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This study is interested in the effect of an axial magnetic field imposed on incompressible flow of 
electrically conductive fluid between two horizontal coaxial cylinders. The imposed magnetic field is 
assumed uniform and constant. The effect of heat generation due to viscous dissipation is also taken 
into account. The inner and outer cylinders are maintained at different uniform temperatures and 
concentrations. The movement of the fluid is due to rotation of the cylinder with a constant speed. An 
exact solution of the governing equations for momentum and energy are obtained in the form of Bessel 
functions. A finite difference implicit scheme was used in the numerical solution to solve the governing 
equations of convection flow and mass transfer. The velocity, concentration and temperature 
distributions were obtained with and without the magnetic field. The results show that for different 
values of the Hartmann number, the velocity and concentration between the two cylinders decreases as 
the Hartmann number increases. On the other hand, the Hartmann number does not affect the 
temperature. Also, it is found that by increasing the Hartmann number, the Nusselt and Sherwood 
numbers decreases.  
 
Key words: Rotating cylinders,  viscous dissipation, heat transfer, mass transfer,  magnetic field, Bessel 
function, finite difference. 

 
 
INTRODUCTION 
 
The study of flow of electrically conductive fluids, called 
magnetohydrodynamic (MHD) has attracted much 
attention due to its various applications. In astrophysics 
and geophysics, it is applied to the study of stellar 
structures, terrestrial cores and solar plasma. In industrial 
processes, it finds its application in MHD pumps,  nuclear  

reactors, the extraction of geothermal energy, 
metallurgical and crystal growth in the field of 
semiconductors, the control of the behavior of fluid flow 
and the stability of convective flows. The analysis of flow 
and heat and mass transfer, known as the double-
diffusive   convection,   in   cylindrical   annuli   has   been 
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investigated in several pieces of literature. However, to 
the author’s knowledge a few studies have been 
conducted on double-diffusive convection in a rotating 
annulus in the presence of a magnetic field. Recently, the 
effect of magnetic field on the laminar convection in either 
vertical or horizontal rotating concentric annuli has been 
investigated. Ben and Henry. (1996) investigated 
numerically the effect of a constant magnetic field on a 
three-dimensional buoyancy-induced flow in a cylindrical 
cavity, they put in light the structural changes of the flow 
induced by the magnetic field for each field orientation. 
Singh et al. (1997) presented exact solutions for fully 
developed natural convection in open-ended vertical 
concentric annuli under a radial magnetic field. El Amin 
(2003) studied the effects of both first- and second-order 
resistance due to the solid matrix on forced convective 
flow from a horizontal circular cylinder in the presence of 
a magnetic field and viscous dissipation, with a variable 
surface temperature boundary condition. Hayat and Kara 
(2006) investigated the Couette time-dependent flow of 
an incompressible third-grade fluid subjected to a 
magnetic field of variable strength analytically. Group 
theoretic methods were employed to analyze the 
nonlinear problem and a solution for the velocity field was 
obtained analytically. Sankar et al. (2006) studied 
numerically a natural convection of a low Prandtl number 
electrically conducting fluid under the influence of either 
axial or radial magnetic field in a vertical cylindrical 
annulus. They showed that the magnetic field can be 
suppress the flow and heat transfer. Bessaïh et al. (2009) 
studied the MHD stability of an axisymmetric rotating flow 
in a cylindrical enclosure containing liquid metal (Pr = 
0.015), with an aspect ratio equal to 2, and subjected to a 
vertical temperature gradient and an axial magnetic field. 
Azim et al. (2010) studied numerically the effect of 
magnetic field and Joule heating on the coupling of 
convection flow along and conduction inside a vertical flat 
plate in the presence viscous dissipation and heat 
generation. Ellahi et al. (2010) determined analytic 
solutions for a nonlinear problem governing the MHD 
flowof a third grade fluid in the annulus of rotating 
concentric cylinders. Makinde and Onyejekwe (2011) 
investigated a steady flow and heat transfer of an 
electrically conducting fluid with variable viscosity and 
electrical conductivity between two parallel plates in the 
presence of a transverse magnetic field. Kakarantzas et 
al. (2011) studied numerically the combined effect of a 
horizontal magnetic field and volumetric heating on the 
natural convection flow and heat transfer of a low Prandtl 
number fluid in a vertical annulus. Seth et al. (2011) 
studied the effects of rotation and magnetic field on 
unsteady Couette flow of a viscous incompressible 
electrically conducting fluid between two horizontal 
parallel porous plates in a rotating medium. Mozayyeni 
and Rahimi (2012) investigated numerically the problem 
of mixed convection of a fluid in the fully developed region 
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between two horizontally concentric cylinders with infinite  
lengths, in the presence of a constant magnetic field with 
a radial MHD force direction, considering the effects of 
viscous heat dissipation in the fluid in both steady and 
unsteady states. Seth and Singh (2013) studied 
theoretically the effect of Hall current and a uniform 
transverse magnetic field on unsteady MHD Couette flow 
of class-II in a rotating system. Takhar et al. (2003) 
studied the unsteady mixed convection flow over a 
rotating vertical cone in the presence of a magnetic field. 
Recently, some attention has been paid by  Ashorynejad 
(2013) to the effect of   magnetic field convection on 
natural convection heat transfer in a horizontal cylindrical 
annulus enclosure filled with nanofluid using the Lattice 
Boltzmann method.  Also  Sheikholeslami et al. (2013) 
solved the problem of heat and fluid flow of a nanofluid in 
a half-annulus enclosure with one wall under constant 
heat flux in presence of magnetic flied using control 
volume based finite element method. In another 
publication Sheikholeslami et al. (2014) applied Lattice 
Boltzmann Method to simulate the effect of magnetic field 
on free convection of nanofluid, in an eccentric semi-
annulus. In a recent paper Aminfar et al. (2014) 
experimentally studied the effects of using magnetic 
nanofluid and also applying an external magnetic field on 
the critical heat flux of subcooled flow boiling in vertical 
annulus.  

