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The components and quantities of atmospheric dust fallout have been reported to be the pollution 
indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban 
regions has put forward the need for source apportionment of these sources in order to indicate) their 
contribution to a specific environmental receptor. The study presented here is focused on the 
investigation of the rate of dust fall in Quetta valley. Having used seasonal autoregressive integrated 
moving average ARIMA (SARIMA) modeling, the prediction equations were developed to forecast the 
seasonal rate of dust fall at three different locations out of 10 selected sites in Quetta from 2004 to 2008. 
In terms of deduced statistical equations, the findings could help to predict, abate, minimize or even 
control the pollutants, predominantly the heavy and toxic metals present in the dust particulates that 
are studied by this sort of research work. Seasonal ARIMA (SARIMA) model was found to be a better 
forecaster of the rate of dust fall having vitally analyzed the entire stochastic models on diverse climatic 
parameters. 
 
Key words: Particulate matter, rate of dust fall, heavy metals, autoregressive integrated moving average 
(ARIMA), stochastic modeling, Markov transition matrix (MTM). 

 
 
INTRODUCTION 
 
The bowl shaped Quetta Valley is about 1,650 m above 
mean sea level, and is bounded by the Murdar Mountain 
ranges with peak height of 3,134 m. The Chiltan 
Mountain (peak height 3,261 m) almost parallels it by 10 
to 16 km on the east and west of the valley. Somewhat 
farther are the mountain ranges of Zarghoon (peak height 
3,519 m) and Takatoo (peak height 3,401 m) enclosing 
the Valley along the Northeast and Northwest directions. 
Quetta is sited at Latitude 29°48' to 30°25' North and 
Longitude 66°13' to 67°17' East having an area  of  about 
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2,653 km2. Heavy snowfalls commonly occur in the valley 
and on the high mountains which sporadically have low 
humidity occurring during December, January and 
February. Thin covers of wild herbal plants grow in 
uncultivated regions. Quetta Valley has got all four 
seasons: Spring (February, March and April), summer 
(May, June and July), autumn (August, September and 
October) and winter (November, December and 
January), having sub-tropical climate. Mainly, its 
landscape has plains. Limestone is the major part of the 
sedimentary rocks around the valley. Normally, 200 mm 
average annual precipitation happens in the valley 
usually in winter. The mean annual temperature is around 
64°F. The mean summer and winter temperatures are 
around 78 and 40°F, respectively.  About  27°F  min imum
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Table 1. Classification – American Standard Test Method ASTM D1739 Dust = Milligrams/day/square meter. 
 

Classification by Department of 
Environmental Affairs and Tourism ASTM equivalent S. A. German Din Air Quality 

Monthly Limit 
Slight <250 

650 non industrial limit 
Moderate 251 - 500 

Heavy 501 - 1200 
1300 ≥ industrial limit 

Very heavy > 1200 
 
 
 
average temperature in January and 96°F as the 
maximum average temperature in July have been 
recorded (Sami, 2009). Diurnal variations for wind speeds 
have been used to adjust the months of all four seasons. 
58 mm rainfall is recorded normally in winter season in 
Quetta Valley due to the peculiar wind patterns unlike the 
rest part of the country (Pakistan). Similarly a little less 
than 13 mm rainfall is usually experienced in summer, 
again, dissimilar to the rest of the country, as about 90% 
part of Balochistan region is not hit by ‘monsoon’, a wind 
pattern, which causes heavy downpour in Bengal, India 
and most parts of Pakistan. Generally, in normal 
conditions, Quetta experiences maximum temperature of 
about 35°C and minimum -6°C in the summer and winte r 
seasons respectively (Sami, 2009). 

The population of Quetta is recorded to be 1.5 million 
officially, yet unofficially it is claimed that it has even 
crossed the figures of 2.5 million. Rickshaws are the 
major means of public transport (≥ 5000). Besides the 
Stone Age, local buses and the haphazard population of 
both humans and traffic, lack of planning, and corruption 
trigger the pollution from bad to worst (Sami, 2009).  

During our research, settling dust particulates samples 
were collected for the period of five years 2004 to 2008 
from ten different sites of Quetta city depending on their 
locations, traffic population, height, developed and 
underdeveloped areas. Dust samples were collected on 
daily basis (after every 24 h) for the year 2004 due to the 
dropping drought spell. However, samples of settled dust 
particulates were collected within the gap of every one 
calendar month for the next four years 2005 to 2008. 
With the collected data, the rate of dust fall was 
calculated for all the 5 years and the concentration of 
heavy/toxic metals/elements lead (Pb), zinc (Zn), 
manganese (Mn), nickel (Ni), chromium (Cr), cobalt (Co) 
was detected by using Atomic Adsorption 
Spectrophotometer (AAS). The concentration of sodium 
(Na) and potassium (K) was determined by Flame 
Photometer besides the sizes of particulates. The 
findings showed immense concentrations of dust fall, 
enormous amount of heavy toxic/heavy metals 
particularly, Pb, and the vast variations in the sizes of 
dust particulates (specifically, PM10) contrary to the 
international set  standards  (Sami  et  al.,  2006).  Some 

stochastic equations were derived in order to predict the 
rate of dust fall in Quetta in future, keeping in view the 
more than enough concentration of almost all heavy/toxic 
elements, the extreme variation in the size of particulates 
(particularly of PM10) and the massive rate of dust fall in 
relation to the international set standards (Table 1) 
(ASTM, 2004). 

