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In this paper, a Kawahara equation is solved by using the Adomian’s decomposition method, 

modified Adomian’s decomposition method, variational iteration method, modified variational 

iteration method, homotopy perturbation method, modified homotopy perturbation method and 
homotopy analysis method. The approximate solution of this equation is calculated in the form of 
series which its components are computed by applying a recursive relation. The existence and 
uniqueness of the solution and the convergence of the proposed methods are proved. A numerical 
example is studied to demonstrate the accuracy of the presented methods. 
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INTRODUCTION 
 
Kawahara equation plays an important role in 
mathematical physics (Bongsoo, 2009; Hunter and 
Scheurle, 1988; Kawahara, 1972). In recent years, 
some works have been done in order to find the numeri-
cal solution of this equation, for example (Abbasbandy, 
2010; Biazar et al., 2008; Tutalar, 2006; Assas, 2009; 
Yuan and Wu, 2008; Ass, 2009; Matinfar, 2008). In this 
work, we developed the ADM, MADM, VIM, MVIM, HPM, 
MHPM and HAM to solve the Kawahara equation as 
follows: 
 
ut + αuux + βuxxx + γuxxxxx = 0,                                (1)                                                     

 
where α, β and γ are some arbitrary constants. 

With the initial conditions: 

 
u(x, 0) = f (x).                                                           (2) 

 
In order to obtain an approximate solution of Equation 1, 
let us integrate one time Equation 1 with respect to t 
using the initial conditions, we obtain: 
 

     (3)          

where, 
 

    
 

  
 
In Equation 3, we assume f (x) is bounded for all x in J = 

[a, T ]. The terms Di(u(x, t)) (i = 3, 5) and F (u(x, t)) are 

Lipschitz continuous with | D3(u) −D 3(u∗ ) |≤ L2 | u− u∗ |, 

| F (u) − F (u∗) |≤ L1 | u − u∗ | and | D5(u) − D5(u ∗) | ≤ L3 

| u − u∗ |. 

 
 
ITERATIVE METHODS 
 
Description of the MADM and ADM 
 
The Adomian decomposition method is applied to the 
following general nonlinear equation: 

 
Lu + Ru + N u = g1,                                     (4)  

 
where u(x, t) is the unknown  function,  L  is  the  highest 



 
 
 
 
order derivative operator which is assumed to be easily 
invertible, R is a linear differential operator of order less 
than L, N u represents the nonlinear terms and g1 is the 

source term. Applying the inverse operator L-1 to both 
sides of Equation 4 and using the given conditions, we 
obtain: 
 

u(x, t) = f1(x) − L−1(Ru) − L−1(N u),                    (5) 
 

where the function f1(x) represents the terms arising 

from integrating the source term g1. The nonlinear 

operator N u = G1(u) is decomposed as: 

  

where the function f1(x) represents the terms arising from integrating the source term g1. The nonlinear 

operator N u = G1(u) is decomposed as  

𝐺1 𝑢 =  𝐴𝑛,

∞

𝑛=0

                                                                                                                                                                                                 (6)     

  

where An, n ≥ 0 are the Adomian polynomials determined formally as follows : 
 

An= 
1

𝑛!
[

𝑑𝑚

𝑑𝜆𝑛
[𝑁( 𝜆𝑖𝑢𝑖)]] ∞

𝑖=0 𝜆 =0.                   (7) 

                                                         (6)                                                                      
  
where An, n ≥ 0 are the Adomian polynomials 

determined formally as follows: 
 

where the function f1(x) represents the terms arising from integrating the source term g1. The nonlinear 

operator N u = G1(u) is decomposed as  

𝐺1 𝑢 =  𝐴𝑛,

∞

𝑛=0

                                                                                                                                                                                                 (6)     

  

where An, n ≥ 0 are the Adomian polynomials determined formally as follows : 
 

An= 
1

𝑛!
[

𝑑𝑚

𝑑𝜆𝑛
[𝑁( 𝜆𝑖𝑢𝑖)]] ∞

𝑖=0 𝜆 =0.                   (7) 
                                      (7) 

                 
The first Adomian polynomials (Behriy, 2009; Wazwaz, 
2001) are: 
 
The first Adomian polynomials are [10,29]: 

 

A0 = G1(U0), 

A1 = u1G’1(U0),
                                                        (8)

 

A2 = u2G’1(U0) + 1

2!
𝑢1

2𝐺1
′′ (𝑢0), 

A3 = u3G’1(U0) +𝑢1𝑢2𝐺1
′′ (𝑢0),+ 1

3!
𝑢1

3𝐺1
′′′ (𝑢0), … 

 

 

                 (8)                          

 

 

Adomian decomposition method 
 

The standard decomposition technique represents the 
solution of u(x, t) in Equation 4 as the following series: 
 

2.1.1 Adomian decomposition method 
 

The standard decomposition technique represents the solution of u(x, t) in (4) as the following series, 
 

𝑢 𝑥, 𝑡 =  𝑢𝑖(𝑥, 𝑡),

∞

𝑛=0

                                                                                                                                                                              (9) 

where, the components u0, u1, . . . wich can be determined recursively 
 

𝑢0 = 𝑓(𝑥) 

𝑢1 = − 𝛼  𝐴0 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛽  𝐵0 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛾  𝐿0 𝑥, 𝑡 𝑑𝑡,
𝑡

0

 

. 

. 

. 

𝑢𝑛+1 = − 𝛼  𝐴𝑛  𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛽  𝐵𝑛 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛾  𝐿𝑛  𝑥, 𝑡 𝑑𝑡,
𝑡

0

         𝑛 ≥ 0                                                                 (10) 

 

                                                   (9)                                                              
 

where the components u0, u1, . . .un, which can be 

determined recursively as: 
 

2.1.1 Adomian decomposition method 
 

The standard decomposition technique represents the solution of u(x, t) in (4) as the following series, 
 

𝑢 𝑥, 𝑡 =  𝑢𝑖(𝑥, 𝑡),

∞

𝑛=0

                                                                                                                                                                              (9) 

where, the components u0, u1, . . . wich can be determined recursively 
 

𝑢0 = 𝑓(𝑥) 

𝑢1 = − 𝛼  𝐴0 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛽  𝐵0 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛾  𝐿0 𝑥, 𝑡 𝑑𝑡,
𝑡

0

 

. 

. 

. 

𝑢𝑛+1 = − 𝛼  𝐴𝑛  𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛽  𝐵𝑛 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛾  𝐿𝑛  𝑥, 𝑡 𝑑𝑡,
𝑡

0

         𝑛 ≥ 0                                                                 (10) 

 
 

                                                                              (10) 
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Substituting Equation 8 in 10 leads to the determination 
of the components of u.  
 
 
Modified Adomian decomposition method 
 
The modified decomposition method was introduced by 
Wazwaz (Fariborz and Sadigh,  2011a).  The 
modified forms was established on the assumption that 
the function f (x) can be divided into two parts, namely 
f1(x) and f2(x). Under this assumption, we set: 

 
f(x) = f1(x) + f2(x).                                   (11)                                                   

 
Accordingly, a slight variation was proposed only on the 
components u0 and u1. The suggestion was that only 

the part f1 can be assigned to the zeroth component u0, 

whereas the remaining part f2 can be combined with the 

other terms given in Equation 11 to define u1. 

Consequently, the modified recursive relation was 
developed: 
 

Accordingly, a slight variation was proposed only on the components u0 and u1. The suggestion was that only 

the part f1 be assigned to the zeroth component u0, whereas the remaining part f2 be combined with the other 

terms given in (11) to define u1. Consequently, the modified recursive relation 

 

u0 = f1(x), 

u1 = f2(x) − L−1(Ru0 ) − L−1(A0 ),                                                                 (12) 

. 

. 

. 

un+1 = −L−1(Run) − L−1(An ), n ≥ 1, 

 
                     (12)                                     

 
To obtain the approximation solution of Equation 1, 
according to the MADM, we can write the iterative 
formula of Equation 12 as follows: 
 

was developed. 

