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The work wishes to measure the individual and combined impacts of common parts and machines in 
manufacturing, under bottleneck and uncertain conditions. The system is characterized with multiple 
products, multi-period and multistage dependent demand. This research uses machine breakdown and 
quality variation to create uncertainty. The authors examined the delivery performances such as (i) 
throughput of the finished products, (ii) average production time and (iii) work-in-progress in the 
system for different experimental scenarios. Taguchi approaches for orthogonal array were employed 
in designing experiments and these were executed in a WITNESS. Few simulation models are 
developed based on a live case from a Malaysian company. The models corroborated and confirmed 
the historical data from the company by face validity. It was viewed that batch size of 12 in bottleneck, 2 
common parts and 4 common machines ensure the best outcomes of the system under the storm of 
uncertainties. The main contribution of this research is to find out the best batch size in bottleneck 
point under uncertainties, commonalities and capacity constraint.  
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INTRODUCTION 
 
The underlying ideas for commonality are not new. As 
early as 1914, an automotive engineer demanded the 
standardization of automobile subassemblies, such as 
axles, wheels and fuel feeding mechanisms to facilitate a 
mix-and-matching of components and to reduce costs 
(Fixson, 2007). The term ‘commonality’, its definition, 
measurement and models are discussed in Wazed et al. 
(2010a). Two sources of commonality, namely 
component/part commonality and process commonality, 
are identified in the literature. The process commonality 
index incorporates such concerns as process flexibility, a 
lot of sizing and scheduling sequencing into one 
analytical measurement (Jiao and Tseng, 2000). Fewer 
processes are involved in the production and in the entire 
plant, thus, making the plant to be more flexible to 
customer needs. The number and diversity of component 
parts   and   the   corresponding   processes   reflect   the 
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complexity of design and that of planning and control of 
products. 

Uncertainty refers to the degree of differences between 
the models and their respective real values or between 
the estimate and their true values. Errors associated with 
the model itself and the uncertainties of the model inputs 
affect uncertainty. The major factors of uncertainty in 
production are found in the review of Wazed et al. 
(2009c). Elaborately, the big picture of the field is covered 
in Wazed et al. (2010c). In this article, component 
interchangeably uses a part and the entire machine as 
process, resource and facility. 

Modern manufacturing enterprises are facing 
increasing pressure to respond to production dynamics 
caused by disruption or uncertainty (Koh and Saad, 
2003). Machine breakdown and quality of end items are 
two leading uncertain factors (Wazed et al., 2009c). 
Often, these factors act as sources of other unexpected 
events in the system. Machine breakdown means the 
failure or stoppage of machine(s) for unknown reason(s) 
and a representation of interruption in the process (Koh 
and Saad, 2003). It wields reduction of the capacity  level  
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Table 1. Earlier studies and issues. 
 
Reference Issue 
Minifie and Davies (1990) Demand and supply uncertainties. 
 
Brennan and Gupta (1993), Enns (2001), Ho 
and Carter (1996) and Tito et al. (1999) 

 
Demand and lead time variations. 

 
John and Sridharan (1998) 

 
Late delivery in raw materials, variations in lead times, inter operation (or 
switching) and waiting times in a manufacturing setting. 

 
Matsuura et al. (1995) 

 
Demand modeling. 

 
Liao and Shyu’s (1991) 

 
Probabilistic inventory model, in which lead time is a unique variable. 

 
Ben-Daya and Raouf (1994) 

 
Extended Liao and Shyu (1991) model by considering both lead time and ordering 
quantity as decision variables neglecting shortages. 

 
Ouyang et al. (1996) 

 
Generalized Ben-Daya and Raouf (1994) model by allowing for shortages with 
partial backorders. 

 
Moon and Choi (1998) and Hariga and Ben-
Daya (1999) 

 
Changed the Ouyang et al. (1996) model by including the reorder point as one of 
the decision variables. 