In order to build up simulation and forecasting, hourly 
average wind speed, annual average and monthly rate of 
dust fall series on five year data, that is, from 2004 to 
2008 of Quetta, Pakistan stochastic time series model, 
(autoregressive integrated moving average) ARIMA (p.q), 
non-seasonal ARIMA and seasonal ARIMA (SARIMA) 
models were built up. Various basic characteristics of 
wind rate including autocorrelation, non-Gaussian 
distribution and non-stationarity were considered by 
Stochastic Time Series Models. By fitting ARMA method 
to wind speed data, the positive correlation between 
successive wind speed observations was considered. To 
eliminate the scattering of transformed data (stationary 
data, that is, data without chaos), the data are regularized 
to make their divisions more or less Gaussian and 
standardized. To observe the forecasts and their reliance 
on lead times, diurnal variations are considered. 
Seasonal ARIMA model is considered to account for 
diurnal variations. We studied the seasonal ARIMA 
(SARIMA) and its prediction equations for each month of 
the five years data. ARIMA was good enough to forecast 
comparatively short and long range reliable values, used 
for the five years, that is, 2004 to 2008 data of dust fall, 
average humidity, rainfall, maximum and minimum 
temperatures, even though its prediction equations did 
not work efficiently, in providing non-stationarity or chaos 
in data, stochastic simulator in the ARIMA processes. 
ARIMA models were used (Kumar et al., 2004; Kumar 
and Jain 2010) to forecast daily average surface 
pressures. The study of Badescu has extreme similarity 
with ours as the surface pressure certainly affected the 
rate of dust fall and certainly the concentration of 
pollutants at different sites. Such considerations will 
indirectly consider our SARIMA model which showed that 
the statistical analysis of ambient air pollution was carried 
out (Durdu, 2010; Kumar et al., 2004; Kumar and Jain, 
2010) in Delhi.  For  the  prediction  of  various  pollutants 



 
 
 
 
 
and repairable suspended particulate matter, a state 
space model was developed by using Kalmin filter 
formulation. The model was found quite applicable. The 
Auto-Regressive (ARX) model with the exogenous input 
which it used was not adequate for our analysis. The 
ARIMA modeling was discarded because the rate of dust 
fall and the concentration of various pollutants (Durdu, 
2010) followed a random nature of non-stationarity in 
wind speeds. Thus, we developed ARIMA (Sami, 2009) 
and SARIMA models for dust fall rate and indeed their 
forecasting equations. In ARX modeling, an incredible 
scattering of predicted data was noted. Time series of the 
urban air pollution analysis which was done by using 
Artificial Neural Network (ANN) and ARIMA models is 
insufficient. On the basis of root mean square estimation 
and other several statistical tests, ANN was found to be 
better than ARIMA. In our views, due to diurnal 
(seasonal) variations, the ARIMA and SARIMA models 
were considered to be relatively better than the ANN 
model. It was noted in our study that with the inter-
relationship between ARIMA and SARIMA, the diurnal 
variations could be considered. Having used ARIMA, 
crop evapotranspiration time series simulation model was 
developed (Hamdi et al., 2008). In most of the reported 
literature, this reflects the strength and validity of ARIMA 
model. 

Owing to the interest in its rate of deposition, which 
generally proves to be disastrous, time series modeling of 
dust fall has been the subject of many deliberations. A 
time series model is required when the records of dust 
fall are incomplete or of a too short duration, or the 
handling and storage of large values of the data are not 
wanted. By and large, the simulation is derived from 
simulations of wind speed since dust fall is a sign of wind 
velocity, atmospheric pressure, geography and 
topography of the area. Monto Carlo techniques which 
depend exclusively upon the anticipated factors of the 
trivial distribution of wind speeds, dust fall simulations 
could be done with it. 

Some important contributions from modeling and 
simulation point of view were made (Cragg et al., 1999; 
Aguiar and Collares-Pereira, 1992; Mora-Lopez and 
Sidrach-de-Cardona, 1998) having generated an hourly 
series of global radiation with the simultaneous usages of 
stochastic simulation by ARIMA modeling of solar 
radiation, a time dependent autoregressive Gaussian 
model (TAG) for generating synthetic hourly radiation, 
and the multiplicative autoregressive moving average 
(ARMA) models. Lalarukh and Jafri used an ARMA 
process on hourly global radiation data (Kamal and and 
Jafri, 1999). They performed the synthetic sequences of 
hourly global solar irradiation for Quetta, Pakistan as well 
as Stochastic modeling through Markov Transition Matrix 
(MTM). Compared to ARMA modeling, MTM (Kamal  and 
Jafri, 1997) approach was found to be pretty better as a 
simulator by them. 
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Kumar et al. (2010) and Jain and Lungu (2002) reported 
the ARIMA forecasting of ambient air pollutants. They 
used a combination of diverse information criterion, 
namely, Akaike Information Criterion (AIC), Hannon-Quin 
Infor-mation Criterion (HIC), Bayesian Information 
Criterion (BIC), and Final Prediction Criterion (FPE) for 
autocorrelation function (ACF) and partial autocorrelation 
function (PACF) in order to check the validity of suitable 
orders of autoregressive (p) and moving average (q). 
They, however, did not employ the chi-square test on the 
basis of the orders of autoregressive and moving aver-
age, which of course, considers the minimum χ2 for all 
possible combinations. To make ARMA (a non-stationary 
stochastic model) stationary, standardization of mean 
and standard deviation is a pre-requisite. We, however, in 
our present study, employed all such criteria and pro-
posed suitable ARIMA and SARIMA models for the tests.  