 To obtain the approximation solution of Eq.(1), according to the MADM, we can write the iterative formula 

(12) as follows: 
 

𝑢0 = 𝑓1(𝑥) 

𝑢1 = 𝑓2(𝑥)  −  𝛼  𝐴0 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛽  𝐵0 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0

𝛾  𝐿0 𝑥, 𝑡 𝑑𝑡,
𝑡

0

 

. 

. 

. 

𝑢𝑛+1 = − 𝛼 𝐴𝑛 𝑥, 𝑡 𝑑𝑡 − 
𝑡

0
𝛽  𝐵𝑛 𝑥, 𝑡 𝑑𝑡 − 

𝑡

0
𝛾  𝐿𝑛 𝑥, 𝑡 𝑑𝑡,

𝑡

0
         𝑛 ≥ 1                                               (13) 

 

 The operators Dj (u) (j = 3, 5) and F (u) are usually represented by the infinite series of the Adomian 
                                                                                  (13)          
 

The operators Dj (u) (j = 3, 5) and F (u) are usually 
represented by the infinite series of the Adomian 
polynomials as follows: 
 

 

 
                                                               

 

𝐹 𝑢 =  𝐴𝑖,

∞

𝑛=0

 

𝐷3 𝑢 =  𝐵𝑖,

∞

𝑛=0

 

𝐷5 𝑢 =  𝐿𝑖,

∞

𝑛=0

 

 

where Ai , Bi and Li are the Adomian polynomials. 

Also, we can use the following formula for the Adomian polynomials [14]: 
 

𝐴𝑛 = 𝐹 𝑠𝑛  −  𝐴𝑖,
𝑛−1

𝑖=0
 

𝐵𝑛 = 𝐷3 𝑠𝑛  −  𝐵𝑖,
𝑛−1

𝑖=0
 

𝐿𝑛 = 𝐷5 𝑠𝑛  −  𝐿𝑖,
𝑛−1

𝑖=0
 

                                                                                                  

 
 
where Ai, Bi and Li are the Adomian  polynomials.  Also,  
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we can use the following formula for the Adomian 

polynomials (Fariborz and Sadigh,  2011b): 

 

 

 
                                                               

 

𝐹 𝑢 =  𝐴𝑖,

∞

𝑛=0

 

𝐷3 𝑢 =  𝐵𝑖,

∞

𝑛=0

 

𝐷5 𝑢 =  𝐿𝑖,

∞

𝑛=0

 

 

where Ai , Bi and Li are the Adomian polynomials. 

Also, we can use the following formula for the Adomian polynomials [14]: 
 

𝐴𝑛 = 𝐹 𝑠𝑛  −  𝐴𝑖,
𝑛−1

𝑖=0
 

𝐵𝑛 = 𝐷3 𝑠𝑛  −  𝐵𝑖,
𝑛−1

𝑖=0
 

𝐿𝑛 = 𝐷5 𝑠𝑛  −  𝐿𝑖,
𝑛−1

𝑖=0
 

                                                                                                  
                (14)                                                       

 

where 
Where 𝑠𝑛 =  𝑢𝑖(𝑥, 𝑡)𝑛

𝑖=0  is the partial sum. 
 is the partial sum. 

 

 
 
 
 
Description of the VIM and MVIM 
 
In the VIM (Fariborz et al 2010; Ghasemi et al., 2007; 
Golbabai and Keramati, 2009; Hunter and cheurle, 1988; 
He and Wu, 2006), the following nonlinear differential 
equation has been considered: 
 
Lu + N u = g1,                                                    (15) 

 
where L is a linear operator, N is a nonlinear operator 
and g1 is a known analytical function. In this case, the 

functions un may be determined recursively by: where L is a linear operator, N is a nonlinear operator and g1 is a known analytical function. In this case, the 

functions un may be determined recursively by 
 

 𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛  𝑥, 𝑡 +  𝜆 𝑥, 𝑡   𝐿 𝑢𝑛  𝑥, 𝑡  +  𝑁 𝑢𝑛  𝑥, 𝑡  − 𝑔1   𝑥, 𝑡   𝑑𝑡 
𝑡

0
        𝑛 ≥ 0 

                                             (16) 
 

where λ is a general Lagrange multiplier which can be computed using the variational theory. Here the function 

un(x, τ ) is a restricted variations which means δun = 0. Therefore, we first determine the Lagrange multiplier 

λ that will be identified optimally via integration by parts. The successive approximation un(x, t), n ≥ 0 of the 

solution u(x, t) will be readily obtained upon using the obtained Lagrange multiplier and by using any selective 

function u0. The zeroth approximation u0 may be selected any function that just satisfies at least the initial 

and boundary conditions. With λ determined, then several approximation un(x, t), n ≥ 0 follow immediately. 

Consequently, the exact solution may be obtained by using 
 

𝑢 𝑥, 𝑡 = lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡 .                                                                                                 (17) 

 

 The VIM has been shown to solve effectively, easily and accurately a large class of nonlinear problems with 

approximations converge rapidly to accurate solutions. 

 To obtain the approximation solution of Eq.(1), according to the VIM, we can write iteration formula (16) 

    (16)     
 
where λ is a general Lagrange multiplier which can be 
computed using the variational theory. Here, the function 
un(x, τ) is a restricted variations which means δun = 0. 

Therefore, we first determine the Lagrange multiplier λ 
that will be identified optimally via integration by parts. 
The successive approximation un(x, t), n ≥ 0 of the 

solution u(x, t) will be readily obtained upon using the 
obtained Lagrange multiplier and by using any selective 
function u0. The zeroth approximation u0 may be any 
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𝑡

0
        𝑛 ≥ 0 
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 To obtain the approximation solution of Eq.(1), according to the VIM, we can write iteration formula (16) 

        (17)   
 
The VIM has been shown to solve effectively, easily and 
accurately a large class of nonlinear problems with 
approximations converging rapidly to accurate solutions. 
To obtain the approximation solution of Equation 1, 
according to the VIM, we can write iteration formula 
(Equation 16) as follows: 

 

 (18)    
                                   
where 
 

      
 
To find the optimal λ, we proceed as:  

 

     (19) 

 
From Equation 19, the stationary conditions can be 
obtained as follows: 
 

λ
!
 = 0 and 1 + λ = 0. 

 
Therefore, the Lagrange multipliers can be identified as 
λ = −1 and by substituting in Equation 18,  the 
following iteration formula is obtained. 
 

 
 

 
 
 
 
 
 

                                                                                                                                                                        (20)



 
 
 
 
To obtain the approximation solution of Equation 1, 
based on the MVIM (He, 2004; He and Shu-Qiang, 2007),  
 

Behzadi          7515 
 
 
 
we can write the following iteration formula: 
 

 

 
                                                                                                                                                                                                        (21) 
 
Relations (Equation 20) and (Equation 21) will enable us 
to determine the components un(x, t) recursively for n ≥ 

0. 
 
 
Description of the HAM 
 
Consider N [u] = 0, where N is a nonlinear operator, 

u(x, t) is an unknown function and x is an independent 
variable. Let u0(x, t) denote an initial guess of the 

exact solution u(x, t), h ≠ 0 an auxiliary parameter, 
H1(x, t) ≠ 0 an auxiliary function and L an auxiliary 

linear operator with the property L[s(x, t)] = 0 when s(x, t) 
= 0. Then, using q ∈ [0, 1] as an embedding parameter, 
we construct homotopy as follows: 
 

(1 − q)L[φ(x, t; q) − u0(x, t)] − qhH1(x, t)N [φ(x, t; q)] = 

Hˆ[φ(x,t;q); u0(x, t), H1(x, t), h, q].                                  (22) 

 
It should be emphasized that we have great freedom to 
choose the initial guess u0(x, t), the auxiliary linear 

operator L, the non-zero auxiliary parameter h and the 
auxiliary function H1(x, t). 

