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The numerical illustration presented at the end of the paper provides the results for the resistance to 
flow, apparent viscosity and the wall shear stress through their graphical representations. It has been 
shown that the resistance to flow, apparent viscosity and wall shear stress increases with the size of 
the stenosis but these increases is comparatively small due to non-Newtonian behavior of the blood 
indicating the usefulness of its rheological character in the functioning of the diseased arterial 
circulation. Few comparisons with the existing results have been made in order to validate the 
applicability of the present model.  
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INTRODUCTION 
 
A Newtonian fluid, by definition, is one in which the 
coefficient of viscosity is constant at all rates of shear. 
Homogeneous liquids may behave closely like Newtonian 
fluids. However, there are fluids that do not obey the 
linear relationship between shear stress and shear strain 
rate. Fluids that exhibit a non-linear relationship between 
the shear stress and the rate of shear strain are called 
non-Newtonian fluids. Blood behaviour is referred to as 
non-Newtonian properties. These properties are of two 
types as follows: (a) at low shear rates, the apparent 
viscosity increases markedly – Sometimes even a certain 
“yield stress” is required for flow. (b) In small tubes, the 
apparent viscosity at higher rates of shear is smaller than 
it is in larger tubes. These two types of anomalies are 
often referred to as “low shear” and “high shear” effects 
respectively. It is thus concluded that the behaviour of 
blood is almost Newtonian at high shear rate, while at low 
shear rate the blood exhibits yield stress and non-
Newtonian behaviour.  

In the series of the papers, (Texon, 1957; May et al., 
1963; Hershey and Cho, 1966; Young, 1968; Forrester 
and Young, 1970; Caro et al., 1971; Fry,1972 Young and 
Tsai, 1973; Lee, 1974; Richard et al., 1977) the effects on 
the cardiovascular system can be understood by studying 
the blood flow in its vicinity. In these studies the behavior 
of the blood has been considered as a Newtonian fluid. 
However, it may be noted that the blood does not behave  
as a Newtonian fluid under certain conditions. It  is  gene- 

rally accepted that the blood, being a suspension of cells, 
behaves as a non-Newtonian fluid at low shear rate 
(Charm and Kurland, 1965; Hershey et at., 1964; 
Whitemore, 1968; Cokelet, 1972; Lih, 1975; Shukla et al., 
1990).  

It has been pointed out that the flow behaviour of blood 
in a tube of small diameter (less than 0.2 mm) and at less 
than 20 sec - 1 shear rate, can be represented by a 
power-low fluid (Hershey et al., 19764; Charm et al., 
1965). It has also been suggested that at low shear rate 
(0.1 sec - 1) the blood exhibits yield stress and behaves 
like a Casson-model fluid (Casson, 1959; Reiner and 
Scott-Blair, 1959; Charm et al., 1965). For blood flows in 
large arterial vessels (that is, vessel diameter �1 mm) 
(Labarbera, 1990), which can be considered as a large 
deformation flow, the predominant feature of the 
rheological behavior of blood is its shear rate dependent 
viscosity and its fact on the hemodynamics of large 
arterial vessel flows has not been understood well. 

In this paper we investigated the effect of stenosis on 
the resistance to flow, apparent viscosity and wall shear 
stress in an artery by considering the blood as a power-
law fluid and Casson’s-model fluids. And to examine the 
effect of stenosis shape parameter, we considered blood 
flow through an axially non-symmetrical but radially sym-
metric stenosis such that the axial shape of the stenosis 
can be change just by varying a parameter [stenosis 
shape parameter (m)]. 
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Figure1. Flow geometry of an axially non-symmetrical stenosis. 

 
 
 
FORMULATION OF THE PROBLEM 
 
In the present analysis, it is assumed that the stenosis 
develops in the arterial wall in an axially non-symmetric 
but radially symmetric manner and depends upon the 
axial distance z and the height of its growth. In such a 
case the radius of artery, R(z) can be written as follows 
(Figure 1): 
  

(m 1) m
0 0

0

R(z)
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Where; R(z) and R0 is the radius of  the artery with and 
without stenosis, respectively. L0 is the stenosis length 
and d indicates its location, m � 2 is a parameter deter-
mining the stenosis shape and is referred to as stenosis 
shape parameter. Axially symmetric stenosis occurs 
when m = 2 and a parameter A is given by; 
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� m
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Where; � �denotes the maximum height of stenosis at z = 
d + L0 / m

1 / (m – 1). The ratio of the stenosis height to the 
radius of the normal artery is much less than unity. 
 