Durdu (2010) used ARIMA and SARIMA models 
(stochastic approaches) for time series forecasting of 
boron. He used only AIC for orders of model parameters, 
that is, autoregressive (p) and moving average (q) both 
for ARIMA and SARIMA. He compared the mean and 
variance of observed data with the predicted data and 
suggested that the ARIMA modeling approach was 
suitable when compared to SARIMA. His approach is 
confined only to very simple applications of ARIMA and 
SARIMA models whereas our analysis in the present 
study deals with all possible generalized ARIMA and 
SARIMA models. We developed prediction equations for 
all generalized cases for ARIMA and SARIMA models. 

The ways in which the hourly forecasting of average 
wind rate could be done were suggested by Brown et al. 
(1984, 1982), keeping in mind the auto interconnected 
nature of wind velocity, the diurnal non-stationarity and 
non-Gaussian shape of wind velocity division. The 
requirement for standardization to eliminate diurnal non-
stationarity was also pointed out in the earlier study of 
Brown et al. (1982). As declared in a paper (Jafri et al., 
1989) that standardization relates to reproducing of an 
even profile, such as that of a Gaussian distribution that 
is achieved after converting a non-Gaussian form to an 
almost Gaussian shape, that is, taking speckled data 
points close to the sketch diurnal variations in wind speed 
happens as a natural phenomenon (Kamal  and Jafri, 
1996). 

In fact, a bigger class of seasonal models contains 
ARIMA models (Blanchard and Desrochers, 1984). The 
linear ARIMA models and feed forward artificial neural 
networks (FFANN) were studied (Sfetsos, 2002). It was 
found that from the minimization of the assessment set 
error in the ARIMA process the model arrangement is 
chosen. Multi-step forecasting and the consequent aver-
aging to produce mean hourly predictions of wind 
statistics was suggested by them. Jain and Lungu (2002) 
extensively studied the ARIMA models. They equally con-
sidered non-seasonal  and  seasonal  ARIMA  models  by 
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using stochastic parts. They also decided to calculate the 
perseverance patterns if any, of the stochastic 
components. 

A new description of an existing time series modeling 
method (McWilliams and Sprevak, 1982a), from which 
the distribution of wind velocities and wind directions are 
obtained (Box and Jenkins, 1976), was explained as well 
(McWilliams and Sprevak, 1982b). The diurnal variations 
observed in wind speed by their model were incorporated 
in such a manner that the time series of wind speed 
component remained stationary. As far as the second 
order statistics were concerned, the sample auto-
correlation functions for the series had the same 
stochastic trend, resultantly plummeting the problem to 
modeling single Gaussian series. To justify the diurnal 
variations, this model was accurate for autocorrelation 

functions. The aforementioned studies did not use the 
transformation of hourly average wind speed; that is the 
one point which is obvious. They rather measured the 
annual deterministic variation µ (t) and σ2 (t) in its place in 
order to justify diurnal variation of wind velocity, which is 
modeled by harmonic series representation. With 
reference to our inference, diurnal variation (Brown et al., 
1982) should be engaged in model development in a 
manner analogous to McWilliams and Sprevak 
(McWilliams and Sprevak 1982b). 

MINITAB (version 11) was used for non-seasonal 
ARIMA modeling and simulation. In order to model a 
special class of non-stationary series, ARIMA models 
were used and to incorporate cyclic components in the 
models, seasonal ARIMA (SARIMA) models were used. 
For forecasting a time series, which can be stationarized 
by transformations such as differencing and logging, 
theoretically, ARIMA models were said to be the most 
general class of models parsimoniously. SARIMA has the 
same structure as does ARIMA. It is the most powerful 
tool for deciphering the cyclic components especially, of 
diurnal variations, as a consequence of which, short term 
predictions acquire more reliability as compared to 
ARIMA. Moreover, the long term predictions are auto-
matically adjusted in terms of performance and accuracy. 
The seasonal models are used on monthly and annually 
average rates of dust fall data from 2004 to 2008. 
Keeping in view the primary minimum chi- squared value 
at 5% confidence gap, the greatest choice is selected. 
 
 
THEORY 
 
To model a special class of non-stationary time series, ARIMA 
models were used. Likewise to incorporate cyclic components in 
models, seasonal ARIMA (SARIMA) model was used. The time 
series were split into stochastic and deterministic constituents. 
Through Monto Carlo simulations, the proportion of variance for 
each component was modeled. The stochastic component was used 
to analyze persistence in the time series (Box and Jenkins, 1976). 

In order to check the validity of the suitable orders of p and q , 
the general  non-seasonal  ARIMA  model  is  autoregressive  and  

 
 
 
 
operates on the dth  differences  of  Zt,  where  {Zt}  are  time  series 
values for t = 1, 2,…, N and N is number of observations. Defining: 
 

Bs  Zt= Zt-s  ,   ∇ s  = (1-Bs), 
d

s∇   = (1-Bs)d                               (1) 

 
where d = 0, 1, …, B is the backward shift operator, s is the period 
of the season (s = 12 in our present case for each month) and ∇  is 
the difference operator. The general non-seasonal ARIMA model 
could be written as: 
 
Φp (B) Zt= θq (B) at                                                                  (2) 
 
where { at} are residuals, and  
 
Φp (B) =1 - Φ1 B – Φ2 B

2 - , … , - Φp B
p                                    (3) 

 
θq (B) = 1- θ1B- θ2 B

2 - ,…, - θq B
q                                            (4) 

 
are the polynomials of order p and q, respectively. The error ‘e’ in 
our prediction equation could be adjusted automatically with lead 
times, t.  