Some surveyed studies in the literature were concerned 
primarily with the double diffusive convection, Teamah 
(2007) carried out a numerical study of double-diffusive 
laminar mixed convection within a two-dimensional, 
horizontal annulus rotating cylinders. The results for both 
average Nusselt and Sherwood numbers were correlated 
in terms of Lewis number, thermal Rayleigh number and 
buoyancy ratio. Moreover, Molki et al. (1990) applied the 
naphthalene sublimation technique to an annulus with a 
rotating inner cylinder in order to study heat transfer in the 
entrance region to obtain heat transfer data for laminar 
flows and compare them with results of mass transfer. 
Kefeng and Wen-Qiang (2006) simulated numerically the 
characteristics of transient double-diffusive convection in 
a vertical cylinder using a finite element method. 
Recently, Venkatachalappa et al. (2011) carried out 
numerical computations to investigate the effect of axial 
or radial magnetic field on the double-diffusive natural 
convection in a vertical cylindrical annular cavity. 

 Although the exact solutions for the Hartmann flow and 
the MHD Couette flow have been achieved for more than 
seventy years, the solutions for a heat transfer in flow 
between concentric rotating cylinders, also known as 
Taylor Couette flows, under external magnetic field have 
been restricted to high Hartmann numbers.  

The aim of the present study is to examine analytically 
and numerically the effects of an external axial magnetic 
field applied to the forced convection flow of an 
electrically   conducting   fluid   between   two    horizontal 



  

370          Int. J. Phys. Sci. 
 
 
 

 

 
 

 
 
Figure 1. Geometry of the problem. 
 
 
 
concentric cylinders, considering the effects of viscous  
heat dissipation in the fluid.  Also we investigated 
numerically the effects of the magnetic field on the mass  
transfer in the annular cavity. It should be noted that the 
natural convection is supposed negligible in this work, 
which is not always the case of the vertical cylinder. The 
forced flow is induced by the rotating inner cylinder, in 
slow constant angular velocity and the other is fixed.  
 
 
FORMULATION OF THE PROBLEM 
 
Consider a laminar flow of a viscous incompressible 
electrically conductive fluid between two coaxial cylinders. 
The inner cylinder of radius r1 is rotated at a constant   
speed Ω1 and the outer cylinder of radius r2 is kept fixed. 
The inner and outer walls are maintained at a constant 
and different temperatures and concentrations, but their 
values for the inner are higher than the outer, while the 
top and bottom walls are insulated and impermeable. The 
two cylinders are electrically isolated. The flow is 
subjected to a constant uniform and axially magnetic field 
B0. Geometry of the problem is presented in Figure 1. We 
assume that the magnetic Reynolds number is neglected. 
When the magnetic field is uniform and externally applied, 
its time variations can be neglected and the set of flow 
equations further simplified to involve only the Navier-
Stokes equations and the conservation of the electric 
current. Also we assume that the electric field is zero. In 
this study the viscous dissipation term in the energy 
equation is considered. 
 
