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Twenty Five Schlumberger depth sounding data from Oke-Ila and environments, Southwestern Nigeria 
was interpreted to delineate the aquifers. The geoelectric parameters of the uppermost layer across the 
area were used to assess the vulnerability of the underlying aquifers to the surface and near-surface 
contaminants. The aquifer in the area is located mostly within the weathered layer above the basement 
rock and occurs at a shallow depth ranging from 3.9 to 15.7 m, where depths less than 8 m constitute 
52% of the study area. The average depth to the aquifer is 8.6 m. The protective capacity of the 
overburden showed that 60% of the study area has poor protective capacity, 12% weak protective 
capacity and 28% moderate protective capacity. This suggests that aquifers within the weathered 
basement rock are prone to surface and near-surface contaminants.  
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INTRODUCTION 
 
Domestic water supply in Oke-Ila area, Southwestern 
Nigeria comes majorly from groundwater. Oke-Ila lies 
within the basement complex terrain of Southwestern 
Nigeria (Rahaman et al., 1983; Rahaman, 1988). In the 
basement complex area, groundwater occurs in either the 
weathered basement or in the joints/fractured zones of 
the unweathered basement rock (Clark, 1985; Jones, 
1985; Acworth, 1987; Olasehinde and Raji, 2007; Adelusi 
et al., 2000; Abdullahi, 2005). The intrinsic value of 
resistivity of the unweathered basement rocks differs by 
several orders of magnitude from those of the weathered 
overburden. Hence, electrical resistivity method is 
suitable to delineate the thickness and extent of the 
overburden (Koefoed, 1979).  

The people around Oke-Ila area abstracts water from 
the weathered material overlying the crystalline basement 
rock through hand dug wells. Aquifers in the Precambrain 
Basement Complex usually occur at shallow depths and 
hence are vulnerable to surface or near-surface 
contaminants. The protection of groundwater reservoir is 
given by the covering layers, also called protective layers. 
An effective groundwater protection is given by protective 
layers with sufficient thickness and low hydraulic 
conductivity.  

Some geophysical techniques currently being applied 
to assess aquifer vulnerability include spontenous 
potential methods and ground penetrating radar. These 
methods identify leakages in reservoirs and membrane-
lined sites (U.S. Environmental Protection Agency, 1993). 
Vulnerability of aquifers can also be assessed using the 
aquifer vulnerability index which quantifies vulnerability 
by hydraulic resistance to vertical flow of water through 
the protective layers (Van Stempvoort et al., 1992). The 
present study involves the use of electrical resistivity 
method to assess the vulnerability of aquifers using 
geoelectric parameters of the near-surface materials 
overlying the aquifer. This method is much easier, 
because it is a well established method, equipment is 
inexpensive, mobile, easy to operate, provides relatively 
rapid areal coverage and depth of penetration is limited 
only by the ability to extend electrode spacing (U.S. 
Environmental Protection Agency, 1993).   
 
 
Location and geology  
 
The study area is situated between latitude 8°00'N and 
8°04'N and longitude 4°56'E and 4°58'E. The  geology  of 
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Figure 1. Map of the study area. 

 
 
 
the study area is made up of older granites, grey gneiss, 
granite gneiss, mica schist and migmatites of 
Southwestern Nigeria. There are also minor pegmatite 
vein and quartz vein intrusions. The barrovian type of 
metamorphism has affected the area, and metamorphic 
grade is from green schist to amphibolite facies 
(Rahaman, 1989).  

MATERIALS AND METHODS 

 
Twenty five vertical electrical sounding adopting the Schlumberger 
configuration (Zohdy et al., 1974) was carried out in the study area 
(Figure 1). The ABEM SAS 1000 Terrameter was used for this 
study with a maximum electrode separation of 180 m.  

The data acquired from the survey were plotted on a bi-log graph 
paper with the  electrode  separation  (AB/2)  on  the  abscissa  and  



 

7576          Int. J. Phys. Sci. 
 
 
 
apparent resistivity (ρa) values on the ordinate. The field curves 
were interpreted by partial curve matching (Koefoed, 1979) and the 
corresponding auxiliary curves (Orellana and Mooney, 1966). The 
thickness and resistivity values obtained from the partial curve 
matching were then used for a quantitative computer iteration using 
the winResist software (Vander, 2004) which reduced the 
interpretation errors to acceptable levels (Barker, 1989).  

