system having the rule
base:

Rule1: If x is A1 and y is B1, then f1 = p1x + q1y + 1
Rule2: If x is A2 and y is B2, then f2 = p2x+ q2y + r2
Let the membership functions of fuzzy sets Ai, Bi, I = 1,2, be , µAi ,
µBi .
Evaluating the rule premises results in wi = µAi(x) * µBi (y) where i =
1,2 for the rule rules stated above.
Evaluating the implication and the rule consequences gives (5).

ww
fwfw

f
21

2211

+

+
= (5)

Let

ww
w

w i

i
21

+
= (6)

Then f can be written as (7).

fwfwf
2211

+= (7)

The steps for designing of adaptive neuro-fuzzy system are already
discussed in section II of the paper.

PSO trained neural network system

The following are the steps for the hybrid PSO-neural network
based modeling system:

(1) Designing of neural network and perform training: In this step
the following three sub steps are there:

(a) Calculate the minimum and maximum values in the attribute of
input and setting the various parameters of feed-forward back-
propagation network by like:

(i) Size of the feed-forward back-propagation neural network.
(ii) Type of transfer function of each layer to be used.
(iii) Type of back-propagation network training function.
(iv) Back-propagation weight/bias learning function.

(b)Generate the neural network.
(c) Perform the training of the neural network with PSO technique
discussed after the testing phase using the training dataset.
(2) Testing phase: In this step the PSO trained neural network is
evaluated against the testing data on the different criteria is
discussed in the next steps.

PSO is initialized with a group of random particles (solutions) and
then searches for optima by updating generations. In every
iteration, each particle is updated by the following two "best" values.
The first one is the best solution (fitness) it has achieved so far.
(The fitness value is also stored.) This value is called pbest.
Another "best" value that is tracked by the particle swarm optimizer
is the best value, obtained so far by any particle in the population.
This best value is a global best and called gbest. When a particle
takes part of the population as its topological neighbors, the best
value is a local best and is called lbest (Web URL:
http://www.swarmintelligence.org/tutorials.php).

After finding the two best values, the particle updates its velocity
and positions with following equations (8) and (9).

Ardil and Sandhu 079

v [] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[
] - present[]) (8)

present[] = persent[] + v[] (9)

where; v[] is the particle velocity, persent[] is the current particle
(solution), pbest[] and gbest[] are defined as stated before, rand ()
is a random number between (0,1) ans c1, c2 are learning factors
usually c1 = c2 = 2.

As mentioned in (Web URL:
http://www.swarmintelligence.org/tutorials.php), the pseudo code of
the procedure is as follows:

For each particle
Initialize particle

END

Do
For each particle
Calculate fitness value.
If the fitness value is better than the best fitness value (pBest) in
history. set current value as the new pBest.

 End

Choose the particle with the best fitness value of all the particles as
the gBest.
For each particle,
Calculate particle velocity according equation (8).
Update particle position according equation (9).

End

While maximum iterations or minimum error criteria is not attained.

Particles' velocities on each dimension are clamped to a maximum
velocity Vmax. If the sum of accelerations would cause the velocity
on that dimension to exceed Vmax, which is a parameter specified by
the user, then the velocity on that dimension is limited to Vmax.

Hybrid fuzzy-GA based approach

Genetic algorithms are a part of evolutionary computing, which is a
rapidly growing area of artificial intelligence. As you can guess,
genetic algorithms are inspired by Darwin's theory of evolution.
Simply said, problems are solved by an evolutionary process
resulting in a best (fittest) solution (survivor) - in other words, the
solution is evolved.

Rosenberg introduced evolutionary computing in the 1960s in
his work "Evolution strategies" (Evolutions strategies in original).
Other researchers then developed his idea. Genetic algorithms
(GAs) were invented by John Holland and his students and
colleagues. These lead to Holland's book" Adaption in Natural and
Artificial Systems" published in 1975. In 1992, John Koza used
genetic algorithms to evolve programs to perform certain tasks.
He called his method "genetic programming" (GP).
The steps of the hybrid fuzzy-GA algorithm are:

(1) Read the input as the metric values.
(2) Find the nearest match with example data using Euclidean
Distance.
(3) Calculate the output of the fuzzy inference system
corresponding to the Input set.

080 Int. J. Phys. Sci.

0
5

10
15
20
25
30
35

Number of
Modules

Maintenance
Severity Level

Types of Modules

Types of

Figure 5. Graphical representation of details of the type of modules in
the dataset.