Enforcing the homotopy (Equation 22) to be zero, that 
is: 
 

1[φ(x,t;q);u 0(x, t), H1(x, t), h, q] = 0,         (23)                                          

                                            
We have the so-called zero-order deformation equation:  

 

(1 − q)L[φ(x, t; q) − u0(x, t)] = qhH1(x, t)N [φ(x, t; q)].     (24) 

 
When q = 0, the zero-order deformation (Equation 24) 
becomes: 
 

φ(x; 0) = u0(x, t),                                                           (25)                                                                   
 

and when q = 1, since h ≠ 0 and H1(x, t) ≠ 0, the zero-

order deformation (Equation 24) is equivalent to: 
 
φ(x, t; 1) = u(x, t).                                                          (26)                                                                  
 
 
Thus, according to E q u a t i o n s  25 and 26, as the 
embedding parameter q increases from 0 to 1, φ(x, t; 
q) varies continuously from the initial approximation 
u0(x, t) to the exact solution u(x, t). Such kind of 

continuous variation is called deformation in homotopy 
(He, 2007; Javidi, 2009; Kawahara, 1972; Wazwaz, 
2001; Yuan and Wu, 2008).  
Due to Taylor’s theorem, φ(x, t; q) can be expanded in a 
power series of q as follows: 

  

                  (27)                                          
 
where, 
 

          1 ∂m φ(x, t; q) 

um(x, t) =
 m!   ∂qm       |q=0. 

 
Let the initial guess u0(x, t), the auxiliary linear 

parameter L, the nonzero auxiliary parameter h and the 
auxiliary function H1(x, t) be properly chosen so that the 

power series (Equation 27) of φ(x, t; q) converges at q = 
1, then, we have under these assumptions the solution 
series: 
 

Let the initial guess u0(x, t), the auxiliary linear parameter L, the nonzero auxiliary parameter h and the 

auxiliary function H1(x, t) be properly chosen so that the power series (27) of φ(x, t; q) converges at q = 1, then, 

we have under these assumptions the solution series 

 

𝑢 𝑥, 𝑡 = 𝜑 𝑥, 𝑡: 1 = 𝑢0 𝑥, 𝑡 +  𝑢𝑚  𝑥, 𝑡 .∞
𝑚=1                                                  (28) 

  
      (28)       

 
From Equation 27, we can write Equation 24 as follows: 
 From Eq.(27), we can write Eq.(24) as follows 

 

 1 − 𝑞 𝐿  𝜑 𝑥, 𝑡: 𝑞 − 𝑢0 𝑥, 𝑡  =  1 − 𝑞 𝐿[ 𝑢𝑚  𝑥, 𝑡 𝑞𝑚 ] = 𝑞 𝑕 𝐻1 𝑥, 𝑡 𝑁 𝜑 𝑥, 𝑡: 𝑞   ⇒
∞

𝑚=1
 

𝐿[ 𝑢𝑚  𝑥, 𝑡 𝑞𝑚 ] − 𝑞 ∞
𝑚=1 𝐿[ 𝑢𝑚  𝑥, 𝑡 𝑞𝑚 ] =  𝑞 𝑕 𝐻1 𝑥, 𝑡 𝑁 𝜑 𝑥, 𝑡: 𝑞    ∞

𝑚=1                                 (29) 
  

      (29)
 

By  differentiating  Equation  29 m  times  with  respect  to  
 

q, we obtain: 

 

  
 

 By differentiating (29) m times with respect to q, we obtain 
 

{𝐿[ 𝑢𝑚 𝑥, 𝑡 𝑞𝑚] − 𝑞 ∞
𝑚=1 𝐿[ 𝑢𝑚 𝑥, 𝑡 𝑞𝑚]} ∞

𝑚=1
 𝑚 

= {𝑞 𝑕 𝐻1 𝑥, 𝑡 𝑁 𝜑 𝑥, 𝑡: 𝑞  } 
 𝑚 

= 

m!  𝐿  𝑢𝑚 𝑥, 𝑡 − 𝑢𝑚−1 𝑥, 𝑡   = 𝑕 𝐻1 𝑥, 𝑡 𝑚 
𝜕𝑚−1𝑁 𝜑 𝑥,𝑡:𝑞   

𝜕𝑞 𝑚−1     |𝑞 = 0 
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Therefore, 
 

L[um(x, t) − χmum−1 (x, t)] = hH1(x, t) Rm(um−1 (x, t)),  
      (30) 

                                  
where  
 
 

 

 

 

                  1      ∂m−1 N [φ(x, t; q)] 

Rm(um−1 (x, t))= 
(m − 1)! ∂qm−1

          |q=0, 

 
      (31)  

 
and 
 

 
 
 
 

 

 and 
 

                                           𝑋𝑚  =  
0,      𝑚 ≤ 1
1,      𝑚 > 1

  

 

 

 Note that the high-order deformation Eq.(30) is governing the linear operator L, and the term Ɍm(um−1 (x, t)) 

 
 
Note that the high-order deformation (Equation 30) is 

governing the linear operator L, and the term Ɍm(um−1 (x, 

t)) can be expressed simply by Equation 30 for any 

nonlinear operator N . 
To obtain the approximation solution of Equation 1, 

according to HAM, let: 
  
 

  

N[u(x,t)]=  𝑢 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0
𝛽  𝐷3(𝑢 𝑥, 𝑡 𝑑𝑡 + 

𝑡

0
𝛾  𝐷5(𝑢 𝑥, 𝑡 𝑑𝑡 

𝑡

0
 

 

 so, 
 

𝑅𝑚 (𝑢𝑚−1(x,t))= 𝑢𝑚−1 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0
𝛽  𝐷3(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 

𝑡

0
𝛾  𝐷5(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡.

𝑡

0
 

                            (32)  

 Substituting (32) into (30) 

 

 
 
so, 
 

  

N[u(x,t)]=  𝑢 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0
𝛽  𝐷3(𝑢 𝑥, 𝑡 𝑑𝑡 + 

𝑡

0
𝛾  𝐷5(𝑢 𝑥, 𝑡 𝑑𝑡 

𝑡

0
 

 

 so, 
 

𝑅𝑚 (𝑢𝑚−1(x,t))= 𝑢𝑚−1 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0
𝛽  𝐷3(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 

𝑡

0
𝛾  𝐷5(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡.

𝑡

0
 

                            (32)  

 Substituting (32) into (30) 

 

    (32)                                  
Substituting Equation 32 into Equation 30: 
 
Substituting (32) into (30) 

 

𝐿[𝑢𝑚 (x, t)   − 𝑋𝑚𝑢𝑚−1(x,t)]=

𝑕 𝐻1 𝑥, 𝑡 [𝑢𝑚−1 𝑥, 𝑡 +  𝛼  𝐹(𝑢𝑚−1 𝑥, 𝑡 )𝑑𝑡 + 
𝑡

0
𝛽  𝐷3(𝑢𝑚−1 𝑥, 𝑡 )𝑑𝑡 + 

𝑡

0
𝛾  𝐷5 𝑢𝑚−1 𝑥, 𝑡  𝑑𝑡 + (1 −

𝑡

0
𝑋𝑚 ) 𝑓(𝑥)]. 

         (33) 
           (33)                           

 
 
We take an initial guess u0(x, t) = f (x), an auxiliary linear 

operator  Lu = u,  a  nonzero  auxiliary parameter h = −1,  
 

 
 
and auxiliary function H1(x, t) = 1. This is substituted into 

Equation 33 to give the recurrence relation: 

We take an initial guess u0(x, t) = f (x), an auxiliary linear operator Lu = u, a nonzero auxiliary parameter 

h = −1, and auxiliary function H1(x, t) = 1. This is substituted into (33) to give the recurrence relation 

 

𝑢0 𝑥, 𝑡 = 𝑓(𝑥) 

𝑢𝑛+1 𝑥, 𝑡 = − 𝛼  𝐹 𝑢𝑛  𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑛  𝑥, 𝑡 ) 𝑑𝑡 − 
𝑡

0
𝛾  𝐷5 𝑢𝑛  𝑥, 𝑡  𝑑𝑡] ) ,

𝑡

0
 

𝑡

0
        𝑛 ≥ 0                 (34) 

 
                   (34) 

 
Therefore, the solution u(x, t) becomes: 
 
Therefore, the solution u(x, t) becomes 
 

𝑢 𝑥, 𝑡 =  𝑢𝑛 𝑥, 𝑡 
∞

𝑛=0
 

= 𝑓 𝑥 +  (∞
𝑛=1  𝛼  𝐹 𝑢𝑛 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑛 𝑥, 𝑡 ) 𝑑𝑡 − 

𝑡

0
𝛾  𝐷5 𝑢𝑛 𝑥, 𝑡  𝑑𝑡] ) ,

𝑡

0
 

𝑡

0
                                       (35) 

  
 

Which is the method of successive approximations. If 

             (35) 
 
 
which is the method of successive approximations. If 
un(x, t) | < 1, then the series solution (Equation 35) 

convergence uniformly. 
 