 
ANALYTICAL STUDY 
 
The flow is assumed to be steady, laminar and unidirectional, 
therefore the radial and axial components of the velocity and the 
derivatives of the velocity with respect to θ and z are zero. Under 
these assumptions and in cylindrical coordinates, the governing 
equations for the flow following the azimuthal direction can be 
written as follows: 
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The governing equation and boundary conditions, Equations (1) to 
(4), which are in non-adimensional form, become: 
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Where, the stars are dropped for convenience. The velocity profile 
in the annular space is  obtained by solving the Equation (5) as 
follows: 
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C1 and C2 are the constants of integration, which are determined 
from the boundary conditions on the velocity. 
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I1 is the modified Bessel function of the first kind of order 1, and K1 
is the modified Bessel function of the second kind of order 1.  To 
obtain the temperature field from Equation (6), we performed 
calculations by using the expansions with three terms of the 
modified Bessel functions  1I Mr  and  1K Mr  used by Omid et al. 

(2012), for small values of Ha. It can be used as following: 
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Where γ is Euler's constant defined by:  
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By substituting the values of  1I Mr  and  1K Mr

 from the above 

expansions in the velocity equation, Equation (9), and using the new 
velocity distribution in Equation (6) to find the temperature field. The 
temperature gradient is given then by the following equation:   
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Where the constants C5 to C9 are given in terms of C1 and C2 as 
follows: 
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The solution of the energy equation is: 
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Where the Constants C10, C11 and C12 are given as follows: 
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NUMERICAL STUDY 
 
In this numerical study, we consider  two-dimensional and 
axisymmetric unsteady flow. We opted for the velocity - pressure 
formulation due to its rapidity of prediction, its lower cost, and its 
ability to simulate real conditions. The finite difference scheme 
adopted for the resolution is very similar to that used by Peyrret 
(1976), and Ghezal and Porterie. (2011), this is a semi implicit 
scheme of Crank-Nicholson type, iterative process based on the 
perturbation of the continuity equation by introducing an artificial 
compressibility. The spatial discretization using the marker and cell 
(MAC) is shown in Figure 2. The iterative procedure is assumed 
converged when the following test is verified   
 

u v w Cmax(L , L , L , L , L D) 
 

 
where Lu, Lv, Lw, Lθ, LC and D represents operators differences 
relating to system equations corresponding to the problem variables 
u, v, w, θ, C and Π respectively, ε is of the order of 10-5 depending 
on the considered case.  

We then proceeded to a study of the mesh sensitivity of the field 
of study. This study led us to retain a mesh of 336 nodes along the 
direction r and 48 nodes in the z direction.  
 
 
Mathematical equations 
 
Based on these dimensionless variables, the conservation 
equations of mass, momentum and energy are written in non 
rotating frame cylindrical coordinates as follows (where the stars are 
dropped for convenience):  
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The rate of heat transfer in non – dimensional for the inner and 
outer cylinder is given by: 
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The average Nusselt number on the inner and outer cylinders is 
given by:  
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Similarly, we can calculate both local Sherwood number as follows: 
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 Initial and boundary conditions 
 
At the time t=0: 
 
u(r,z,0) v(r,z,0) w(r,z,0) (r,z,0) (r,z,0) C(r,z,0) 0               (20) 
 
The boundary conditions are as follows: 
 

1 1 1

1 1

r   z 0 :  u(r ,z) v(r ,z) w(r ,z) 0 

                      (r ,z)=C(r ,z) 1

    
                      

(21) 

 

2 2 2

2 2

r 1    z 0 :   u(r , z) v(r , z) w(r , z) 0 

                      (r , z)=C(r , z) 0

    
 

                       (22) 

 

 
C

r 1     z 0 :       u v = w=0 , 0
z z

=
 

     
 

                     (23) 

 

C
z L :       u = v = w 0, 0

z z

 
   

 
                                   (24) 

 
 
RESULTS AND DISCUSSION  
 
In order to understand the physical situation of the 
problem and the effects of the Hartmann and Eckert 
numbers,  we  have  found  the  numerical  and  analytical  
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Figure 3. Velocity profile of the fluid in the annulus for b = -1, (a) Result of Dizaji Feiz et al. (2008), (b) Results of the present analytical 
study. 
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Figure 4. Comparison of analytical and numerical results of velocity profile, 
for η = 0.5,b=0, Ta=20,t*=120. 