 (4) Treat FIS value and the nearest match value as chromosome
and convert the values into binary after multiplying the values with
100.
(5) Perform the single point cross over at randomly generated point
in the selected parents.
 (6) Get the offsprings from the previous step and generate the
output by dividing the offspring with 100.
(7) Repeat the process up to 100 generations or the error reduces
to certain minimum level.
(8) The model generated is evaluated against the testing data on
the different criteria is discussed in the next steps.

Comparison criteria

The comparisons of machine learning algorithms are made on the
basis of the least value of MAE and RMSE values. Accuracy value
of the prediction model is also used for the comparison. The best
algorithm is picked up after the 10 fold cross validation results and
tested for the testing dataset. The Accuracy of the model is
compared with the results of Mamdani based FIS and neuro-fuzzy
based systems. The details of the MAE and RMSE are:

Mean absolute error: Mean absolute error, MAE is the average of
the difference between predicted and actual value in all test cases;
it is the average prediction error (Bherenji et al., 1992). The formula
for calculating MAE is given in equation shown below:

n
cacaca nn

−++−+− ...
2211

 (10)

Assuming that the actual output is a, expected output is c.

Root mean-squared error: RMSE is frequently used measure of
differences between values predicted by a model or estimator and
the values actually observed from the thing being modeled or
estimated (Challagulla et al., 2005). It is just the square root of the
mean square error as shown in equation given below:

 () () ()
n

nn cacaca −−− +++
222

...2211 (11)

Conclusions drawn

The conclusions are made on the basis of the
comparison made in the previous section.

RESULTS AND DISCUSSION

The real-time defect data set used is taken from the
NASA’s MDP (Metric Data Program) data repository, the
details of that dataset contains 60 modules of Perl
Programming language with different values of software
fault severity labeled as 1, 2, 3, 4 and 5. The fault severity
level-1 means the fault is having highest severity level
and that need urgent attention to be removed as it falls in
the category of major faults. The fault severity level-2
means the fault is having high severity level and that need
less urgent attention as compared to level-1 faults. The
fault severity level-3 means the fault is having medium
severity level and that require less attention as compared
to level-2 faults. The fault severity level-4 means the fault
is less severe and that need low attention to be removed.
The faults of this level belongs to category of minor faults
and fault severity level-5 means the fault is least severe
means having negligible effect of the performance of
system and belongs to the category of the purely minor
faults or no faults category. Graphical details of the type
of modules in the dataset are shown in Figure 5. The
details of the modules present in the dataset are shown in
Table 1.

The first step is to find the structural code and design
attributes of software systems that is, software metrics.
As most of the values of the other metrics are zero or
metrics are redundant in nature. So, selected five metrics
representing input attributes are:

- Branch_Count.
- Cyclometric_Complexity.
- Design_Complexity.

Ardil and Sandhu 081

Table 1. Details of the type of modules in the dataset.

Label Count
1 3
2 23
3 31
4 0
5 3

Figure 6. Mamdani based FIS inference system.

- Essential_Complexity.
- Number_Of_Lines.

When analyzing performance of all the WEKA project
(Web URL WEKA: www.cs.waikato.ac.nz/~ml/weka/)
algorithms, Logistic Model Trees (LMT) and simple
logistic algorithms have outperformed all the other
algorithms used in the comparative study with Accuracy,
MAE and RMSE values as 65, 0.2145 and 0.3285 respec-
tively when the 10 fold cross validation is performed.

When LMT and simple logistic algorithms are tested for
the fifteen exemplar inputs 86.66% accuracy is obtained.
In the Mamdani based fuzzy inference system model
(Mamdani et al, 1975) five metrics are considered as
input attributes and one attribute named as “software
maintenance severity level” is used as output attribute as
shown in Figure 6.

Each input and output attribute is represented with
fifteen fuzzy sets and the membership function value of
the each attribute is shown in Figure 7. In Figure 8, fifteen
rules used for the inference of the Mamdani based FIS
are shown.

During the testing phase of the Mamdani based fuzzy
inference system (Mamdani et al., 1975), fifteen inputs
are used and it shows 0.2183, 0.3066 and 80% as MAE,
RMSE and Accuracy values respectively.

As performance of adaptive neuro-fuzzy inference
system is found to be the best out of all the hybrid NF
systems (Abraham, 2001) and the extra complexity in

structure and computation of Mamdami based adaptive
NF inference system with max-min composition does not
necessarily imply better learning capability or approxima-
tion power (Jang et al., 2004). Hence, in MATLAB 7.4, the
Sugeno based adaptive neuro-fuzzy inference system is
used for modeling of software maintenance severity. The
ideal inference system for the evaluation of software
components should be less complex and more precision.
The inference system, which is already trained, will get
the metric values from the earlier stages and estimate the
software maintenance severity value of the software
components or modules.