 
Description of the HPM and MHPM 
 
To explain HPM (Liao, 2003, 2009), we consider the 
following general nonlinear differential equation: 
 
Lu + N u = f (u)                                                             (36)  
 
with initial conditions u(x, 0) = f (x).

 
 

According to HPM, we construct a homotopy which 
satisfies the following relation: 

H(u, p) = Lu − Lv0 + p Lv0 + p [N u − f (u)] = 0,             (37) 

 

where p ∈ [0, 1] is an embedding parameter and v0 is an 

arbitrary initial approximation satisfying the given initial 
conditions. 
 
In HPM, the solution of Equation 37 is expressed as: 
 

u(x, t) = u0(x, t) + p u1(x, t) + p2 u2(x, t) + ...                (38) 

 
Hence, the approximate solution of Equation 36 can be 
expressed as a series of the power of p, that is: 
 

p
lim

→1
u=u0+u1 + u2 + ... 
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where, 
 

 

 Where, 
 

𝑢0 𝑥, 𝑡 = 𝑓 𝑥 , 
. 
. 
. 

𝑢𝑚 𝑥, 𝑡 =  −
𝑚−1

𝑘=0
 𝛼  𝐹 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑚−𝑘−1 𝑥, 𝑡 ) 𝑑𝑡 − 

𝑡

0

𝛾  𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡] ) ,
𝑡

0

 
𝑡

0

 𝑚 ≥ 1. 

   (39) 

To explain MHPM [27,28,30], we consider Eq. (1) as 
 

𝐿 𝑢 = 𝑢 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢 𝑥, 𝑡) 𝑑𝑡 + 
𝑡

0

𝛽  𝐷3 𝑢 𝑥, 𝑡  𝑑𝑡 + 
𝑡

0

𝛾  𝐷5 𝑢 𝑥, 𝑡  𝑑𝑡.
𝑡

0

 

 

 

 Where F (u(x, t)) = g1(x)h1 (t), D3(u(x, t)) = g2(x)h2 (t) and D5(u(x, t)) = g3(x)h3 (t).   We can define 

homotopy H(u, p, m) by 
 

H(u, 0, m) = f (u),        H(u, 1, m) = L(u), 
 

where, m is an unknown real number and 

 

f (u(x, t)) = u(x, t) − f (x). 

 
Typically we may choose a convex homotopy by 

 

H(u, p, m) = (1 − p)f (u) + p L(u) + p (1 − p)[m(g1(x) + g2(x) + g3(x))] = 0,    0 ≤ p ≤ 1.    (40) 

 

 Where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) = H(u, p), which is the 

standard HPM. 

 The convex homotopy (40) continuously trace an implicity defined curve from a starting point H(u(x, t) − 

f (u), 0, m) to a solution function H(u(x, t), 1, m). The embedding parameter p monotonically increase from 0 

to 1 as trivial problem f (u) = 0 is continuously deformed to original problem L(u) = 0. 

 The MHPM uses the homotopy parameter p as an expanding parameter to obtain 
 

𝑣 =  𝑝𝑛𝑢𝑛 ,∞
𝑛=0                                                                          (41) 

  

 

                (39) 
    
To explain MHPM (Matinfar et al., 2008; Tutalar, 2006; Wazwaz, 1997), we consider Equation 1 as: 
 

 

 Where, 
 

𝑢0 𝑥, 𝑡 = 𝑓 𝑥 , 
. 
. 
. 

𝑢𝑚 𝑥, 𝑡 =  −
𝑚−1

𝑘=0
 𝛼  𝐹 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑚−𝑘−1 𝑥, 𝑡 ) 𝑑𝑡 − 

𝑡

0

𝛾  𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡] ) ,
𝑡

0

 
𝑡

0

 𝑚 ≥ 1. 

   (39) 

To explain MHPM [27,28,30], we consider Eq. (1) as 
 

𝐿 𝑢 = 𝑢 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢 𝑥, 𝑡) 𝑑𝑡 + 
𝑡

0

𝛽  𝐷3 𝑢 𝑥, 𝑡  𝑑𝑡 + 
𝑡

0

𝛾  𝐷5 𝑢 𝑥, 𝑡  𝑑𝑡.
𝑡

0

 

 

 

 Where F (u(x, t)) = g1(x)h1 (t), D3(u(x, t)) = g2(x)h2 (t) and D5(u(x, t)) = g3(x)h3 (t).   We can define 

homotopy H(u, p, m) by 
 

H(u, 0, m) = f (u),        H(u, 1, m) = L(u), 
 

where, m is an unknown real number and 

 

f (u(x, t)) = u(x, t) − f (x). 

 
Typically we may choose a convex homotopy by 

 

H(u, p, m) = (1 − p)f (u) + p L(u) + p (1 − p)[m(g1(x) + g2(x) + g3(x))] = 0,    0 ≤ p ≤ 1.    (40) 

 

 Where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) = H(u, p), which is the 

standard HPM. 

 The convex homotopy (40) continuously trace an implicity defined curve from a starting point H(u(x, t) − 

f (u), 0, m) to a solution function H(u(x, t), 1, m). The embedding parameter p monotonically increase from 0 

to 1 as trivial problem f (u) = 0 is continuously deformed to original problem L(u) = 0. 

 The MHPM uses the homotopy parameter p as an expanding parameter to obtain 
 

𝑣 =  𝑝𝑛𝑢𝑛 ,∞
𝑛=0                                                                          (41) 

  

 

 
 

where F (u(x, t)) = g1(x)h1 (t), D3(u(x, t)) = g2(x)h2 (t) 

and D5(u(x, t)) = g3(x)h3 (t). We can define homotopy 

H(u, p, m) by H(u, 0, m) = f (u), H(u, 1, m) = L(u), where, m 

is an unknown real number and f (u(x, t)) = u(x, t) − f (x). 

Typically, we may choose a convex homotopy by: 
 
H(u, p, m) = (1 − p)f (u) + p L(u) + p (1 − p)[m(g1(x) + g2(x) + g3(x))] = 0,    0 ≤ p ≤ 1.                                       (40) 

 
where m is called the accelerating parameters, and for 
m = 0, we define H(u, p, 0) = H(u, p), which is the 
standard HPM. 

The convex homotopy (Equation 40) continuously 
trace an implicity defined curve from a starting point 
H(u(x, t) − f (u), 0, m) to a solution function H(u(x, t), 1, 
m). The embedding parameter p monotonically increase 
from 0 to 1 as trivial problem f (u) = 0 is continuously 
deformed to original problem L(u) = 0. 

The MHPM uses the homotopy parameter p as an 
expanding parameter to obtain 
 

 

 Where, 
 

𝑢0 𝑥, 𝑡 = 𝑓 𝑥 , 
. 
. 
. 

𝑢𝑚 𝑥, 𝑡 =  −
𝑚−1

𝑘=0
 𝛼  𝐹 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑚−𝑘−1 𝑥, 𝑡 ) 𝑑𝑡 − 

𝑡

0

𝛾  𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡] ) ,
𝑡

0

 
𝑡

0

 𝑚 ≥ 1. 