 
 
 
values of the velocity, temperature, concentration, the 
Nusselt number and Sherwood number. The analytical 
method developed in the present work has been 
compared in Figure 3 with the results obtained by Feiz-
Dizaji (2008), for the velocity profiles of the fluid in the 
annulus of concentric cylinders with velocity ration b =-1. 
The results are found to be in good agreement except 
for the negative values of magnetic field B1 which cannot 
exist in our non- dimensional study, Hartmann 
number (Ha) is a strictly positive non-dimensional 
number. 

The results obtained through the developed code in 
FORTRAN based on an  implicit  finite-difference  method 

described earlier, are compared with those calculated 
using the analytical approach for small value of Hartmann 
number. The velocity,  temperature and average Nusselt 
numbers are evaluated analytically and numerically 
for different values of Hartmann number in Figures 4, 5 
and 6. 

Obviously, the velocity and temperature profiles, for 
various Ha obtained via these two different methods, 
agree with each other reasonably well. We can notice in 
Figure 4 that the velocity profile without magnetic field 
Ha=0 is quasi-linear, and an increase in Hartman number, 
which causes a reduction of the velocity in the annular 
space because the centrifugal force is counter- productive 
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Figure 6. Comparison of analytical and numerical results of average Nusselt number on (a) inner and (b) outer surfaces 
of the cylinder against the Hartmann number, for η = 0.5, b=0, Pr = 0.02, Ec=0.5. 

 
 
 
and the Lorentz electromagnetic force acts as a flow 
damper.  It is observed from Figure 5 that the effect of 
weak magnetic field on the radial profile of temperature is 
insignificant for small value of Prandtl numbers (Pr=0.02) 
which is appropriate for liquid metal. It is valid in the case 
of low and high values of Hartmann number.  Figure 6 
displays the effect of Hartmann number on the average 
Nusselt number on inner and outer surfaces.  As can be 
seen,   from   this   figure   that   the    analytic    approach 

corresponding to the expansion with three terms of the 
modified Bessel functions is closer to the numerical 
approach. The difference between the analytical and 
numerical values is approximately 10-3, even the results 
obtained from the present theoretical analysis are 
restricted to a one-dimensional flow and the numerical 
results are calculated using two-dimensional 
axisymmetric flow. Figure 7 shows the effect of Hartmann 
number on the  local  Nusselt  number  on  the  inner  and  
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Figure 7. Effect of Hartman number on local Nusslet number distribution on (a) inner and (b) outer cylinders, for η = 
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Figure 8. Effect of Eckert number on local Nusselet number distribution on (a) inner and (b) outer cylinders, for η = 
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outer surfaces, for an Eckert number Ec = 0.5. It is found 
that for high values of Hartmann number, the local 
Nusselt number on the inner and outer surfaces 
decreases.  

In fact when the Eckert number is considerable, the 
heat generation in the fluid increases because the 
viscous dissipation.  Thus the temperature of the fluid in 
the annular space increases causing a decrease in the 
temperature gradient in the vicinity of the inner cylinder 
and an increase of the gradient in the vicinity of the outer 
cylinder. A significant increase in the Hartmann number 
causes a reduction of the centrifugal force, which results 
in a gradual decrease in the Nusselt number. It is worth 
to mention that this phenomenon is in full accordance 
with what was previously observed by Mozayyeni (2013) 
for a horizontal cylindrical annulus, also by El-Amin 
(2003) for horizontal cylinder in a porous medium and by 
Takhar et al. (2003). for  rotating  vertical cone. 

The analysis of the variation of local Nusselt number on 
the inner and outer cylinder shows that this number tends 
to a limit value. It can be noticed that the Nusselt number 
on the outer cylinder is lower than on the inner cylinder, 
because the velocity and temperature gradient are higher 
for the cold inner cylinder than for the outer cylinder. It 
should be also noted that the effect of magnetic field on 
the temperature distribution is insignificant, whereas the 
changes induced by the magnetic field on the 
temperature gradient and therefore on the Nusselt 
number is considerable. 