The following is the information regarding the structure
of the adaptive neuro-fuzzy based inference system and
pictorially represented in Figure 9:

- Number of nodes: 32.
- Number of linear parameters: 12.
- Number of nonlinear parameters: 20.
- Total number of parameters: 32.
- Number of training data pairs: 60.
- Number of checking data pairs: 0.
- Number of fuzzy rules: 2.

The graphical representation of the input exemplars for
the NF system is shown in Figure 10.

The NF system is trained using a hybrid learning
algorithm using both least squares method and back-
propagation. In the forward pass, the consequent para-

082 Int. J. Phys. Sci.

Figure 7. Membership functions of the input and output attributes.

Figure 8. Fifteen rules of the Mamdani based FIS.

Figure 9. Structure of adaptive neuro-fuzzy inference system.

Ardil and Sandhu 083

Figure 10. Training data for the neuro-fuzzy system.

meters are identified using least squares and in the back-
ward pass the premise parameters are identified using
back-propagation. The trained NF system is then tested
for the fifteen inputs and it shows 0.1571, 0.2140 and
93.3333 as MAE, RMSE and Accuracy values
respectively.

PSO-neural network results

In the implementation of the PSO trained neural network
particle swarm optimization toolbox for matlab (Birge,
2003) is used. Size of the feed-forward back-propagation
neural network is set as [5 5 1] means there are 5
neurons in the input layer, 5 neurons in the hidden layer
and one neuron in the output layer of the network. The
linear transfer function is the type of transfer function
used for the last layer and hyperbolic tangent sigmoid
transfer function is used for the rest of layer of the
designed neutral network. Gradient descent with
momentum weight and bias learning function is used as
backpropagation weight/bias learning function.

TRAINPSO type of back-propagation network training
function is used as TRAINPSO is a network training
function that updates weight and bias values according to
particle swarm optimization. The following are the
additional parameters values used:

(1) Maximum iterations: 2000;
(2) Population size: 25;
(3) Acceleration constants (for type = 0): [2,2];
(4) Inertia weights (for type = 0): [0.9,0.4];
(5) Minimum error gradient: 1e-9;
(6) Iterations at error grad value before exit: floor
(0.2*trainParam.maxit);
(7) Error goal: 0;
(8) Type of PSO: Trelea.

After the training, the architecture of feed forward neural
network is shown in Figure 11 where the Bright Green line
shows more positive weight, bright red line shows more
negative weight and dashed white line shows zero weight

Figure 11. Architecture of feed forward neural network.

that is, no connection between the neurons. In the testing
phase MAE, RMSE and Accuracy values of the system
are 0.5278, 0.6112 and 66.6667 respectively as shown in
Table 2. The plot of Global best value (Gbest) versus
Iterations is shown in figure 12. As Gbest value is tracked
by the particle swarm optimizer is the best value, obtained
so far by any particle in the population. The Gbest value
obtained is 0.63639.

The fuzzy-GA hybrid system is also implemented in
Matlab 7.4. During the testing of the developed system,
0.1220, 0.1587 and 100 are calculated as MAE, RMSE
and Accuracy values for the testing dataset as shown in

084 Int. J. Phys. Sci.

Table 2. Results of the proposed systems for the fault severity prediction.

Prediction model Performance
Criteria Mamdani based fuzzy inference

system
Neuro-fuzzy

system
PSO trained neural

network
Fuzzy-GA

system
MAE 0.2183 0.1571 0.5278 0.1220
RMSE 0.3066 0.2140 0.6112 0.1587
Accuracy 80 93.3333 66.6667 100

Figure 12. Graph between gbest value and Iteration
index.

Table 2.

Conclusion and future direction

On comparing various WEKA’s machine learning algo-
rithms as mentioned in (Ardil et al., 2009), it is observed
that logistic model trees and simple logistic algorithms are
better techniques in prediction of fault severity level for
NASA’s public domain defect dataset coded in Perl
programming language. Both the algorithms use same
classification algorithm that is, logistic classifier and have
shown least mean absolute error and root mean square
error values: 0.2145 and 0.3285 among other algorithms
listed in WEKA’s project. During the testing phase, LMT
and simple logistic algorithm has shown 86.66%
Accuracy.