 
Ouyang et al. (2007) 

 
Integrated inventory model to decide the best order quantity, reorder point, 
process quality, lead time and the frequency of deliveries simultaneously. 

 
Porteus (1986) and Rosenblatt and Lee (1986) 

 
Elaborated the relationship between quality defect and lot size. 

 
Keller and Noori (1988) 

 
Extended Porteus (1986) work to probabilistic demand during lead time and allows 
shortage. 

 
Hwang et al. (1993) 

 
Multiproduct economic lot size models. 

 
Hong and Hayya (1995) 

 
Introduce budget constraint and continuous functions to increase quality and 
reduce setup cost. 

 
Ouyang and Chang (2000) 

 
Impact of quality under variable lead time and partial backorders. 

 
Ouyang et al. (2002) 

 
Extended Ouyang and Chang (2000) model and explored quality improvement and 
setup cost simultaneously. 

 
Tripathy et al. (2003) 

 
EOQ model with an imperfect production. 

 
Zhang (1997) 

 
General multi-period, multiproduct, multiple parts model with known lead times. 

 
Benton and Krajewski (1990) 

 
Quality and lead time uncertainty with and without part commonality. 

 
Jiao and Tseng (1999) 

 
Process to establish product families. 

 
Germani and Mandorli (2004) 

 
Procedure to self-configuring components in a product architecture. 

 
Farrell and Simpson (2003) 

 
Steps in model for designing a product family. 

 
Qin et al. (2005) 

 
Commonalize product subsystems. 
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Table 1. Contd. 
 
 
Kamrani and Salhieh (2002) and Ulrich 
and Eppinger (2000) 

 
Procedure in designing modular products and products with common components. 

 
Lin et al. (2006) 

 
Multi-period model of component commonality with lead time. 

 
Nonas (2007) 

 
Optimal inventory level for components in multiple products share the common 
components in presence of a random demand pattern. 

 
Jans et al. (2008) 

 
Mixed integer nonlinear optimization model to find the optimal commonality decision. 

 
Wazed et al. (2009a) 

 
Impact of common component on performance of multistage production under 
uncertainty. 

 
Wazed et al. (2010b) 

 
Impact of common process on performance of multistage production under uncertainty. 

 
 
 

and delays the release of products or subassemblies 
(Wazed et al., 2009b). In this study, the authors assumed 
that no alternative machines are available if the existing 
machines fail and no alternative routing, except a 
common process, can be executed if an order needs to 
be expedited. 
Quality is defined as the degree to which a product, part, 
or workstation meets mentioned needs or customers’ 
expectations (Aas et al., 1992). Also, it is a measure of 
products’ perfection. Quality uncertainty of material not 
only affects the change of finished products, but also 
needs an extra time and delays the planned release to 
the next station. The causes of quality variation were 
found in Wazed et al. (2009b). This work only performs 
an inspection at the final stages and simply rejects the 
defective product. Table 1 summarizes some of the 
studies and their issues in this regard. 

Under the circumstances, although machine 
uprightness has paramount importance, its maintenance 
or breakdown and the commonalities (such as, 
component and process) issues remained unshaded. 
None of the past studies have pondered on the 
components and processes commonality in a production 
system being affected by machine breakdown and quality 
variations. Impacts of the bottleneck facility have not 
been considered in any earlier article where the system 
exploits commonalities (component and/or process) and 
uncertainties concurrently occured. In this research, the 
authors have put the real manufacturing facts in 
analyzing the effects of the bottleneck under uncertain 
factors (such as, machine breakdown and quality 
variability) and with/without the inclusion of the 
commonalities (component and/or process), case-by-
case and the combined form in the production system.  
 