 
Conservation equation and boundary condition 
 
The equation of motion  for  laminar  and  incompressible,  

steady, fully-developed, one-dimensional flow of blood 
whose viscosity varies along the radial direction in an 
artery reduces to (Young, 1968): 
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Where; (z, r) are co-ordinates with z measured along the 
axis and r measured normal to the axis of the artery.  

Following boundary conditions are introduced to solve 
the above equations, 
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ANALYSIS OF THE PROBLEM 
 
Case-1: Power-law fluid 
 
Non-Newtonian fluid is that of power-law fluid which have 
constitutive equation, 
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Where; u is the axial velocity, µ is the viscosity of fluid, (-
dp/dz) is the pressure gradient and n is the flow 
behaviour index of the fluid. 

Solving for u from equation (2), (4) and using the 
boundary conditions (3), we have, 

 

C

1/n
1/ndu P

= [(r-R ) ],
dr 2�

� �
� �
	 


                                         (5)                                                           

 
The volumetric flow rate Q can be defined as; 
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By the help of equations (5) and (6) we have,  
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From equation (7) pressure gradient is written as follows; 
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Integrating equation (8) using the condition P = P0 at z = 
0 and P = PL at z = L. We have, 
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The resistance to flow (resistive impedance) is denoted 
by � and defined as follows (Young, 1968):  
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The resistance to flow from equation (10) using equations 
(9) can write as: 
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When there is no stenosis in artery then R = R0, the 
resistance to flow,   
 

n
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From equation (11) and (12) the ratio of (λ0 / λN) is given 
as; 
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Now the ratio of shearing stress at the wall can be written 
as; 
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Figure 2 reveals the variation of resistance to flow (λ) with 
stenosis size (δ/R0) for different values of flow behavior 
index (n). It is observed that the resistance to flow (λ) 
increases as stenosis size (δ/R0) increases. It is also 
noticed here that resistance to flow (λ) increases as flow 
behavior index (n) increases. It is seen from Figures 2 
and 3 that the ratio is always greater than 1 and 
decreases as n decreases from unity. 

This result is similar with the result of (Shukla et al., 
1990). In Figure 3, resistance to flow (λ) decreases as 
stenosis shape parameter (m) increases and maximum 
resistance to flow (λ) occurs at (m = 2), that is, in case of 
symmetric stenosis. This result is therefore consisting to 
the result of (Haldar, 1985). It is also seen that, for δ/R0 = 
0.1 and L0/L = 1.0    

In Figure 4 the variation of wall shear stress (�) with 
stenosis length (L0/L) for different values of flow behavior 
index (n) has been shown. This Figure depicts that wall 
shear stress (�) increases as stenosis length (L0/L) 
increases. Also it has been seen from this graph that the 
wall shear stress (�) increases as value of flow behavior 
index (n) increases. As the stenosis grows, the wall 
shearing stress (�) increases in the stenotic region. It is 
also noted that the shear ratio given by (15) is greater 
than one and decreases as n decreases (n < 1). These 
results are similar with the results of (Shukla et al., 1990). 

Figure 5 shows  the  variation  of  wall  shear  stress  (�) 



666          Int. J. Phys. Sci. 
 
 
 

1

1.005

1.01

1.015

1.02

1.025

1.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Stenosis size

R
es

is
ta

nc
e 

to
 fl

ow
n =1

n = 2 3/

n = 1 3/

 
 
Figure 2. Variation of resistance to flow with stenosis size for different value of n. 
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Figure 3. Variation of resistance to flow with stenosis shape parameter for different value of n. 
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Figure 4. Variation of wall shear stress with stenosis length for different values of flow 
behavior index (n). 
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Figure 5. Variation of wall shear stress with stenosis size for different value of n. 