When experimented with Mamdani based fuzzy
inference system (Mamdani et al., 1975), the testing
phase results are comparatively equivalent as that of the
logistic model trees and simple logistic algorithm with
0.2183, 0.3066 and 80% as mean absolute error, root
mean square error and accuracy values.

The performance of feed forward neural network trained
with particle swarm optimization algorithm is not promising

as the testing phase MAE, RMSE and Accuracy values of
the developed system are 0.5278, 0.6112 and 66.6667%
respectively. The bad performance of this technique could
be due to the incapability of the PSO to train the neural
network designed. The prediction Accuracy percentage is
the lowest among Mamdani based fuzzy inference
system, logistic model trees and simple logistic algorithms
Accuracy values.

Fuzzy –GA hybrid algorithm is proved to be best as
compared to the other algorithms considered in this work
with 0.1220, 0.1587 and 100 as MAE, RMSE and
Accuracy values respectively for the testing dataset. In
such data search application the design and developed
fuzzy GA code has shown its superiority because it
includes the advantages of fuzzy as well as genetic
algorithms. Fuzzy provides a robust inference mechanism
with no learning and adaptability while on the other hand,
the genetic algorithms provide an efficient data modi-
fication in the wake of optimization objectives of given
application. Neuro -fuzzy algorithm is definitely superior to
fuzzy algorithm as it inherits adaptability and learning. The
performance of neuro -fuzzy algorithm is somewhat
satisfactory and better than fuzzy system. From the
simulation and the result obtained, it has been shown that
the percentage average error is least in the case of fuzzy-
GA algorithms and maximum in the case of PSO trained
neural network algorithms. Neuro-fuzzy algorithm has
yielded accuracy lying between the accuracy levels as in
the case of fuzzy and fuzzy-GA algorithms.

It is therefore, the best algorithm for classification of the
software components into different level of severity of
impact of the fault is found to be fuzzy-GA based tech-
nique. The algorithm can be used to develop model that
can be used for identifying modules that are heavily
affected by the faults and those modules can be
debugged timely. Hence, for non linear and complex
engineering applications involving control, inference and
analysis by and large fuzzy-GA is an efficient technique.
The future work can be extended in following directions:

i)The performance of the PSO based technique can
further be investigated by increasing the number of
hidden layers and changing the population size.
ii)This work can be extended to other programming
language datasets.
iii) More algorithms can be evaluated and then we can

find the best algorithm.
iv) Further investigation can be done and the impact of
attributes on the fault tolerance can be found.
v) Other dimensions of quality of software can be
considered for mapping the relation of attributes and fault
tolerance.

REFERENCES

Abraham A (2001). Neuro-Fuzzy Systems: State-of-the-Art Modeling

Techniques, Connectionist Models of Neurons, Learning Processes,
and Artificial Intelligence. Lecture Notes in Computer Science.
Springer-Verlag Germany. Jose Mira and Alberto Prieto (Eds.). 2084:
269-276.

Abraham A (2005). Hybrid Intelligent Systems: Evolving Intelligence in
Hierarchical Layers. Stud. Fuzziness Soft Comput. 173:159–179.

Ardil E, Ucer E, Sandhu PS (2009). Software Maintenance Severity
Prediction with Soft Computing Approach. International Conference
on Computer, Electrical, and Systems Science and Engineering.
Penang (Malaysia). 38: 139-144.

Bellini P (2005). Comparing Fault-Proneness Estimation Models. 10th
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS'05). pp. 205-214.

Benlarbi S, Emam Khaled El, Geol N (1999). Issues in Validating
Object-Oriented Metrics for Early Risk Prediction. 10th Int. Symp. on
Software Reliability Engineering, ISSRE’99, Boca. pp. 17-18.

Bherenji HR, Khedkar P (1992). Learning and Tuning Fuzzy Logic
Controllers through Reinforcements. IEEE Trans. Neural Networks. 3:
724-740.

Birge B (2003). PSOt - a particle swarm optimization toolbox for use
with Matlab. IEEE Proceedings of Swarm Intelligence Symposium
SIS '03. pp. 182-86.

Challagulla VUB, Bastani FB, Yen IL, Paul RA (2005). Empirical
assessment of machine learning based software defect prediction
techniques. 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems. WORDS 2005. pp. 263-270.

Czogala E, Leski J (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems.
Physica-Verlag Heidelberg. New York.

Denaro G (2000). Estimating Software Fault-Proneness for Tuning
Testing Activities. Proceedings of the 22nd International Conference
on Software Engineering (Limerick, Ireland). pp. 704-706.