Time series prediction with harmonic analysis can also be 
accomplished (Jain and Lungu, 2002, Jafri et al., 2012). Theories 
on regression analysis time series have long been established 
(Gujarati, 1988; Chapra and Canale, 1990; Rawlings et al., 1988). 
Equation (2) was modified by Box and Jenkins (1976) to account for 
the seasonal dependence. This yielded: 
 

Φ(Bs) 
d

s∇   Zt = θQ (Bs)et                                                          (5) 

 
where {et} are normal random deviates,  
 
ΦP (B

s) = 1 - Φ 1 B
s – Φ2 B

2s- ,…,- ΦPBPs                                    (6) 
 
and  
 
θQ(B) = 1 - θ1B

s - θ2 B
2s - ,…,- θQ BQs-                                         (7) 

 
are the seasonal autoregressive and moving average operators of 
order p and q respectively. As et is not necessarily independent of 
et-j , j=1,2,…. we propose the following relation for the e-values:  
 

Φp (B) 
d∇ et = θq (B)at                                                            (8) 

 
where at is white noise (uncorrelated random variable with mean 
zero and variance σ2); combining Equations (11)  and (14) for 
SARIMA model, that is, SARIMA (p,d,q) (P,D,Q)s, we get a 
multiplicative SARIMA model of order (p,d,q)x(P,D,Q)s of the form: 
 

ΦP (Bs) ΦP(B) 
D

s∇ d∇ Zt =   θQ (Bs) θq (B) at                        (9) 

 
 
RESULTS AND DISCUSSION 
 
Three locations were taken bearing in mind their optimum 
values of rate of dust fall, such as Jinnah road (sampling 
site h), Chiltan road (sampling site f) and Satellite town 
(sampling site d) as shown in map reported previously 
(Sami et al., 2006), that is, Gawalmandi received the 
maximum average amount of dust fall particulates, while 
at a T.B. Sanatorium, the minimum average amount of 
dust fall particles was recorded. In order  to  compare  the
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Table 2. SARIMA sampling point h for spring. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

February 

(0,1,1)×(0,1,1)12 10.8 10 - 0.2454 -1.9938 .4132 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.3 11 0.3136 - - -0.3112 
(1,0,1)×(0,1,1)12 5.6 9 -0.6958 -1.175 0.2871 -0.1754 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal 
duration over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-
12)+ Ф(x(t-1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 

March 

(0,1,1)×(0,1,1)12 19.6 10 - 9.182 - .04549 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.9 11 -.3918 - - -.00698 
(1,0,1)×(0,1,1)12 6.6 9 -.2276 1.1200 - -.00668 

 

Prediction equation follows SARIMA (1,0,0) x (0,1,0)12 where the number 12 is an important version of seasonal 
exponential smoothing (SES) model, that is, with a constant. The forecasting equation for this model is: x(t)=2+x(t-12) + 
Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + θ Θe(t-13) 

 

April 

(0,1,1)×(0,1,1)12 180.9 10 - 0.2025 -2.2682 -3.723 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 30.5 11 0.8548 - - 1.789 
(1,0,1)×(0,1,1)12 60.8 9 0.7796 -0.0034 1.2420 3.2443 

 

Prediction equation follows SARIMA (1,0,0) x (0,1,0)12 where the number 12 refers to twelve months as seasonal duration 
over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+ 
Ф(x(t-1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 

statistical variations in between the optimum values, 
Satellite town (sampling site d) was taken as third site, 
which facilitated us to get the statistical variations 
regarding mean values of the optimum rate of dust fall. 
Tables 2 to 13 that have prediction equations got for each 
month of every season show the seasonal SARIMA 
classification on the basis of all four seasons of Quetta 
from spring to winter having their corresponding months 
for all the three selected sites of d, f, and h respectively. 
 
 

Conclusions 
 

In order to predict the gravity of such situations in future 
and take remedial measures to curtail the dust fall and 
toxic/heavy metals, the statistical SARIMA modeling and 
its prediction equations were developed by us. 

The prediction equations for the rate of dust fall for 
each month classified in relation to the seasons for 
SARIMA are given subsequently. 

We inferred from this study that the statistical modeling 
of the SARIMA prediction equations of maximum dust fall 
at   receiving   site  ‘h’  are:    Spring  (Table 2)  [February 

x(t)=a+x(t-12)+ Ф(x(t-1)-x(t-12)), March x(t)=2+x(t-12) + 
Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + θ Θe(t-13) and 
April x(t)=a+x(t-12)+ Ф(x(t-1)-x(t-12))]; summer (Table 3) 
[May x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-
12) + θ Θe(t-13), June x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} 
– θ e(t-1) – Θ e(t-12) + θ Θe(t-13) and July x(t)=a+x(t-
12)+ Ф(x(t-1)-x(t-12))] ; autumn (Table 4) [August 
x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12)), September x(t)=2+x(t-12) 
+ Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + θ Θe(t-13) 
and October x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} – θ e(t-1) 
– Θ e(t-12) + θ Θe(t-13)], and winter (Table 5) [November 
x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + 
θ Θe(t-13), December x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} 
– θ e(t-1) – Θ e(t-12) + θ Θe(t-13) and January x(t)=a+x(t-
12)+ Ф(x(t-1)-x(t-12))] respectively. 