Effect of Eckert number on the distribution of local 
Nusselt number on the inner and outer cylinders 
isdisplayed in Figure 8, for Ha = 0. As can be seen, with 
increase of Eckert number, the influence of heat transfer 
due to the viscous dissipation in the annular space is 
improved, which  leads  to  the  increase  in  the  average 
temperature of the fluid at this region, especially near  the
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Figure 9. Velocity distribution at different times at z/d=7  and for Ta=20, (a) Ha = 2 and (b) Ha = 50.  
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Figure 10. Temperature distribution at different times for z/d=7, Ta=20, Ec=0, Pr=0.02, for (a)Ha = 2 and (b)Ha=50.  

 
 
 
inner cylinder, to be more than in the past. The 
dimensionless temperatures of inner and outer cylinders 
are maintained at 1.0 and 0.0, respectively. 

It is evident that by increasing the average temperature 
of fluid in annular space, the rate of heat transfer 
between the fluid and inner cylinder decreases due to the 
reduction of the temperature difference between them. In 
contrast to the other case, the local Nusselt number on 
the outer cylinder increases as the Eckert number 
increases because of the enhancement of temperature 
differences between the fluid and the outer cylinder. 

In this part, some results are presented in different non-
dimensional time values for the distribution of velocity 
and temperature in the annulus Figures 9, 10, and 11. 
From Figure 10, we can  notice that for  a  small  value  of  

Prandtl number (Pr=0,02),  The effect of the time 
variation is found  to be not significant  on the 
temperature, it reaches faster a  steady-state  to the point 
that we can’t notice the difference between the steady 
and unsteady states flows.  As we know, for larger fluid 
Prandtl number, the momentum flow transfer is faster 
than heat transfer. This can be seen clearly in Figure 11 
(for a fluid with Pr =7) and the distribution of the 
azimuthal component of velocity reaching a steady-state 
quicker than the temperature at the mid-length. There is 
not much difference in velocity at t= 10, compared to 
t=120, but comparing temperature distribution at t=10 
with values greater than 10, it indicates that much more 
time is still needed to reach steady-state. 

The effects of Hartmann number  on  the  concentration 
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Figure 11. Temperature distribution at different times at z/d=7, for Ta=20, Ec=0, Pr=7, for (a) Ha = 2 and (b) Ha = 5. 
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At the annulus center are shown in Figure 12. It is 
observed that the concentration decrease from the inner 
cylinder where is considered to be a source for the 
concentration to tends towards almost zero value in the 
outer cylinder. As can be also seen from this figure, for 
increasing Hartmann number the concentration 
decreases in the annular cavity. 

The mass transfer rate across the annular cavity is 
investigated using the computed local Sherwood 
numbers in the inner and outer cylinders, for different 
Hartmann number and Sc=10 in Figure 13. It can be 
noticed that the rate of mass transfer is higher on the 
inner cylinder than on the outer cylinder. This is 
reasonable to expect since the velocity and concentration  
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Figure 13. Effect of Hartman number on local Sherwood number distribution on (a) inner and (b) outer cylinders, for η = 0.5, Sc=10, 
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gradient are higher for the inner cylinder than for the 
outer cylinder. The rate of mass transfer profile on the 
outer surface is decreased with decreasing the values of 
the magnetic field parameter.  Another interesting point is 
the unexpected behavior of local Schmidt number with an 
increase in Hartman number, the application of an axial 
magnetic field tends to decrease the mass transfer on the 
inner cylinder. 
 
 
CONCLUSION 
  
In this study, the MHD forced convection flow and mass 
transfer of an electrically conducting fluid between two 
horizontal concentric cylinders in the presence of an axial 
magnetic field considering the effects of viscous heat 
dissipation in the fluid has been investigated numerically 
and analytically. The velocity distribution in the annulus is 
obtained analytically in terms of the modified Bessel 
functions whose argument contains Hartmann number 
and radial coordinate. To obtain the temperature, the 
expansions of the modified Bessel functions, with three 
terms are used in the energy equation.  

It is found that the velocity and concentration 
decreases in the annulus with increase of Hartmann 
number. However, an increase in Hartmann number does 
not affect the temperature. The effects of magnetic field 
strength and Eckert number on local Nusselt number 
have been examined. The results show that an increase 
in Hartmann number reduces the Nusselt number on both 
surfaces of the cylinders. Also it was noticed that as the 
Eckert number increases local Nusselt number increases 
on the outer cylinder, but opposite trend is observed on 
the inner cylinder. The application of a magnetic field 
generates some interesting changes in mass transfer, an 

increasing in Hartmann number causes a reduction on 
the locale Sherwood number. 
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