 
The production system 
 
The company  namely  XDE  (a  given  name)  located  in  

Malaysia produces bicycle wheels. This research deals 
with the production and assembly line of a bicycle wheel 
only. There are two different end products, product SL 
(line 1) and product DL (line 2), of this system. Parts of 
the products are initially processed in the same sawing 
machine and then placed in two separate production 
lines. Each production line contains three different 
processing (such as assembly, inspection and packing 
operation) and ended up with a single end product after 
the assembly operation. Figure 1 is showing the existing 
production layout of the company. Presently, the 
company follows the conventional production processes 
with known lead time and periodic maintenance. They 
exercise event trigger policy for any 
unexpected/accidental stoppage/breakdown of the lines. 
However, the commonality dimensions are not yet 
introduced.  
 
 
Experimental design 
 
The authors have constructed few simulation models based on the 
existing production layout (Figure 1) of the company. The layout is 
modified to introduce the common component(s) and/or process(es) 
in the system. Figure 2 shows the abstracted layout that 
incorporates commonality dimensions. Only four, among the 
models developed in simulation, namely the base model (Figure 
3a), the model with a common process (Figure 3b) and component 
(Figure 3c) and the model with both a common component and 
process (Figure 3d) are shown. However, the models are 
developed in WITNESS simulation package. The models in Figure 
3 are only some candidates of all layouts and are designed to 
investigate the scenarios. The prominent uncertainty factors 
(machine breakdown and quality variability) are applied separately 
and in combination in the simulation exercises with and without 
inclusion of commonalities. 

In this study, three factors (batch size, common part and 
common process) are considered and the effects of these factors 
on the system performance are tested. The levels of commonalities 
(process and component) and production batch size at blockage 
station are considered as a control factor or decision variable. The 
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Figure 1. Existing production layout of XDE. 

 
 
 

 
 
Figure 2. Sample modified production layouts of XDE [(a) Component, (b) Process and (c) both component 
and process commonality]. 
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Figure 3. (a) Base, (b) Common process. 
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Figure 3 contd. (c) Common component and (d) Both common process and component models in WITNESS. 
 
 
 
machine breakdown and fraction of non-conforming items are 
considered as a noise factor. The effects of these factors will be 
more realistic and mimic to the real system because the system is 
normally subjected to these uncertainties. By a variation in the level 
of the factors, the work-in-progress (WIP), that is, throughputs and 
cycle time, is adjusted for an optimized total cost and reasonable 
machine productivity. Three levels of the factors are expected to 

have better chance of identifying the influence of both linear and 
nonlinear behaviors. The ranges of these factors levels are selected 
based on capacity limitation and in consultation with the engineers 
in the company (Table 2). Batch size bears its usual meaning and 
its different levels are imposed only on the bottleneck facilities. The 
second factor, that is, component commonality is estimated to have 
only  three  levels  (0,  1  and  2  for   no,   one   and   two   common  
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Table 2. Control factors and their levels for Taguchi method. 
 

Control factors Level 1 Level 2 Level 3 
Batch size at the bottleneck station (that is, lancing), A 2 6 12 
Common component, B 0 1 2 
Common process, C 0 2 4 

 
 
 

Table 3. Comparison between the existing system and simulation model. 
 
Response Existing system Simulation model 
Mean yearly throughput for SL 114 116 
Mean yearly throughput for DL 133 135 
Mean cycle time for SL (min) 143.28 140.22 
Mean cycle time for DL (min) 137.56 133.68 

 
 
 
components in the system, respectively). The third factor, that is, 
process commonality is estimated to have also three levels (0, 2 
and 4 for no, two and four common processes in the system, 
respectively). As a result, the factors and their levels are used in  
setting experiments. 

The noise factors (quality and machine breakdown) are projected 
to have three levels for each and the levels are selected based on 
the historical data. The three levels of quality (that is, defective 
rates) are considered as 3, 5 and 7% and the machine breakdowns 
are taken as 40, 20 and 10 operations. It is worthy to mention that 
the inspection on the products is conducted at the inspection 
stations only and the defective products are simply rejected. The 
interval of machine breakdown is measured in a number of 
operations. For example, the number 40 means that after 40 
operations, the resource will break down. The breakdown levels are 
used in all machines and the quality dimensions are applied in the 
inspection stage. 