The existing electrical resistivity contrasts between lithological 
sequences in the subsurface (Dodds and Ivic, 1988) were used in 
the delineation of geoelectric layers and identification of aquiferous 
units (Deming, 2002).  
  The resistivity parameters of the upper most geoelectric layer in 
the study area have been used to assess the vulnerability of the 
underlying aquifer. The combination of the resistivity and thickness 
in the Dar Zarrouk parameter (longitudinal conductance, S) may be 
of direct use in aquifer vulnerability studies (Henriet, 1976). 

Total longitudinal conductance:   
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where 
i

ρ  is apparent resistivity of layer and 
i

h  is the thickness of 

layer.  
  The earth medium acts as a natural filter to percolating fluid and 

it ability to retard and filter percolating fluid is a measure of its 
protective capacity (Olorunfemi et al., 1998). The longitudinal 
conductance/protective capacity rating was modified as >10 
(excellent), 5 to 10 (very good), 0.7 to 4.9 (good), 0.2 to 0.69 
(moderate), 0.10 to 0.19 (weak) and < 0.1 (poor) (Oladapo et al., 
2004). The results obtained are presented in Table 1.  
 
 
INTERPRETATION 
 

The interpretation of the sounding curves (Figures 2 and 
3) shows the following curve types: A, QH, HA, KH, QQH 
and HKH. Cross section of the interpreted resistivity data 
from the area (Figure 4) show three major geoelectric 
layers: the top soil, weathered layer (saprolite) and the 
fractured /fresh bedrock. Different approach has emerged 
as major focus for groundwater resources development in 
a basement terrain. The fractured zones in crystalline 
rocks are important sources of water for communities in 
such area (Meju et al., 1999) and also the thickest 
weathered layer above the basement rock constitute the 
major water-bearing layer (Lenkey et al., 2005). However, 
the most promising sites for groundwater development 
may not necessarily coincide with the thickest 
development of the saprolite; this becomes evident after 
considering other geoelectric parameters which may 
impact on the aquifer characteristics, such as the 
resistivity of the saprolite as well as that of the bedrock 
(Olayinka et al., 1997). Optimum aquifer potentials are 
attained in the mid-range of saprolite resistivity (20 to 100 
Ωm), while resistivity values less than 20 Ωm indicate 
clays (Wright, 1992). Also, if the bedrock has relatively 
low resistivity (< 750 Ωm) this could indicate fracturing 
and a high aquifer potential (Olayinka et al., 1997). 

The aquifer in Oke-Ila area occur within the weathered 
basement at a depth range of  3.9  to  15.7 m  (Figures  3  

 
 
 
 
and 4), where depths of less than 8 m constitute 52% of 
the study area. The average depth to the weathered rock 
is 8.6 m. The thickness of the aquifer ranges 3.6 to 49.0 
m, and has an average thickness of 18.68 m. The frac-
tured and jointed basement rock are also water bearing in 
areas characterized by resistivity lows (< 750 Ωm) within 
the resistivity highs of the basement rock (Figure 5) 
around VES 9, VES 13, VES 15 and VES 17 where the 
average depth to the aquifer at the locations is 41.8 m. 
 
 

Assessment of Aquifer Vulnerability 
 
Due to the shallow depth of aquifer in the basement 
complex terrains, they are often exposed to surface and 
near-surface contamination. Groundwater is given 
protection by protective geologic barriers having sufficient 
thickness (Mundel et al., 2003) and low hydraulic 
conductivity. Silts and clays are suitable aquitards which 
often constitute protective geologic barriers and when 
they are found above an aquifer they constitute a 
protective cover (Lenkey et al., 2005) and they protect 
the aquifer from surface and near-surface contamination, 
because their low hydraulic conductivity leads to high 
residence time of percolating water.  