Similarly, the statistical modeling of SARIMA prediction 
equations for our second minimum dust fall receiving site 
‘f’ are in the order of: Spring (Table 6) [February x(t)=x(t-
12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13), March 
x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13) and 
April x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+Θθe(t-
13)] ; summer  (Table 7)  [May x(t)=x(t-12)+x(t-1)-x(t-13)-
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Table 3. SARIMA sampling point h for summer. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

February 

(0,1,1)×(0,1,1)12 10.8 10 - 0.2454 -1.9938 0.4132 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.3 11 0.3136 - - -.3112 
(1,0,1)×(0,1,1)12 5.6 9 -0.6958 -1.175 0.2871 -0.1754 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration 
over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-
1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 

March 

(0,1,1)×(0,1,1)12 19.6 10 - 9.182 - 0.04549 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.9 11 -0.3918 - - -0.00698 
(1,0,1)×(0,1,1)12 6.6 9 -0.2276 1.1200 - -0.00668 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 is an important version of seasonal 
exponential smoothing (SES) model, that is, with a constant. The forecasting equation for this model is: x(t)=2+x(t-12) + 
Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + θ Θe(t-13) 

 

April 

(0,1,1)×(0,1,1)12 18.9 10 - 0.2025 -2.2682 -3.723 
(0,0,0)×(0,1,0)12 
(0,1,0)×(0,1,0)12 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

(1,0,0)×(0,1,0)12 3.5 11 0.8548 - - 1.789 
(1,0,1)×(0,1,1)12 6.8 9 0.7796 -0.0034 1.2420 3.2443 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration 
over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. the forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-
1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 

Table 4. SARIMA sampling point h for autumn. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant (a) 

February 

(0,1,1)×(0,1,1)12 10.8 10 - 0.2454 -1.9938 0.4132 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.3 11 0.3136 - - -0.3112 
(1,0,1)×(0,1,1)12 5.6 9 -0.6958 -1.175 0.2871 -0.1754 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration over 
the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-1)-x(t-12)). 
The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 

March 

(0,1,1)×(0,1,1)12 19.6 10 - 9.182 - 0.04549 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.9 11 -0.3918 - - -0.00698 
(1,0,1)×(0,1,1)12 6.6 9 -.02276 1.1200 - -0.00668 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 is an important version of seasonal exponential 
smoothing (SES) model, that is, with a constant. The forecasting equation for this model is: x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} – 
θ e(t-1) – Θ e(t-12) + θ Θe(t-13) 
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Table 4. contd. 
 

April 

(0,1,1)×(0,1,1)12 18.9 10 - 0.2025 -2.2682 -3.723 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 3.5 11 0.8548 - - 1.789 
(1,0,1)×(0,1,1)12 6.8 9 0.7796 -.0034 1.2420 3.2443 

 

Prediction equation follows SARIMA (1,0,0) x (0,1,0)12 where the number 12 refers to twelve months as seasonal duration over 
the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. the forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-1)-x(t-12)). 
The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 

Table 5. SARIMA sampling point h for winter. 
 

Month Seasonal 
SARIMA (p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

February 

(0,1,1)×(0,1,1)12 10.8 10 - 0.2454 -1.9938 0.4132 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.3 11 0.3136 - - -0.3112 
(1,0,1)×(0,1,1)12 5.6 9 -0.6958 -1.175 0.2871 -0.1754 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal 
duration over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-
12)+ Ф(x(t-1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 

March 

(0,1,1)×(0,1,1)12 19.6 10 - 9.182 - 0.04549 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.9 11 -0.3918 - - -0.00698 
(1,0,1)×(0,1,1)12 6.6 9 -0.2276 1.1200 - -0.00668 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 is an important version of seasonal 
exponential smoothing (SES) model, that is, with a constant. The forecasting equation for this model is: x(t)=2+x(t-12) + 
Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + θ Θe(t-13) 

 

April 

(0,1,1)×(0,1,1)12 18.9 10 - 0.2025 -2.2682 -3.723 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 3.5 11 0.8548 - - 1.789 
(1,0,1)×(0,1,1)12 6.8 9 0.7796 -0.0034 1.2420 3.2443 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal 
duration over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. the forecasting equation is: x(t)=a+x(t-
12)+ Ф(x(t-1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 
θe(t-1)-Θe(t-12)+ Θθe(t-13), June x(t)=a+x(t-12)+ Ф(x(t-
1)-x(t-12)) and July x(t)=a+x(t-12)+Ф{x(t-1)-x(t-12)}–θe(t-
1)- Θe(t-R)+θΘe(t-13)] ; autumn (Table 8) [August 
x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+Θθe(t-13), 
September x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-12)}–θe(t-1)- Θe(t-
R)+θΘe(t-13) and October x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-
12)} –θe(t-1)- Θe(t-R)+θΘe(t-13)], and winter are (Table 

9) [November x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ 
Θθe(t-13), December x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-12)} –
θe(t-1)- Θe(t-R)+θΘe(t-13) and January x(t)=x(t-12)+x(t-
1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13)] respectively. 