Since this study contains three control factors of three levels and 

two noise factors of three levels for each, ( ) 24333 23 =×  design 
points are thus required in the case of a full (or complete) factorial 
design. However, each experiment is simulated with nine 
replications (two noise factors of three levels each). The average 
value and its signal to noise ratio based on the settings are 
obtained and analyzed. Analysis of mean value, signal to noise 
ratio and ANOVA are used to analyze the effect of batch size and 
commonalities (component and process) on production throughput, 
cycle time and WIP quantity. Interaction effect is observed before 
the results are confirmed, to make sure that the characteristic of the 
control factors is additive. In order to evaluate the experimental 
results statistically, analysis of variance (ANOVA) is applied. Also, 
the same procedure is used to check the effect of the interaction. 
Statistical significance tests of effects are made at 5% significance 
level.  
 
 
Data collection and validation 
 
In order to build and validate the simulation models and serve as a 
guideline to set the initial level of various factors in the model, data 
were collected. The data include processing time at each stage, 
setup time, average defective proportion, machine breakdown, etc. 
Validation of data is performed to ensure that these data are for the 
right issue and are useful. The recorded data were scrutinized by 
the production engineers who were familiar with the specific 
processes. 

The time required to position each part into a fixed place before 
operation is set up time per piece. Setup time per batch is the time 
to load the batch material and prepare the machine. Processing 
time is the period during which a part is actually worked on. The 
historical data under a deterministic condition were collected and 
fitted to a known distribution. The cycle time for all processes, 
except for inspection and packaging, is well fitted to a triangular 
distribution and the others are to a normal distribution. The cycle 
and setup time for lancing station is much higher than the others 
and it is the bottleneck of the system. Therefore, in this article, 
different levels of batch size at lancing stations (that is, bottleneck 
facilities) are considered to analyze the effects on production 
quantity and cycle time. 
 
 
Model validation 
 
The simulation models are validated by comparing its output with 
historical data collected from the floor and also by face validity. The 
models have been run for 5 days after a warm-up period of 2×5 
days. In other words, the simulated results are collected after two 
test runs of the models for each experimental setting. The running 
time of a 9 h shift for 5 days is 9×60×5 min, which is same with the 
weekly operation schedule of the lines; however, the warm-up 
period is used to assure the accurate result. Throughputs for the 
real system and simulation models are shown in Table 3. The 
authors have authenticated the models by an expert and authorized 
a WITNESS trainer for face validity. The base models were tested 
in front of him with master data and his recommendations were 
adjusted before experiments. As the variation in the throughputs 
between the real system and simulation model is not large and 
also, as the face validation is permitted with good 
recommendations, the simulation models are therefore acceptable 
in analyzing the system. After validating the base model, various 
uncertainties are imposed to the models to investigate the case 
wise impacts. 
 
 
DATA ANALYSIS AND DISCUSSION 
 
The authors have conducted a total of 243 experiments. 
The outcomes of WIP level, production cycle times and 
production quantity for both lines with corresponding S/N 
ratio for each exercise are observed. The smaller the 
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Table 4(a). Response table for the production system of WIP (the smaller the better). 
 

Level 
Mean S/N ratio 

Batch size 
Common 

Batch size 
Common 

Component Process Component Process 
Level 1 546.8 517.4 517.7 -54.76 -54.26 -54.26 
Level 2 491.9 505.1 503.9 -53.83 -54.06 -54.04 
Level 3 485.4 501.6 502.4 -53.72 -54.00 -54.01 
Diff 61.4 15.8 15.3 1.03 0.26 0.25 
Rank 1 2 3 1 2 3 
Opt 12 2 4 12 2 4 

 
 
 

Table 4(b). Response table for lines 1 and 2 cycle time (the smaller the better). 
 