The results of the assessment of aquifer vulnerability 
(Table 1) showed that the protective capacity at VES 6, 7, 
8, 10, 11, 12, 13, 15, 18, 19, 20, 23 and 25 ranges 
between 0.013 and 0.084 mhos. This indicate that the 
aquifer in these area have poor protective capacity, this is 
because the overburden above the aquifer are mostly 
sandy except at VES 10, 11 and 12 where there are 
lenses of clay but are not thick enough to give adequate 
protection. The protective capacity at VES 1, 2, 3, 17 and 
24 ranges between 0.101 and 0.134 mhos, this indicates 
a weak protective capacity, which also results from 
absence of suitable aquitards (silts and clays). The 
protective capacity at VES 4, 5, 9, 14, 16, 21 and 22 
varies between 0.22 and 0.42 mhos, this indicate that the 
overburden above the aquifer have a moderate protective 
capacity. At VES 5, 16, 21 and 22, the aquifer is 
protected by silts and clays with thickness ranging from 
3.7 to 7.5 m while the overburden at VES 4, 9 and 14 is 
sand, the aquifer are given moderately protection and this 
is probably due to the presence of silts and clays in the 
sandy overburden. The poor and weak protective zones 
are prone to surface and near-surface contamination, 
while in the moderately protected zones, the aquifer is 
protected from contaminated percolating fluids. The 
moderate protective capacity tallies with the thick silt and 
clay overburden.                                         

The topmost layers are mostly sandy and where silts 
and clays which protect the aquifer are found, they are 
usually very thin and hence provide little or no protection 
for the aquifer beneath them. This indicates that the 
overburden above the aquifer in Oke-Ila area, generally 
have poor protective capacity and where present it is 
weak or moderate. 
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Table 1. Geoelectric parameters, lithological delineation and protective capacity of the study area. 
 

VES Layer Resistivity (Ωm) Thickness (m) Lithology Longitudinal conductance Protective capacity 

1 1 224.8 1.1 Top soil 0.00489 0.108 

2 88.6 9.2 Sandy 0.103  

3 109.1 11.3 Sandy 0.104 (weak) 

4 1224.7  Basement  

       

2 1 603.5 1.2 Top soil 0.00199 0.101 

2 51.3 5.1 Sandy 0.0994  

3 114.6 9.7 Sandy 0.0846 (weak) 

4 1008.2  Basement  

       

3 1 388.3 0.6 Top soil 0.00155 0.04 

2 32.8 1.4 Silty 0.0427  

3 84.2 18.5 Sandy 0.151 (poor) 

4 123.3  Fractured 

Basement 

  

 

4 1 192.4 0.8 Top soil 0.00416 0.28 

2 41.7 11.6 Sandy 0.278  

3 303.8 28.3 Sandy 0.0932 (moderate) 

4 1586.4  Basement   

 

5 1 184.2 1.5 Top soil 0.00814 0.22 

2 31.6 6.6 Silty 0.2089  

3 73.5 3.6 Sandy 0.049 (moderate) 

4 1837.3  Basement   

 

6 1 806.9 1.2 Top soil 0.00149 0.016 

2 580.6 2.8 Sandy 0.00482  

3 326.2 3.0 Sandy 0.0092  

4 81.4 9.3 Sandy 0.1143 (poor) 

5 1916.4  Basement   

 

7 1 184.8 0.9 Top soil 0.00487 0.022 

2 621.6 10.4 Sandy 0.0167  

3 48.1 8.6 Sandy 0.179 (poor) 

4 2014.7  Basement   

 

8 1 336.2 1.4 Top soil 0.00416 0.013 

2 553.9 5.1 Sandy 0.00921  

3 214.8 13.1 Sandy 0.061 (poor) 

4 1735.1  Basement   

 

9 1 308.6 0.9 Top soil 0.00292 0.24 

2 67.2 15.1 Sandy 0.225  

3 215.0 32.5 Sandy 0.151 (moderate) 

 4 616.9  Fractured 

Basement 

  

       

10 1 207.2 1.2 Top soil  0.00579 0.05 

      

2 165.2 7.5 Sandy  0.0454  
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Table 1. Contd. 
 

 3 11.3 7.5 Clayey 0.664 (poor) 

4 1401.1  Basement   

       

11 1 123.6 0.8 Top soil  0.00647 0.084 

 2 19.8 1.1 Clayey 0.056  

3 224.2 4.8 Sandy 0.0214 (poor) 

4 42.9 29.3 Sandy 0.683  

5 1220.7  Basement   

       

12 1 741.6 0.6 Top soil  0.0008 0.069 

2 17.0 1.0 Clayey 0.0588  

3 746.0 7.0 Sandy  0.0094 (poor) 

4 238.6 25.0 Sandy 0.105  

5 1359.1  Basement   

       

13 1 810.2 0.6 Top soil  0.00074 0.022 

2 158.4 3.3 Sandy  0.0208  

3 127.8 20.8 Sandy 0.163 (poor) 

4 581.8  Fractured  

Basement 

  