Finally, the statistical modeling of SARIMA prediction 
equations of dust fall of the moderate site of Quetta city, 
that is, the  ‘d’  site  follow  the  order:  Spring  (Table  10)
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Table 6. SARIMA sampling point f for spring. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

February 

(0,1,1)×(0,1,1)12 10.8 10 - 0.2454 -1.9938 0.4132 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.3 11 0.3136 - - -0.3112 
(1,0,1)×(0,1,1)12 5.6 9 -0.6958 -1.175 0.2871 -0.1754 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration 
over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-
1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 

March 

(0,1,1)×(0,1,1)12 19.6 10 - 9.182 - 0.04549 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.9 11 -0.3918 - - -0.00698 
(1,0,1)×(0,1,1)12 6.6 9 -0.2276 1.1200 - -0.00668 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 is an important version of seasonal 
exponential smoothing (SES) model, that is, with a constant. The forecasting equation for this model is: x(t)=2+x(t-12) + 

Ф{x(t-1) – x(t-12)} – θ e(t-1) – Θ e(t-12) + θ Θe(t-13) 
 

April 

(0,1,1)×(0,1,1)12 18.9 10 - 0.2025 -2.2682 -3.723 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 3.5 11 0.8548 - - 1.789 
(1,0,1)×(0,1,1)12 6.8 9 0.7796 -0.0034 1.2420 3.2443 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration 
over the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-
1)-x(t-12)). The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 

Table 7. SARIMA sampling point f for summer. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

February 

(0,1,1)×(0,1,1)12 10.8 10 - 0.2454 -1.9938 0.4132 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.3 11 0.3136 - - -0.3112 
(1,0,1)×(0,1,1)12 5.6 9 -0.6958 -1.175 0.2871 -0.1754 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration over 
the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-1)-x(t-12)). 
The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 

March 

(0,1,1)×(0,1,1)12 19.6 10 - 9.182 - 0.04549 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.9 11 -0.3918 - - -0.00698 
(1,0,1)×(0,1,1)12 6.6 9 -0.2276 1.1200 - -0.00668 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 is an important version of seasonal exponential 
smoothing (SES) model, that is, with a constant. The forecasting equation for this model is: x(t)=2+x(t-12) + Ф{x(t-1) – x(t-12)} – θ 
e(t-1) – Θ e(t-12) + θ Θe(t-13) 
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Table 7. contd. 
 

 

April 

(0,1,1)×(0,1,1)12 18.9 10 - 0.2025 -2.2682 -3.723 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 3.5 11 0.8548 - - 1.789 
(1,0,1)×(0,1,1)12 6.8 9 0.7796 -0.0034 1.2420 3.2443 

 

Prediction equation follows SARIMA (1,0,0) × (0,1,0)12 where the number 12 refers to twelve months as seasonal duration over 
the year. SAR (1,0,0)× (0,1,0)12 is a seasonal random walk model. the forecasting equation is: x(t)=a+x(t-12)+ Ф(x(t-1)-x(t-12)). 
The seasonal random walk(SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 

Table 8. SARIMA sampling point f for autumn. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR(1) 
Φ 

MA(1) 
Θ 

SMA(12) 
Θ 

Constant (a) 

August 

(0,1,1)×(0,1,1)12 6.4 10 - 0.9228 0.4267 -0.1214 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 8.4 11 0.0783 - - 0.0308 
(1,0,1)×(0,1,1)12 7.5 9 0.7843 0.5747 0.5323 -0.0569 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a seasonal experimental smoothing (SES) model. The forecasting equation for this 
model is  x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13)  where little θ is the MA(1) coefficient and big Θ is the SMA(1) coefficient 
 

September 

(0,1,1)×(0,1,1)12 14.2 10 - 0.9354 -0.6338 -0.00072 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 25.9 11 -0.3257 - - 0.0104 
(1,0,1)×(0,1,1)12 12.8 9 -0.0504 0.8861 -0.7879 -0.0035 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a very important version of seasonal experimental smoothing (SES) model, that is, 
with a constant. The forecasting equation for this model is x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-12)} –θe(t-1)- Θe(t-R)+θΘe(t-13)  where the little θ 
is MA(1) coefficient and the big Θ is the SMA(1) coefficient. 

 

October 

(0,1,1)×(0,1,1)12 12.8 10 - 0.9257 -0.7875 6.937 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 14.2 11 0.1771 - - -14.44 
(1,0,1)×(0,1,1)12 13.0 9 0.6527 0.4474 -0.0742 -6.11 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a very important version of seasonal experimental smoothing (SES) model, that is, 
with a constant. The forecasting equation for this model is x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-12)} –θe(t-1)- Θe(t-R)+θΘe(t-13) where the little θ 
is MA(1) coefficient and the big Θ is the SMA(1) coefficient. 

 
 
 
[February x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12)), March 
x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-
13) and April x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12))] ; summer 
(Table 11) [May x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-
Θe(t-12)+θΘe(t 13); June x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-
θe(t-1)-Θe(t-12)+θΘe(t-13), and July x(t)=a+x(t-
12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-13)] ; 
autumn (Table 12) [August x(t)=a+x(t-12)+Ф(x(t-2)-x(t-

12))-θe(t-1)-Θe(t-12)+θΘe(t-13), September x(t)=a+x(t-
12)+Ф(x(t-1)-x(t-12)) and October x(t)=a+x(t-12)+Ф(x(t-1)-
x(t-12))], and winter (Table 13) [November x(t)=x(t-
12)=(x(t-1)-x(t-13))-θe(t-1)-Θe(t-12)+Θθe(t-13), 
December x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-
12)+θΘe(t-13) and January x(t)=a+x(t-12)+Ф(x(t-2)-x(t-
12))-θe(t-1)-Θe(t-12)+θΘe(t-13)]. 