Level 

Line 1 Line 2 
Mean S/N ratio Mean S/N ratio 

B
at

ch
 s

iz
e 

C
om

m
on

 
co

m
po

ne
nt

 

C
om

m
on

 
pr

oc
es

s 

B
at

ch
 s

iz
e 

C
om

m
on

 
co

m
po

ne
nt

 

C
om

m
on

 
pr

oc
es

s 

B
at

ch
 s

iz
e 

C
om

m
on

 
co

m
po

ne
nt

 

C
om

m
on

 
pr

oc
es

s 

B
at

ch
 s

iz
e 

C
om

m
on

 
co

m
po

ne
nt

 

C
om

m
on

 
pr

oc
es

s 

Level 1 26.30 25.96 25.95 -28.40 -28.28 -28.28 26.31 25.97 25.96 -28.40 -28.29 -28.28 
Level 2 26.29 25.73 25.70 -28.40 -28.20 -28.19 26.30 25.74 25.71 -28.40 -28.21 -28.20 
Level 3 24.70 25.60 25.64 -27.85 -28.16 -28.17 24.71 25.61 25.65 -27.86 -28.16 -28.18 
Diff 1.60 0.36 0.31 0.55 0.12 0.11 1.61 0.37 0.32 0.55 0.12 0.11 
Rank 1 2 3 1 2 3 1 2 3 1 2 3 
Opt 12 2 4 12 2 4 12 2 4 12 2 4 

 
 
 

Table 4(c). Response table for lines 1 and 2 production quantity (the larger the better). 
 

Level 

Line 1 Line 2 
Mean S/N ratio Mean S/N ratio 
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Level 1 51.58 78.84 79.54 34.07 37.19 37.36 51.80 79.06 79.65 34.10 37.21 37.37 
Level 2 95.60 92.70 92.06 39.52 38.76 38.69 95.72 92.81 92.28 39.53 38.77 38.71 
Level 3 122.4 98.05 97.99 41.64 39.29 39.19 122.63 98.27 98.21 41.66 39.30 39.20 
Diff 70.83 19.21 18.44 7.57 2.10 1.82 70.83 19.21 18.56 7.56 2.09 1.83 
Rank 1 2 3 1 2 3 1 2 3 1 2 3 
Opt 12 2 4 12 2 4 12 2 4 12 2 4 

 
 
 
better characteristic is used for WIP and cycle times, 
while in contrast, the larger the better policy is applied for 
production quantity. Since the experiment design is 
orthogonal, the effects of batch size and common 
component and/or process for different levels is 
separated outrightly.  

Table 4 shows the response for mean and S/N ratio  (a)  

for WIP level, (b) production cycle times and (c) 
throughput of the lines. As a result, the smaller the better 
policy is adopted for evaluation of the performance based 
on WIP and cycle time. Consequently, they are chosen 
based on smaller mean and larger S/N ratio. However, 
the throughput is chosen based on larger mean and 
larger S/N ratio. All the  selections  use  larger  S/N  ratio,  
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        (a) mean value�

�
                 (b) S/N ratio of WIP level.�  

 
Figure 4. Full interaction plot matrix for (a) mean value and (b) S/N ratio of WIP level. 

 
 
 
because the larger the S/N ratio the smaller the variance 
is around the desired value. Thus, based on response 
tables (Table 4a to c), the batch size, common 
components and processes are chosen as 12, 2 and 4 
respectively. The same tables show that the influences of 
the factors, A, B and C, are ranked respectively as 1, 2 
and 3. It means that proper management of a bottleneck 
resource must improve the performances. Hence, the 
impacts of factors B (that is, common component) and C 
(that is, common process) are almost the same. 
However, factor B is ranked over factor C and this is 
because the common components provide more flexibility 
in design, scheduling and control. 

It is  pellucid  that  an  increase  in  the  batch  size  and  

commonalities yield a decrease in WIP level in the 
system. The production cycle time also decreases with 
the increase in batch size, common components and 
processes. These are supported by the corresponding 
S/N ratio. The WIP and production cycle times are found 
at the least level and the production quantities are at the 
peak when the batch size, common components and 
processes are set respectively at 12, 2 and 4. It is 
observed that under the combined effects of 
commonalities (component and process), the WIP and 
cycle time reduced by 11 and 6%, respectively and 
throughputs increased by 137%. 