   (39) 

To explain MHPM [27,28,30], we consider Eq. (1) as 
 

𝐿 𝑢 = 𝑢 𝑥, 𝑡 − 𝑓 𝑥 +  𝛼  𝐹(𝑢 𝑥, 𝑡) 𝑑𝑡 + 
𝑡

0

𝛽  𝐷3 𝑢 𝑥, 𝑡  𝑑𝑡 + 
𝑡

0

𝛾  𝐷5 𝑢 𝑥, 𝑡  𝑑𝑡.
𝑡

0

 

 

 

 Where F (u(x, t)) = g1(x)h1 (t), D3(u(x, t)) = g2(x)h2 (t) and D5(u(x, t)) = g3(x)h3 (t).   We can define 

homotopy H(u, p, m) by 
 

H(u, 0, m) = f (u),        H(u, 1, m) = L(u), 
 

where, m is an unknown real number and 

 

f (u(x, t)) = u(x, t) − f (x). 

 
Typically we may choose a convex homotopy by 

 

H(u, p, m) = (1 − p)f (u) + p L(u) + p (1 − p)[m(g1(x) + g2(x) + g3(x))] = 0,    0 ≤ p ≤ 1.    (40) 

 

 Where m is called the accelerating parameters, and for m = 0 we define H(u, p, 0) = H(u, p), which is the 

standard HPM. 

 The convex homotopy (40) continuously trace an implicity defined curve from a starting point H(u(x, t) − 

f (u), 0, m) to a solution function H(u(x, t), 1, m). The embedding parameter p monotonically increase from 0 

to 1 as trivial problem f (u) = 0 is continuously deformed to original problem L(u) = 0. 

 The MHPM uses the homotopy parameter p as an expanding parameter to obtain 
 

𝑣 =  𝑝𝑛𝑢𝑛 ,∞
𝑛=0                                                                          (41) 

  

 

                                                       (41)  

 
when p → 1, Equation 37 corresponds to the original 
one and Equation 41 becomes the approximate solution 
of Equation 1, that is: 
 
 
 

𝑢 = lim
𝑝→1

𝑣 =  𝑢𝑚 .

∞

𝑚=0

 

  

Where, 
 

𝑢0 𝑥, 𝑡 = 𝑓 𝑥  

𝑢1 𝑥, 𝑡 = − 𝛼  𝐹 𝑢0 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢0 𝑥, 𝑡 ) 𝑑𝑡 − 
𝑡

0

𝛾  𝐷5 𝑢0 𝑥, 𝑡  𝑑𝑡 − 𝑚(𝑔1 𝑥 + 𝑔2 𝑥 + 𝑔3 𝑥 ) ,
𝑡

0

 
𝑡

0

    

𝑢2 𝑥, 𝑡 = − 𝛼  𝐹 𝑢1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢1 𝑥, 𝑡 ) 𝑑𝑡 − 
𝑡

0

𝛾  𝐷5 𝑢1 𝑥, 𝑡  𝑑𝑡 − 𝑚 𝑔1 𝑥 + 𝑔2 𝑥 + 𝑔3 𝑥  ,
𝑡

0

 
𝑡

0

  

. 

. 

. 

𝑢𝑚 𝑥, 𝑡 =  −
𝑚−1

𝑘=0
 𝛼  𝐹 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑚−𝑘−1 𝑥, 𝑡 ) 𝑑𝑡 − 

𝑡

0

𝛾  𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡,     𝑚 ≥ 3
𝑡

0

 
𝑡

0
 

                  (42) 

                

 
Where, 
 

 
 

𝑢 = lim
𝑝→1

𝑣 =  𝑢𝑚 .

∞

𝑚=0

 

  

Where, 
 

𝑢0 𝑥, 𝑡 = 𝑓 𝑥  

𝑢1 𝑥, 𝑡 = − 𝛼  𝐹 𝑢0 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢0 𝑥, 𝑡 ) 𝑑𝑡 − 
𝑡

0

𝛾  𝐷5 𝑢0 𝑥, 𝑡  𝑑𝑡 − 𝑚(𝑔1 𝑥 + 𝑔2 𝑥 + 𝑔3 𝑥 ) ,
𝑡

0

 
𝑡

0

    

𝑢2 𝑥, 𝑡 = − 𝛼  𝐹 𝑢1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢1 𝑥, 𝑡 ) 𝑑𝑡 − 
𝑡

0

𝛾  𝐷5 𝑢1 𝑥, 𝑡  𝑑𝑡 − 𝑚 𝑔1 𝑥 + 𝑔2 𝑥 + 𝑔3 𝑥  ,
𝑡

0

 
𝑡

0

  

. 

. 

. 

𝑢𝑚 𝑥, 𝑡 =  −
𝑚−1

𝑘=0
 𝛼  𝐹 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷3(𝑢𝑚−𝑘−1 𝑥, 𝑡 ) 𝑑𝑡 − 

𝑡

0

𝛾  𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡  𝑑𝑡,     𝑚 ≥ 3
𝑡

0

 
𝑡

0
 

                  (42) 
                          (42) 

 
EXISTENCE AND CONVERGENCE OF ITERATIVE 
METHODS 

 
Assume that, 
  
Assume that, 

  

α1 := T (| α | L1+ | β | L2+ | γ | L3), 
 

  

β1 := 1 − T (1 − α1),       𝛾1 := 1 − T α1. 

 

Theorem 3.1. Let 0 < α1 < 1, then Kawahara equation (1), has a unique solution. 

 Proof. Let u and u∗ be two arbitary different solutions of (1) then 
 

 𝑢 − 𝑢∗ =

 − 𝛼  [𝐹(𝑢 𝑥, 𝑡) −  𝐹 𝑢∗ 𝑥, 𝑡)  𝑑𝑡 − 
𝑡

0
𝛽  [𝐷3 𝑢 𝑥, 𝑡  − 𝐷3 𝑢∗ 𝑥, 𝑡  ]𝑑𝑡 − 

𝑡

0
𝛾  [𝐷5 𝑢 𝑥, 𝑡  − 𝐷5 𝑢∗ 𝑥, 𝑡  ]𝑑𝑡.

𝑡

0
   ≤

 𝛼    𝐹(𝑢 𝑥, 𝑡) −  𝐹(𝑢∗ 𝑥, 𝑡)  𝑑𝑡 + 
𝑡

0
 𝛽   𝐷3 𝑢 𝑥, 𝑡  − 𝐷3 𝑢∗ 𝑥, 𝑡   𝑑𝑡 + 

𝑡

0
 𝛾    𝐷5 𝑢 𝑥, 𝑡  − 𝐷5 𝑢∗ 𝑥, 𝑡   𝑑𝑡.

𝑡

0   
 

≤ T (| α | L1+ | β | L2+ | γ | L3) | u − u∗ |= α1 | u − u∗ | . 

 

 From which we get (1 − α1) | u − u∗ | ≤ 0. Since 0 < α1 < 1, then | u − u∗ | = 0. Implies u = u∗ and 

completes the proof. 

  

 

 
Theorem 1  
 

Let 0 < α1 < 1, then Kawahara Equation 1, has a unique 

solution. 
 
 

Proof  
 
Let u and u∗ be two arbitrary different solutions of 
Equation 1, then 
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Assume that, 

  

α1 := T (| α | L1+ | β | L2+ | γ | L3), 
 

  

β1 := 1 − T (1 − α1),       𝛾1 := 1 − T α1. 

 

Theorem 3.1. Let 0 < α1 < 1, then Kawahara equation (1), has a unique solution. 

 Proof. Let u and u∗ be two arbitary different solutions of (1) then 
 

 𝑢 − 𝑢∗ =

 − 𝛼  [𝐹(𝑢 𝑥, 𝑡) −  𝐹 𝑢∗ 𝑥, 𝑡)  𝑑𝑡 − 
𝑡

0
𝛽  [𝐷3 𝑢 𝑥, 𝑡  − 𝐷3 𝑢∗ 𝑥, 𝑡  ]𝑑𝑡 − 

𝑡

0
𝛾  [𝐷5 𝑢 𝑥, 𝑡  − 𝐷5 𝑢∗ 𝑥, 𝑡  ]𝑑𝑡.