 
 
 
with stenosis size for different values of flow behavior 
index (n). This Figure depicts  that  wall  shear  stress  (�)  

increases as stenosis size increases. Also it has been 
seen from  this  graph  that  the wall  shear  stress  (�)  in- 
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creases as value of flow behavior index (n) increases. 
These results are consistent to the observation of (Shukla 
et al., 1990). It is also seen that the shear ratio is always 
greater than one and decreases as n decreases. For δ/R0 
= 0.1 the increases in wall shear due to stenosis is about 
37% when compared to the wall shear corresponding to 
the normal artery in the Newtonian case (n = 1), but for n 
= 2/3 this increase is only 23% approximately. However, 
for δ/R0 = 0.2, the corresponding increase in Newtonian 
(n = 1) and non-Newtonian (n = 2/3) cases are 95 and 
56% respectively.  
 
 
Case-2: Casson’s fluid model 
 
The Casson’s relation is commonly written as:  
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Where;  c
0

Rd p
�

d z 2
= −  

 
Rc is the radius of the plug-flow region, τ0 is yield stress, τ 
is wall shear stress and µ denotes Casson’s viscosity 
coefficient. 

The Volume rate of flow using equation (16) is defined    
as: 
 

2
R

0

du
Q � r ( ) dr.

dr
= −�                                       (17) 

                                                                    
By integrating equation (17), using equations (16) and (3) 
we have,      
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Equation (18) can be rewritten as; 
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From  above  equation  pressure  gradient  is  written   as  

 
 
 
 
follows; 
 

4
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Integrating equation (19) using the condition P = P0 at z = 
0 and P = PL at z = L. We have, 
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The resistance to flow (resistive impedance) is denoted 
by � and defined as follows (Young, 1964), 
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P -P
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The resistance to flow from equation (21) using equations 
(20) is written as; 
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Following the apparent viscosity (µapp) is defined as 
follows; 
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The shearing stress at the wall can be defined as; 
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Figure 6 shows the variation of resistance to flow (λ) with 
stenosis size (δ/R0) for different values of stenosis shape 
parameter (m). It is seen from the Figure that the 
resistance to flow (λ) is always greater than unity and 
increases as stenosis size (δ/R0) increases and 
decreases as the stenosis shape parameter (m) in-
creases. Maximum resistance to flow (λ) occurs at  m =2. 
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Figure 6. Variation of resistance to flow with stenosis size for different value of sterosis shape parameter. 

 
 
 
That is, in the case of symmetric stenosis. This result is 
therefore consistent with the observation of (Haldar, 
1985).   

Figure 7 depicts the variation of resistance to flow (λ) 
with stenosis length (L0/L) for different values of stenosis 
shape parameter (m). Figure shows that resistance to 
flow (λ) increases as stenosis length (L0/L) increases and 
decreases as stenosis shape parameter (m) increases. 
This result is qualitative agreement with the observation 
of (Haldar, 1985).   

Figure 8 represents variation of apparent viscosity 
(µapp) with stenosis size (δ/R0) for different values of yield 
stress (τ0). Figure depicts that apparent viscosity (µapp) 
increases as stenosis size (δ/R0) increases but this 
increase is less due to non-Newtonian behaviour of the 
blood. In addition it may be noted from the graph that the 
apparent viscosity (µapp) decreases as yield stress (τ0) 
increases. This result is in qualitative agreement with the 
result of (Pontrelli, 2001). It may be observed that from 
these results that the apparent viscosity increases as  the  

stenosis grows and remains constants outside from the 
stenotic region.   

Figure 9 shows the variation of apparent viscosity (µapp) 
with stenosis length (L0/L) for different values of stenosis 
shape parameter (m). We observe that the apparent 
viscosity (µapp) sharply increases as length of stenosis 
(L0/L) increases and decreases as stenosis shape 
parameter (m) increases. (Tandon et al., 1991) have also 
noted the same results. 
 
 
Conclusion 
 
In this paper, we have studied the effects of the stenosis 
in an artery by considering the blood as power-law and 
Casson’s model fluids. It has been concluded that the 
resistance to flow and wall shear stress increases as the 
size of stenosis increases for a given non-Newtonian 
model of the blood. These increases are however, small 
due to  non-Newtonian  behaviour  of  the  blood.  Thus  it  
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 Figure 7. Variation of resistance to flow with stenosis length for different values of steriosis shape parameter. 
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Figure 8. Variation of apparent viscosity with stenosis size for different values of yield stress. 
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Figure 9. Variation of apparent viscosity with stenosis length for different values of steriosis shape 
parameter. 

 
 
 
appears that the non-Newtonian behaviour of the blood is 
helpful in the functioning of diseased arterial circulation.      
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