Figures 4 to 8 show the interaction effects of variation 
in levels of control factors for (a) mean value and (b) S/N  
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     (a) 

 
     (b)  

 
Figure 5. Full interaction plot matrix for (a) mean value and (b) S/N ratio of cycle time for line 1. 

 
 
 
ratio of WIP, cycle times and throughput for lines 1 and 2, 
respectively. The interaction graphs between the 
commonalities (factors B and C) and batch size (factor A) 
show that the effect of batch size on WIP, throughputs 
and cycle times at various levels of commonalities is 
different. This implies an interaction between these 
factors. From the figures, when factor A (batch size at 
lancing station) is at level 1, there is no interaction among 

the factors. This is because the bottleneck center 
restrains the system performances. However, at the 
highest level of all factors, they are very interactive. The 
WIP and cycle times are at the least level and the 
throughputs are at the peak when the batch size (factor 
A), common component (factor B) and process (factor C) 
are at the top level. This is very obvious, because the 
commonalities  (component  and  process)  increase   the  
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           (a) 

 
            (b)  

 
Figure 6. Full interaction plot matrix for (a) mean value and (b) S/N ratio of cycle time for line 2. 

 
 
 
flexibility and dampen the uncertainty of the system. 

ANOVA is conducted to see whether the factors are  
statistically significant. Table 5 shows ANOVA in mean 
and S/N ratio for the WIP level of the study. The same for  
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             (a) 

 
            (b)  

 
Figure 7. Full interaction plot for (a) mean value and (b) S/N ratio of production quantity for line 1. 

 
 
 
the production cycle times and production quantity of 
lines  1  and  2  are  displayed  in  Tables  6,  7,  8  and  

9, respectively These tables show the relative importance 
of  the  control  factors  affecting  WIP,  cycle  times  and  
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              (a) 

 
             (b)  

 
Figure 8. Full interaction plot for (a) mean value and (b) S/N ratio of production quantity for line 2. 

 
 
 

Table 5. ANOVA for mean value and S/N ratio of WIP. 
 

Source 
Mean value S/N ratio 

DF SS MS F P SS MS F P 
A 2 20474.1 10237.1 68.38 0.000 5.7985 2.8993 73.16 0.000 
B 2 1244.6 622.3 4.16 0.031 0.3358 0.1679 4.24 0.029 
C 2 1284.8 642.4 4.29 0.028 0.3464 0.1732 4.37 0.027 
Error 20 2994.2 149.7   0.7926 0.0396   
Total 26 25997.7    7.2732    
S = 12.2356; R-Sq = 88.48%; R-Sq(adj) = 85.03% S = 0.199072; R-Sq = 89.10%; R-Sq(adj) = 85.83% 
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Table 6. ANOVA for mean value and S/N ratio of cycle time of line 1. 
 

Source 
Mean value S/N ratio 

DF SS MS F P SS MS F P 
A 2 15.3063 7.6531 244.05 0.000 1.78313 0.89157 232.69 0.000 
B 2 0.6155 0.3077 9.81 0.001 0.07070 0.03535 9.23 0.001 
C 2 0.4983 0.2491 7.94 0.003 0.05712 0.02856 7.45 0.004 
Error 20 0.6272 0.0314   0.07663 0.00383   
Total 26 17.0472    1.98759    
S = 0.177086; R-Sq = 96.32%; R-Sq(adj) = 95.22% S = 0.0619001; R-Sq = 96.14%; R-Sq(adj) = 94.99% 

 
 

Table 7. ANOVA for mean value and S/N ratio of cycle time of line 2. 
 