       

14 1 186.4 1.2 Top soil  0.00644 0.42 

2 15.3 6.3 Clayey 0.4118  

3 96.7 14.5 Sandy 0.15 (moderate) 

4 1635.6  Basement   
       

15 1 851.9 1.3 Top soil  0.0015 0.03 

2 234.1 6.8 Sandy  0.029  

3 41.6 49.0 Sandy 1.178 (Poor) 

4 349.2  Fractured 
Basement 

  

       

16 1 89.1 1.3 Top soil  0.0146 0.42 

2 21.1 3.7 Clayey 0.1754  

3 37.3 8.7 Silty 0.2332 (moderate) 

4 1938.1  Basement   
       

17 1 108.4 0.7 Top soil  0.0065 0.134 

2 41.1 5.2 Sandy  0.127  

3 45.9 31.0 Sandy 0.675 (weak) 

4 124.4  Fractured  

Basement 

  

 
       

18 1 511.3 1.3 Top soil  0.0025 0.081 

2 137.5 10.8 Sandy  0.0785  

3 156.4 20.6 Sandy 0.132 (poor) 

4 1008.1  Fractured  

Basement 

  

       

19 1 426.7 1.0 Top soil  0.0023 0.053 

2 168.1 8.5 Sandy  0.051  

3 83.3 30.5 Sandy 0.366 (poor) 

4 1462.4  Basement   
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Table 1. Contd. 
 

       

20 1 131.4 0.9 Top soil  0.0068 0.045 

2 375.2 14.4 Sandy  0.0384  

3 63.8 8.8 Sandy 0.138 (poor) 

4 1608.1  Basement   

       

21 1 239.7 1.0 Top soil  0.0042 0.29 

2 15.3 4.4 Clayey 0.2876  

3 375.6 28.1 Sandy 0.0748 (moderate) 

4 1279.4  Basement   

       

22 1 184.1 1.6 Top soil  0.0087 0.28 

2 27.3 7.5 Silty  0.2747  

3 413.7 21.4 Sandy 0.052 (moderate) 

4 1362.8  Basement   

       

23 1 209.8 0.5 Top soil  0.0024 0.022 

2 762.3 152 Sandy  0.02  

3 286.2 5.8 Sandy 0.02 (poor) 

4 1663.5  Basement   

       

24 1 121.8 1.2 Top soil  0.0099 0.155 

2 61.5 8.9 Sandy  0.1447  

3 172.3 17.6 Sandy 0.102 (weak) 

4 1307.1  Basement   

       

25 1 117.2 4.5 Top soil  0.038 0.038 

2 521.3 13.8 Sandy  0.026 (poor) 

3 1257.1  Basement   
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Figure 2a. Typical resistivity curve obtained from the area. 
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Figure 2b and c. Typical resistivity curves obtained from the area. 

 
 
 
CONCLUSIONS AND RECOMMENDATIONS  
 
The weathered materials (saprolite) overlying the 
crystalline basement rock and fractured basement rock 
around Oke-Ila area constitute the major water-bearing 
horizon from which water for domestic use of the 
inhabitants of the area is abstracted.  

The depth to the saprolite varies from 3.9 to 15.7 m 
where depth less than 8 m constitutes about 52% of the 
area. This indicate that the saprolite occurs at relatively 
shallow depth in most of the area and hence, is prone to 
surface and near-surface contamination. 

About 60% of the study area has poor protective 
capacity (0.013 to 0.084), 12% weak protective capacity 

(0.101 to 0.134) and 28% moderate protective capacity 
(0.22 to 0.42).  This indicates that the topmost geoelectric 
layers in the area are mostly pervious geologic materials 
through which surface and near-surface contaminants 
can infiltrate. Hence, the aquifer is vulnerable to surface 
and near-surface contaminants.  

Since fractured bedrock in crystalline basement terrain 
can yield significant quantity of groundwater and occur in 
this area at greater depth which are free from surface and 
near-surface contamination, it is recommended that the 
deeper aquifer occurring at an average depth of 41.8 m 
should be developed, especially around location VES 9 
(48.5 m), VES 13 (24.7 m), VES 15(57.1 m) and VES 17 
(36.9 m).  
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Figure 3. Geoelectric section of Oke-Ila area.  
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Figure 4. Depth to the top of weather basement rock (saprolite) in the study area. 
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Figure 5. Isoresistivity map of the basement rocks.  
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