The   prediction   equations   of  SARIMA,  if  correlated



 
1722          Int. J. Phys. Sci. 
 
 
 
Table 9. SARIMA sampling point f for winter. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

November 

(0,1,1)×(0,1,1)12 6.9 10 - -0.2058 0.1953 -1.074 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.7 11 0.6850 - - 0.144 
(1,0,1)×(0,1,1)12 8.5 9 0.5787 -0.3400 0.2301 -0.042 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a seasonal experimental smoothing (SES) model. The forecasting equation 
for this model is: x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13) where little θ is the MA(1) coefficient and big Θ is the 
SMA(1) coefficient. 
        

December 

(0,1,1)×(0,1,1)12 3.9 10 - 0.9388 0.2434 0.2074 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 4.1 11 -0.0792 - - -0.9149 
(1,0,1)×(0,1,1)12 3.3 9 -0.5896 0.4893 0.6349 -1.1108 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a very important version of seasonal experimental smoothing (SES) model, 
that is, with a constant. The forecasting equation for this model is: x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-12)} –θe(t-1)- Θe(t-R)+θΘe(t-13) 
where the little θ is MA(1) coefficient and the big Θ is the SMA(1) coefficient. 
        

January 

(0,1,1)×(0,1,1)12 9.9 11 - 0.8075 0.9024 0.06362 
(0,0,0)×(0,1,0)12 - - - - - - 

 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 18.2 11 -0.4245 - - 0.2803 
(1,0,1)×(0,1,1)12 10.8 9 0.1932 0.6495 1.0253 -0.05185 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a seasonal experimental smoothing (SES) model. The forecasting equation 
for this model is: x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13) where little θ is the MA(1) coefficient and big Θ is the 
SMA(1) coefficient. 

 
 
 

Table 10. SARIMA sampling point d for spring. 
 

Month Seasonal 
SARIMA (p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant (a) 

November 

(0,1,1)×(0,1,1)12 6.9 10 - -0.2058 0.1953 -1.074 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 
(1,0,1)×(0,1,1)12 

10.7 
8.5 

11 
9 

0.6850 
0.5787 

- 
-0.3400 

- 
0.2301 

0.144 
-0.042 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a seasonal experimental smoothing (SES) model. The forecasting equation 
for this model is: x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13) where little θ is the MA(1) coefficient and big Θ is the 
SMA(1) coefficient 

 

December 

(0,1,1)×(0,1,1)12 3.9 10 - 0.9388 0.2434 0.2074 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 4.1 11 -0.0792 - - -0.9149 
(1,0,1)×(0,1,1)12 3.3 9 -0.5896 0.4893 0.6349 -1.1108 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a very important version of seasonal experimental smoothing (SES) model, 
that is, with a constant. The forecasting equation for this model is: x(t)=a+x(t-12)+ Ф{x(t-1)-x(t-12)} –θe(t-1)- Θe(t-R)+θΘe(t-13) 
where the little θ is MA(1) coefficient and the big Θ is the SMA(1) coefficient 
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Table 10. contd. 
 

January 

(0,1,1)×(0,1,1)12 9.9 11 - 0.8075 0.9024 0.06362 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 18.2 11 -0.4245 - - 0.2803 
(1,0,1)×(0,1,1)12 10.8 9 0.1932 0.6495 1.0253 -0.05185 

 

Prediction equation for SARIMA (0,1,1) × (0,1,1)12 is a seasonal experimental smoothing (SES) model. The forecasting equation 
for this model is: x(t)=x(t-12)+x(t-1)-x(t-13)-θe(t-1)-Θe(t-12)+ Θθe(t-13) where little θ is the MA(1) coefficient and big Θ is the 
SMA(1) coefficient 

 
 
 

Table 11. SARIMA sampling point d for summer. 
 

Month Seasonal SARIMA 
(p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant (a) 

May 

(0,1,1)×(0,1,1)12 4.4 10 - 0.8150 0.2976 0.532 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 13.9 11 -0.2075 - - 10.804 
(1,0,1)×(0,1,1)12 7.4 9 0.2069 0.4678 0.6396 7.491 

 

SARIMA (1,0,1)×(0,1,1)12 is an important version of SES model, that is, with a constant. The forecasting equation for this model 
is: x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-13) where a is a constant, Θ=SMA(12) and e is the error term 
        

June 

(0,1,1)×(0,1,1)12 22.4 10 - 0.8637 1.0756 0.1396 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 15.5 11 -0.2370 - - 0.1221 
(1,0,1)×(0,1,1)12 1.8 9 -0.0907 0.8196 1.2202 0.08225 

 

SARIMA (1,0,1)×(0,1,1)12 is an important version of SES model, that is, with a constant. The forecasting equation for this model 
is: x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-13) where a is a constant, Θ=SMA(12) and e is the error term. 
        

July 

(0,1,1)×(0,1,1)12 11.4 10 - 0.8080 2.5203 .1239 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 10.1 11 -0.3670 - - -0.0999 
(1,0,1)×(0,1,1)12 7.2 9 -0.0230 0.9913 0.1243 -0.01776 

 

SARIMA (1,0,1)×(0,1,1)12 is an important version of SES model, that is, with a constant. The forecasting equation for this model 
is: x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-13) where a is a constant, Θ=SMA(12) and e is the error term. 