𝑡

0
   ≤

 𝛼    𝐹(𝑢 𝑥, 𝑡) −  𝐹(𝑢∗ 𝑥, 𝑡)  𝑑𝑡 + 
𝑡

0
 𝛽   𝐷3 𝑢 𝑥, 𝑡  − 𝐷3 𝑢∗ 𝑥, 𝑡   𝑑𝑡 + 

𝑡

0
 𝛾    𝐷5 𝑢 𝑥, 𝑡  − 𝐷5 𝑢∗ 𝑥, 𝑡   𝑑𝑡.

𝑡

0   
 

≤ T (| α | L1+ | β | L2+ | γ | L3) | u − u∗ |= α1 | u − u∗ | . 

 

 From which we get (1 − α1) | u − u∗ | ≤ 0. Since 0 < α1 < 1, then | u − u∗ | = 0. Implies u = u∗ and 

completes the proof. 

  

 
 

From which we get (1 − α1) | u − u∗ | ≤ 0. Since 0 < 

α1 < 1, then | u − u∗ | = 0. It implies that u = u∗ and 

completes the proof. 
 
  
Theorem 2 
 

The series solution  of problem 

(Equation 1) using MADM convergence when 0 < α1 < 1, 

| u1(x, t) |< ∞. 

 
 
Proof  
 
The Banach space of all continuous functions on J with 

the norm || f (t) || = maxt | f (t) |, for all t in J is  denoted as 

(C[J ], || . ||). Define the sequence  of  partial  sums  sn, 

 

let sn and sm be arbitrary partial sums with n ≥ m. We 

are going to prove that sn is a Cauchy sequence in this 

Banach space: 
 

Proof. Denote as (C[J ], || . ||) the Banach space of all continuous functions on J with the norm || f (t) || = 

maxt | f (t) |, for all t in J . Define the sequence of partial sums sn, let sn and sm be arbitrary partial sums 

with n ≥ m. We are going to prove that sn is a Cauchy sequence in this Banach space: 
 

 𝑠𝑛 − 𝑠𝑚   = max ∀𝑡𝜖𝑗   𝑠𝑛 − 𝑠𝑚   = max ∀𝑡𝜖𝑗    𝑢𝑖 𝑥, 𝑡 𝑛
𝑖=𝑚+1  =   

max ∀𝑡𝜖𝑗   − 𝛼 (  𝐴𝑖)𝑑𝑡
𝑛−1

𝑖=𝑚
−  𝛽 (  𝐵𝑖)𝑑𝑡

𝑛−1

𝑖=𝑚
− 

𝑡

0

𝛾  (  𝐿𝑖)𝑑𝑡
𝑛−1

𝑖=𝑚

𝑡

0

 
𝑡

0

 . 
 

 
From (Fariborzi and Sadigh, 2011b), we have: 
 

 
  

 

  𝐴𝑖

𝑛−1

𝑖=𝑚
= 𝐹 𝑠𝑛−1 −  𝐹 𝑠𝑚−1 , 

  𝐵𝑖

𝑛−1

𝑖=𝑚
= 𝐷3 𝑠𝑛−1 − 𝐷3 𝑠𝑚−1 , 

  𝐿𝑖

𝑛−1

𝑖=𝑚
= 𝐷5 𝑠𝑛−1 − 𝐷5 𝑠𝑚−1 . 

 

So, 

 𝑠𝑛 − 𝑠𝑚 = max∀tϵj  − 𝛼  [𝐹 𝑠𝑛−1 −  𝐹 𝑠𝑚−1 ]𝑑𝑡 − 
𝑡

0
𝛽  [𝐷3 𝑠𝑛−1 − 𝐷3 𝑠𝑚−1 ]𝑑𝑡 − 

𝑡

0
𝛾  [𝐷5 𝑠𝑛−1 − 𝐷5 𝑠𝑚−1 ]𝑑𝑡.

𝑡

0
   

≤  𝛼    𝐹(𝑠𝑛−1) −  𝐹𝑠𝑚−1) 𝑑𝑡 + 
𝑡

0
 𝛽   𝐷3 𝑠𝑛−1 − 𝐷3 𝑠𝑚−1  𝑑𝑡 + 

𝑡

0
 𝛾    𝐷5 𝑠𝑛−1 − 𝐷5 𝑠𝑚−1  𝑑𝑡 ≤  𝛼1 𝑠𝑛 − 𝑠𝑚 .

𝑡

0
 

 

Let n = m + 1, then 

 

|| sn − sm || ≤ α1 || sm − sm−1 || ≤ α1
2 || sm−1 − sm−2 || ≤ ... ≤ α1

m || s1 − s0 || . 

 
From the triangle inquality we have 

 
 

So, 
 
 

 
  

 

  𝐴𝑖

𝑛−1

𝑖=𝑚
= 𝐹 𝑠𝑛−1 −  𝐹 𝑠𝑚−1 , 

  𝐵𝑖

𝑛−1

𝑖=𝑚
= 𝐷3 𝑠𝑛−1 − 𝐷3 𝑠𝑚−1 , 

  𝐿𝑖

𝑛−1

𝑖=𝑚
= 𝐷5 𝑠𝑛−1 − 𝐷5 𝑠𝑚−1 . 

 

So, 

 𝑠𝑛 − 𝑠𝑚 = max∀tϵj  − 𝛼  [𝐹 𝑠𝑛−1 −  𝐹 𝑠𝑚−1 ]𝑑𝑡 − 
𝑡

0
𝛽  [𝐷3 𝑠𝑛−1 − 𝐷3 𝑠𝑚−1 ]𝑑𝑡 − 

𝑡

0
𝛾  [𝐷5 𝑠𝑛−1 − 𝐷5 𝑠𝑚−1 ]𝑑𝑡.

𝑡

0
   

≤  𝛼    𝐹(𝑠𝑛−1) −  𝐹𝑠𝑚−1) 𝑑𝑡 + 
𝑡

0
 𝛽   𝐷3 𝑠𝑛−1 − 𝐷3 𝑠𝑚−1  𝑑𝑡 + 

𝑡

0
 𝛾    𝐷5 𝑠𝑛−1 − 𝐷5 𝑠𝑚−1  𝑑𝑡 ≤  𝛼1 𝑠𝑛 − 𝑠𝑚 .

𝑡

0
 

 

Let n = m + 1, then 

 

|| sn − sm || ≤ α1 || sm − sm−1 || ≤ α1
2 || sm−1 − sm−2 || ≤ ... ≤ α1

m || s1 − s0 || . 

 
From the triangle inquality we have 

 
   
Let n = m + 1, then 
 

|| sn − sm || ≤ α1 || sm − sm−1 || ≤ α1
2 || sm−1 − sm−2 || 

≤ ... ≤ α1
m || s1 − s0 || . 

From the triangle inequality, we have: 
 

 

From the triangle inquality we have 

 
 𝑠𝑛 − 𝑠𝑚  ≤   𝑠𝑚+1 − 𝑠𝑚 +  𝑠𝑚+2 − 𝑠𝑚+1 + … +  𝑠𝑛 − 𝑠𝑛−1 ≤  𝛼1

𝑚 + 𝛼1
𝑚+1 + ⋯ + 𝛼1

𝑛−𝑚−1  𝑠1 − 𝑠0 ≤ 𝛼1
𝑚  1 + 𝛼1 +

𝛼1
2 + ⋯ + 𝛼1

𝑛−𝑚−1  𝑠1 − 𝑠0 ≤ 𝛼1
𝑚  

1−𝛼1
𝑛−𝑚

1−𝛼1
  𝑢1(𝑥, 𝑡) . 

 

Since 0 < α1 < 1, we have (1 – α1
n−m) < 1, then 

                                

               αm 

|| sn − sm || ≤    1    max∀t∈J | u1(x, t) | .                                                            (43) 

             1 − α1 

 
 

Since 0 < α1 < 1, we have (1 – α1
n−m) < 1, then 

 

From the triangle inquality we have 

 
 𝑠𝑛 − 𝑠𝑚  ≤   𝑠𝑚+1 − 𝑠𝑚 +  𝑠𝑚+2 − 𝑠𝑚+1 + … +  𝑠𝑛 − 𝑠𝑛−1 ≤  𝛼1

𝑚 + 𝛼1
𝑚+1 + ⋯ + 𝛼1

𝑛−𝑚−1  𝑠1 − 𝑠0 ≤ 𝛼1
𝑚  1 + 𝛼1 +

𝛼1
2 + ⋯ + 𝛼1

𝑛−𝑚−1  𝑠1 − 𝑠0 ≤ 𝛼1
𝑚  

1−𝛼1
𝑛−𝑚

1−𝛼1
  𝑢1(𝑥, 𝑡) . 