Deodhar M (2002). Prediction Model and the Size Factor for Fault-
proneness of Object Oriented Systems. MS Thesis Michigan Tech.
University.

Eman K, Benlarbi S, Goel N, Rai S (2001). Comparing case-based
reasoning classifiers for predicting high risk software components. J.
Syst. Software 55(3): 301 – 310.

Feng JC, Teng LC (1998), An Online Self Constructing Neural Fuzzy
Inference Network and its Applications. IEEE Trans. Fuzzy Systems.
6(1): 12-32.

Fenton NE, Neil M (1999). A Critique of Software Defect Prediction
Models. IEEE Trans. Software Eng. arch. 25(5): 675 - 689.

Hudepohl JP, Aud SJ, Khoshgoftaar TM, Allen EB, Mayrand JE (1996).
Software Metrics and Models on the Desktop. IEEE Software. 13(5):
56-60.

Jang JSR, Sun CT (1995). Neuro-Fuzzy Modeling and Control. Proc.
IEEE. 83(3): 378-406.

Jang JSR, Sun CT, Mizutani E (2004). Neuro-Fuzzy and Soft
Computing - A computational approach to learning and machine
intelligence. Pearson Education. Singapore. Indian edition. Delhi.

Jang R (1992). Neuro-Fuzzy Modeling: Architectures, Analyses and
Applications. Ph.D. Thesis. University of California(Berkeley).

Kasabov N, Song Q (1999). Dynamic Evolving Fuzzy Neural Networks
with 'm-out-of-n' Activation Nodes for On-line Adaptive Systems.
Technical Report TR99/04. Department of information science,
University of Otago.

Ardil and Sandhu 085

Khoshgoftaar TM, Allen EB, Kalaichelvan KS, Goel N. (1996). Early

quality prediction: a case study in telecommunications. IEEE
Software 13(1): 65-71.

Khoshgoftaar TM, Gao K, Szabo RM (2001). An Application of Zero-
Inflated Poisson Regression for Software Fault Prediction. Pro-
ceedings of 12th International Symposium on Software Reliability
Engineering. pp: 66 -73.

Khoshgoftaar TM, Munson JC (1990). Predicting Software Develop-
ment Errors using Complexity Metrics. IEEE J. Selected Areas
Commun. 8(2): 253 -261.

Khoshgoftaar TM, Seliya N (2002). Tree-based software quality
estimation models for fault prediction. METRICS 2002. 8th IIIE
Symposium on Software Metrics. pp: 203-214.

Lanubile F, Lonigro A, Visaggio G (1995). Comparing Models for Iden-
tifying Fault-Prone Software Components. Proceedings of Seventh
International Conference on Software Engineering and Knowledge
Engineering. pp. 312-19.

Lin CT, Lee CSG (1991). Neural Network based Fuzzy Logic Control
and Decision System. IEEE Trans. Comput. 40(12): 1320-1336.

Mamdani EH, Assilian S (1975). An experiment in linguistic synthesis
with a fuzzy logic controller. Int. J. Man-Machine Studies, Vol. 7(1): 1-
13.

Menzies T, Ammar K, Nikora A, Stefano S (2003). How Simple is
Software Defect Prediction? J. Empirical Software Eng. Oct.

Munson J, Khoshgoftaar T (1990). Regression Modeling of Software
Quality: An Empirical Investigation. J. Info. Software Technol. 32(2):
106 - 114.

Munson JC, Khoshgoftaar TM (1992). The detection of fault-prone
programs. IEEE Trans. Software Eng. 18(5): 423-433.

Sandhu PS, Kumar S, Singh H (2007). Intelligence System for Software
Maintenance Severity Prediction. J. Comput. Sci. 3(5): 281-288.

Seliya N, Khoshgoftaar TM, Zhong S (2005). Analyzing software quality
with limited fault-proneness defect data. Ninth IEEE international
Symposium. pp. 89-98.

Sulzberger SM, Tschicholg-Gurman NN, Vestli SJ (1993). FUN:
Optimization of Fuzzy Rule Based Systems Using Neural Networks.
Proceedings of IEEE Conference on Neural Networks. San
Francisco. pp 312-316.

Web URL WEKA: www.cs.waikato.ac.nz/~ml/weka/.
Web URL: http://www.swarmintelligence.org/tutorials.php
Yen J, Langari R (2003). Fuzzy Logic: Intelligence, Control, and

Information. Pearson Education.
Zadeh LA (1973). Outline of a new approach to the analysis of complex

systems and decision processes. IEEE Trans. Syst. Man
Cybernetics 3(1): 28-44.