 
 
 

analytically, would also provide a rationale such as 
diurnal variations for shorter lead times. For this reason, 
a different statistical analysis is needed which may be a 
logistic regression analysis or logit. We can also 
accomplish a multivariate analysis of parameters of both 
ARIMA and SARIMA. Therefore, there is a dire need to 
evolve hybrid models such as mixing ARIMA and 
SARIMA with any expert system (Intelligent System) to 
inculcate minor diurnal variations, the noise effect and the 
corresponding sporadic variations. The diurnal variations 
(cyclic stochastic components) should thus, be 
incorporated in a model development such as in ARIMA 
and SARIMA. 

Modeling and simulation of asymptotic departure 
(optimum variations) from randomness needed to be 
developed. This would help to resolve the optimum dust 
fall rate for each location in Quetta. 

The division of trace elements cannot be detached from 
that of particulates size, specifically, PM2.5-5.0 and PM<1.0, 
scattered in the atmosphere. Therefore a correlative and 
multivariate statistics having all data could be applied to 
find out the correlation between toxic elements connected 
with peculiar sizes and shapes of dust particulates, and 
to explore in more detail the local atmosphere which is 
undergoing remarkable anthropogenic translocations. 

Zeolites, which are widely used in the modern period as
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Table 12. SARIMA sampling point d for autumn. 
 

Month Seasonal 
SARIMA (p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant 
(a) 

August 

(0,1,1)×(0,1,1)12 22.6 10 - 0.8563 0.2284 -0.0489 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 19.4 11 -0.3402 - - -0.0248 
(1,0,1)×(0,1,1)12 11.3 9 0.2052 0.8079 0.2181 -0.0420 

 

SARIMA (1,0,1)×(0,1,1)12 is an important version of SES model, that is, with a constant. The forecasting equation for this model 
is: x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-13) where a is a constant, Θ=SMA(12) and e is the error term 

 

September 

(0,1,1)×(0,1,1)12 23.6 10 - 0.8872 0.4041 -0.0404 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.7 11 -0.8179 - - 0.0402 
(1,0,1)×(0,1,1)12 5.9 9 -0.0759 0.5090 0.7369 -0.07995 

 

SARIMA (1,0,0)×(0,1,0) is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12)). The 
seasonal random walk (SRW) is an alternate to seasonal random trend (SRT) model 

 

October 

(0,1,1)×(0,1,1)12 14.0 10 - 0.4106 0.4892 -0.01522 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 12.2 11 0.3736 - - 0.066 
(1,0,1)×(0,1,1)12 14.5 9 0.3506 -0.1227 0.5196 -0.241 

 

SARIMA (1,0,0)×(0,1,0) is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12)). The 
seasonal random walk (SRW) is an alternate to seasonal random trend (SRT) model 

 
 
 
Table 13. SARIMA sampling point d for winter. 
 

Month Seasonal 
SARIMA (p.d.q.) χχχχ2

0.05 d.f 
AR (1) 
Φ 

MA (1) 
Θ 

SMA (12) 
Θ 

Constant (a) 

August 

(0,1,1)×(0,1,1)12 22.6 10 - 0.8563 0.2284 -0.0489 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 19.4 11 - .3402 - - -0.0248 
(1,0,1)×(0,1,1)12 11.3 9 0.2052 0.8079 0.2181 -0.0420 

 

SARIMA (1,0,1)×(0,1,1)12 is an important version of SES model, that is, with a constant. The forecasting equation for this model 
is: x(t)=a+x(t-12)+Ф(x(t-2)-x(t-12))-θe(t-1)-Θe(t-12)+θΘe(t-13) where a is a constant, Θ=SMA(12) and e is the error term. 

 

September 

(0,1,1)×(0,1,1)12 23.6 10 - .8872 .4041 -0.0404 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
(1,0,0)×(0,1,0)12 5.7 11 -0.8179 - - 0.0402 
(1,0,1)×(0,1,1)12 5.9 9 -0.0759 0.5090 .7369 -0.07995 

 

SARIMA (1,0,0)×(0,1,0) is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12)). The 
seasonal random walk (SRW) is an alternate to seasonal random trend (SRT) model. 

 

October 
(0,1,1)×(0,1,1)12 14.0 10 - 0.4106 .4892 -.1522 
(0,0,0)×(0,1,0)12 - - - - - - 
(0,1,0)×(0,1,0)12 - - - - - - 
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(1,0,0)×(0,1,0)12 12.2 11 0.3736 - - 0.066 
(1,0,1)×(0,1,1)12 14.5 9 0.3506 -0.1227 0.5196 -0.241 

SARIMA (1,0,0)×(0,1,0) is a seasonal random walk model. The forecasting equation is: x(t)=a+x(t-12)+Ф(x(t-1)-x(t-12)). The 
seasonal random walk (SRW) is an alternate to seasonal random trend (SRT) model. 

 
 
 
scavengers in different industries in order to gain 
maximum product by avoiding the loss of a major chunk 
of the costly raw material (for instance in the fractional 
distillation of petroleum), could also be effectively used in 
a similar way to clean the environment, particularly, air by 
finding the effective techniques of their usages for the 
said vital purpose. 

The rate of dust fall in Quetta has been recorded as 
high due to its geography, and as very high during the 
twilight of abating drought spell, which emerged 
infrequently from the regional deserts of Dalbandin 
(Pakistan) and Dasht-e-Lut (Iran). 

Due to the adulteration of fuel, the concentration of Pb 
(lead) was found to be so high among other heavy/toxic 
elements as well. 

Lack of industries in the city proved to be a blessing in 
disguise. In spite of thermal inversion, however, Quetta 
city did not have disastrous situations as had been 
witnessed at Donora and London (UK) due to the 
photochemical smog. 
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