Source 
Mean value S/N ratio 

DF SS MS F P SS MS F P 
A 2 15.3465 7.6732 244.86 0.000 1.78661 0.89330 233.34 0.000 
B 2 0.6212 0.3106 9.91 0.001 0.07136 0.03568 9.32 0.001 
C 2 0.5017 0.2509 8.01 0.003 0.05748 0.02874 7.51 0.004 
Error 20 0.6267 0.0313   0.07657 0.00383   
Total 26 17.0962    1.99201    
S = 0.177022; R-Sq = 96.33%; R-Sq(adj) = 95.23% S = 0.0618738; R-Sq = 96.16%; R-Sq(adj) = 95.00% 

 
 

Table 8. ANOVA for mean value and S/N ratio of production quantity of line 1. 
 

Source 
Mean value S/N ratio 

DF SS MS F P SS MS F P 
A 2 23019.1 11509.5 301.44 0.000 274.383 137.192 527.47 0.000 
B 2 1596.1 798.0 20.90 0.000 15.997 7.998 30.75 0.000 
C 2 1769.4 884.7 23.17 0.000 21.417 10.708 41.17 0.000 
Error 20 763.6 38.2   5.202 0.260   
Total 26 27148.3    316.999    
S = 6.17916; R-Sq = 97.19%; R-Sq(adj) = 96.34% S = 0.509994; R-Sq = 98.36%; R-Sq(adj) = 97.87% 

 
 

Table 9. ANOVA for mean value and S/N ratio of production quantity of line 2. 
 

Source 
Mean value S/N ratio 

DF SS MS F P SS MS F P 
A 2 23007.7 11503.8 298.99 0.000 273.251 136.626 522.05 0.000 
B 2 1616.8 808.4 21.01 0.000 16.090 8.045 30.74 0.000 
C 2 1763.8 881.9 22.92 0.000 21.284 10.642 40.66 0.000 
Error 20 769.5 38.5   5.234 0.262   
Total 26 27157.8    315.859    
S = 6.20289; R-Sq = 97.17%; R-Sq(adj) = 96.32% S = 0.511577; R-Sq = 98.34%; R-Sq(adj) = 97.85% 

 
 
 
throughputs. Both mean and signal to noise ANOVA 
indicates that batch sizes in lancing station (factor A), use 
of common component (factor B) and process (factor C) 
are statistically significant. The factors have very strong 
impacts on the measured performances of the system. 

However, F-values for factors A, B and C exceeded the  

critical limits for mean and S/N ratio, respectively. This 
confirms that the variance effect of these factors is 
significantly different from the error effect. Hence, the 
variation in production quantity, cycle time and WIP level 
is truly accounted for by the change in the value of the 
factors (A, B and C) and the deviation due to the fact that  
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the experimental errors are small. Consequently, these 
indicate that no important factor is omitted from the 
experiments. 

Based on response tables (Table 4) and ANOVA 
(Tables 5 to 9), it is obvious that batch size of 12 in the 
lancing station (factor A in level 3), 2 common 
components (factor B in level 3) and 4 common 
processes (factor C in level 3) yield the lowest cycle time 
and WIP level and the maximum throughputs in the 
system.  
 
 
Conclusions 
 
From the experiences of the analysis and from the 
outcomes of the models, the authors would like to 
conclude that: 
 
(i) Batch size in the bottleneck (that is, lancing station) in 
combination of commonalities (parts and process) 
drastically improve the measured system deliveries. 
ANOVA for mean and S/N ratio for cycle time, WIP and 
throughput indicate that no important factor is omitted 
from the experiments. 
(ii) There is a significant interaction among the 
commonalities (component and process) and the batch 
sizes in the bottleneck facility (that is, lancing station). 
Component and process commonality shows momentous 
dealings among them as well. It is observed that under 
the combined effects of commonalities (component and 
process), the WIP and cycle time reduced by 11 and 6%, 
respectively and throughputs increased by 137%. 
(iii) Based on the manufacturing cycle time, WIP and 
system throughput, the batch size of 12 in the bottleneck 
(that is, lancing stations), 2 common components and 4 
common processes ensure the best outcomes of the 
system under the storm of uncertainties. 
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