 

Since 0 < α1 < 1, we have (1 – α1
n−m) < 1, then 

                                

               αm 

|| sn − sm || ≤    1    max∀t∈J | u1(x, t) | .                                                            (43) 

             1 − α1                                              
 

But | u1(x, t) | < ∞ , so, as m → ∞, then || sn − sm || → 

0. We conclude that sn is a Cauchy sequence in C[J ], 

therefore, the series is convergence and the proof is 
complete.  
 

 

Theorem 3 
 

The   maximum   value  of  truncation  error  of  the  series 

solution  for problem (Equation 1) by 

using MADM is estimated to be: 
 

      (44)                 
 
 
Proof 
 

From inequality (Equation 43), when n → ∞, then sn → 

u and max | u1(x, t) |  
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max | u1(x, t) | 

≤ T (| α | max∀t∈J | F (u0(x, t)) | + | β | max∀t∈J | D3(u 0(x, t)) | + | γ | max∀t∈J | D5(u 0(x, t)) |). 

 
 

Therefore,  

 
 

 

 

 

 

|| u(x, t) – sm || ≤ 
αm

1 T (| α | max   | F (u0(x, t)) | + | β | max   | D3(u0(x, t)) | + | γ | max   | D5(u0(x, t)) |). 
1−α1

                     ∀t∈J                                 ∀t∈J                     ∀t∈J  

 

Finally the maximum value of truncation error in the interval J is obtained by (44).

 

 
Therefore, 
 

max | u1(x, t) | 

≤ T (| α | max∀t∈J | F (u0(x, t)) | + | β | max∀t∈J | D3(u 0(x, t)) | + | γ | max∀t∈J | D5(u 0(x, t)) |). 

 
 

Therefore,  

 
 

 

 

 

 

|| u(x, t) – sm || ≤ 
αm

1 T (| α | max   | F (u0(x, t)) | + | β | max   | D3(u0(x, t)) | + | γ | max   | D5(u0(x, t)) |). 
1−α1

                     ∀t∈J                                 ∀t∈J                     ∀t∈J  

 

Finally the maximum value of truncation error in the interval J is obtained by (44).

 

 
 
Finally,  the maximum value of truncation error in the 
interval J is obtained by Equation 44. 
 

 

Theorem 4  
 

The solution un(x, t) obtained from the relation (Equation  

20) using VIM converges to the exact solution of the 
problem (Equation 1), when 0 < β1 < 1. 

 
 
Proof 
 

      

(45) 
  

Theorem 3.4. The solution un(x, t) obtained from the relation (20) using VIM converges to the exact solution 

of the problem (1) when 0 < β1 < 1. 

 Proof. 
  

𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 − 𝐿𝑡
−1( [𝑢𝑛 𝑥, 𝑡 −  𝑓 𝑥 + 𝛼  𝐹 𝑢𝑛 𝑥, 𝑡  𝑑𝑡 +  𝛽  𝐷3(𝑢𝑛 𝑥, 𝑡 ) 𝑑𝑡 + 

𝑡

0
𝛾  𝐷5 𝑢𝑛 𝑥, 𝑡  𝑑𝑡] )  

𝑡

0
 

𝑡

0
     (45) 

  

𝑢 𝑥, 𝑡 = 𝑢 𝑥, 𝑡 − 𝐿𝑡
−1( [𝑢 𝑥, 𝑡 −  𝑓 𝑥 + 𝛼  𝐹 𝑢 𝑥, 𝑡  𝑑𝑡 +  𝛽  𝐷3 𝑢 𝑥, 𝑡   𝑑𝑡 + 

𝑡

0
𝛾  𝐷5 𝑢 𝑥, 𝑡  𝑑𝑡] )  

𝑡

0
 

𝑡

0
               (46)                       (46)

    
By subtracting relation (Equation 45) from (Equation 46), we have: 
 

 

By subtracting relation (45) from (46), 
 

𝑢𝑛+1 𝑥, 𝑡 − 𝑢 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 −  𝑢 𝑥, 𝑡 − 𝐿𝑡
−1( 𝑢𝑛 𝑥, 𝑡 −  𝑢 𝑥, 𝑡 + 𝛼  [𝐹 𝑢𝑛 𝑥, 𝑡  − 𝐹 𝑢 𝑥, 𝑡  ]𝑑𝑡 +  𝛽  [𝐷3(𝑢𝑛 𝑥, 𝑡 ) −

𝑡

0

𝑡

0

𝐷3 𝑢 𝑥, 𝑡  ] 𝑑𝑡 + 𝛾  [𝐷5 𝑢𝑛 𝑥, 𝑡  − 𝐷5 𝑢 𝑥, 𝑡  ]𝑑𝑡 )  
𝑡

0
   

   
If we set, en+1(x, t) = un+1(x, t) − un(x, t), en(x, t) = un(x, 

t) − u(x, t),| en(x, t∗) |= maxt | en(x, t) |, then since en is a  

decreasing function with respect to t from the mean 
value theorem, we can write: 
  

 

  

≤ en(x, t) + L−
t
1[−en(x,t) + L−

t
1| en(x, t) | (T (| α | L1+ | β | 

L2+ | γ | L3)] ≤ en(x, t) − T en(x, η) + T (| α | L1+ | β | L2+ | 

γ | L3)L−
t
1L−

t
1| en(x, t) |≤ (1 − T (1 − α1) | en(x, t∗) |, 

 
where 0 ≤ η ≤ t.  
 

Hence, en+1(x, t) ≤ β1 | en(x, t∗) |. Therefore,  || en+1 || 

= max∀t∈J | en+1 | ≤ β1 max∀t∈J | en | ≤ β1 || en ||. 

Since 0 < β1 < 1, then ||en|| → 0. So, the series 

converges and the proof is complete. 
 
 
Theorem 5  
 
The solution un(x, t) obtained from the relation (Equation 

21) using MVIM for the problem  (Equation  1)  converges  

when 0 < γ1 < 1. 
 
 

Proof 
 
The proof is similar to the proof of Theorem 4. 
 
 
Theorem 6  
 
The maximum value of truncation error of the series 

solution 
Theorem 3.6. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞

𝑖=0  to problem 
 

 

(1) by using VIM is estimated to be 

 

        Β1
n k’  

||en|| ≤
            k’= max | u1(x, t) |, 0 < β1 < 1. 

        1 − β1 

 Proof. 

 

un+1 − un = (un+1 − u) + (u − un) = en − en+1 

→ en = en+1 + (un+1 − un) 

||en|| = ||en+1 + (un+1 − un) || ≤ ||en+1|| + ||un+1 − un|| ≤ β1||en || + ||un+1 − un|| 

→  𝑒𝑛 ≤
 𝑢𝑛+1−𝑢𝑛 

1−𝛽1
≤

𝛽1
𝑛𝑘 ,

1−𝛽1
. 

 

 to problem (Equation 1) by 

using VIM is estimated to be: 
 

Theorem 3.6. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  to problem 

 
 

(1) by using VIM is estimated to be 

 

        Β1
n k’  

||en|| ≤
            k’= max | u1(x, t) |, 0 < β1 < 1. 

        1 − β1 

 Proof. 

 

un+1 − un = (un+1 − u) + (u − un) = en − en+1 

→ en = en+1 + (un+1 − un) 

||en|| = ||en+1 + (un+1 − un) || ≤ ||en+1|| + ||un+1 − un|| ≤ β1||en || + ||un+1 − un|| 

→  𝑒𝑛 ≤
 𝑢𝑛+1−𝑢𝑛 

1−𝛽1
≤

𝛽1
𝑛𝑘 ,

1−𝛽1
. 
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Proof 
 

Theorem 3.6. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  to problem 

 
 

(1) by using VIM is estimated to be 

 

        Β1
n k’  

||en|| ≤
            k’= max | u1(x, t) |, 0 < β1 < 1. 

        1 − β1 

 Proof. 

 

un+1 − un = (un+1 − u) + (u − un) = en − en+1 

→ en = en+1 + (un+1 − un) 

||en|| = ||en+1 + (un+1 − un) || ≤ ||en+1|| + ||un+1 − un|| ≤ β1||en || + ||un+1 − un|| 

→  𝑒𝑛 ≤
 𝑢𝑛+1−𝑢𝑛 

1−𝛽1
≤

𝛽1
𝑛𝑘 ,

1−𝛽1
. 

  
Theorem 7  
 
If the series solution (Equation 34) of problem 
(Equation 1) using HAM, is convergent, then it 
converges to the exact solution of the problem 
(Equation 1). 
 
 
Proof  
 
From Equation 33 assume that: 
  

Theorem 3.7. If the series solution (34) of problem (1) using HAM is convergent then it converges to the 

exact solution of the problem (1). 

 Proof. From (35) assume that: 
  

𝑢 𝑥, 𝑡 =  𝑢𝑚(𝑥, 𝑡),∞
𝑚=0   

𝐹  𝑢(𝑥, 𝑡) =  𝐹∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 3 𝑢(𝑥, 𝑡) =  𝐷3∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 5 𝑢(𝑥, 𝑡) =  𝐷5∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)). 

 

Where, 
 

lim um(x, t) = 0. 
m→∞ 

We can write, 
 

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝑢1 +  𝑢2 − 𝑢1 + … +  𝑢𝑛 − 𝑢𝑛−1 =  𝑢𝑛 𝑥, 𝑡 .𝑛
𝑚=1                               (47) 

   

Hence, from (47), 
 

lim un(x, t) = 0.                                                        (48) 
n→∞ 
 

So, using (48) and the definition of the linear operator L, we have 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝐿[

∞

𝑚=1

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ]] = 0.

∞

𝑚=1

 

 
 
where, 
 

Theorem 3.7. If the series solution (34) of problem (1) using HAM is convergent then it converges to the 

exact solution of the problem (1). 

 Proof. From (35) assume that: 
  

𝑢 𝑥, 𝑡 =  𝑢𝑚(𝑥, 𝑡),∞
𝑚=0   

𝐹  𝑢(𝑥, 𝑡) =  𝐹∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 3 𝑢(𝑥, 𝑡) =  𝐷3∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 5 𝑢(𝑥, 𝑡) =  𝐷5∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)). 

 

Where, 
 

lim um(x, t) = 0. 
m→∞ 

We can write, 
 

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝑢1 +  𝑢2 − 𝑢1 + … +  𝑢𝑛 − 𝑢𝑛−1 =  𝑢𝑛 𝑥, 𝑡 .𝑛
𝑚=1                               (47) 

   

Hence, from (47), 
 

lim un(x, t) = 0.                                                        (48) 
n→∞ 
 

So, using (48) and the definition of the linear operator L, we have 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝐿[

∞

𝑚=1

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ]] = 0.

∞

𝑚=1

 

 
 
We can write, 
 

Theorem 3.7. If the series solution (34) of problem (1) using HAM is convergent then it converges to the 

exact solution of the problem (1). 

 Proof. From (35) assume that: 
  

𝑢 𝑥, 𝑡 =  𝑢𝑚(𝑥, 𝑡),∞
𝑚=0   

𝐹  𝑢(𝑥, 𝑡) =  𝐹∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 3 𝑢(𝑥, 𝑡) =  𝐷3∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 5 𝑢(𝑥, 𝑡) =  𝐷5∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)). 

 

Where, 
 

lim um(x, t) = 0. 
m→∞ 

We can write, 
 

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝑢1 +  𝑢2 − 𝑢1 + … +  𝑢𝑛 − 𝑢𝑛−1 =  𝑢𝑛 𝑥, 𝑡 .𝑛
𝑚=1                               (47) 

   

Hence, from (47), 
 

lim un(x, t) = 0.                                                        (48) 
n→∞ 
 

So, using (48) and the definition of the linear operator L, we have 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝐿[

∞

𝑚=1

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ]] = 0.

∞

𝑚=1

 

                    (47) 
 
Hence, from Equation 47: 
 

Theorem 3.7. If the series solution (34) of problem (1) using HAM is convergent then it converges to the 

exact solution of the problem (1). 

 Proof. From (35) assume that: 
  

𝑢 𝑥, 𝑡 =  𝑢𝑚(𝑥, 𝑡),∞
𝑚=0   

𝐹  𝑢(𝑥, 𝑡) =  𝐹∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 3 𝑢(𝑥, 𝑡) =  𝐷3∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 5 𝑢(𝑥, 𝑡) =  𝐷5∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)). 

 

Where, 
 

lim um(x, t) = 0. 
m→∞ 

We can write, 
 

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝑢1 +  𝑢2 − 𝑢1 + … +  𝑢𝑛 − 𝑢𝑛−1 =  𝑢𝑛 𝑥, 𝑡 .𝑛
𝑚=1                               (47) 

   

Hence, from (47), 
 

lim un(x, t) = 0.                                                        (48) 
n→∞ 
 

So, using (48) and the definition of the linear operator L, we have 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝐿[

∞

𝑚=1

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ]] = 0.

∞

𝑚=1

 

            (48) 
 

So, using Equation 48 and the definition of the linear 
operator L, we have: 
 

Theorem 3.7. If the series solution (34) of problem (1) using HAM is convergent then it converges to the 

exact solution of the problem (1). 

 Proof. From (35) assume that: 
  

𝑢 𝑥, 𝑡 =  𝑢𝑚(𝑥, 𝑡),∞
𝑚=0   

𝐹  𝑢(𝑥, 𝑡) =  𝐹∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 3 𝑢(𝑥, 𝑡) =  𝐷3∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)), 

𝐷 5 𝑢(𝑥, 𝑡) =  𝐷5∞
𝑚=0  (𝑢𝑚(𝑥, 𝑡)). 

 

Where, 
 

lim um(x, t) = 0. 
m→∞ 

We can write, 
 

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝑢1 +  𝑢2 − 𝑢1 + … +  𝑢𝑛 − 𝑢𝑛−1 =  𝑢𝑛 𝑥, 𝑡 .𝑛
𝑚=1                               (47) 

   

Hence, from (47), 
 

lim un(x, t) = 0.                                                        (48) 
n→∞ 
 

So, using (48) and the definition of the linear operator L, we have 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] =  𝐿[

∞

𝑚=1

 [𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ]] = 0.

∞

𝑚=1

 

 
 
Therefore, from Equation 30, we can obtain that, 
 

 
therefore from (30), we can obtain that, 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] = 𝑕𝐻1(𝑥, 𝑡)

∞

𝑚=1

 𝑅𝑚−1(𝑢𝑚−1 𝑥, 𝑡 ) = 0.

∞

𝑚=1

 

 

Since h ≠ 0 and H1(x, t) ≠ 0 , we have 

 𝑅𝑚−1(𝑢𝑚−1 𝑥, 𝑡 ) = 0.

∞

𝑚=1

 

                                                                                                     (49) 

By substituting Rm−1(um−1 (x, t)) into the relation (49) and simplifying it , we have 

 𝑅𝑚−1(𝑢𝑚−1(𝑥, 𝑡))

∞

𝑚=1

=  [𝑢𝑚−1 𝑥, 𝑡 +  𝛼  𝐹(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0

𝛽  𝐷3(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0

𝛾  𝐷5 𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 +  1 − 𝑥𝑚 𝑓 𝑥  =
𝑡

0

 𝑢 𝑥, 𝑡 − 𝑓 𝑥  

∞

𝑚=1

+ 𝛼  𝐹  𝑢 𝑥, 𝑡  𝑑𝑡 +  𝛽  𝐷 3 𝑢 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

𝛾  𝐷 5 𝑢 𝑥, 𝑡  𝑑𝑡.  
𝑡

0

 
𝑡

0

 

   (50) 
 

 
 

Since h ≠ 0 and H1(x, t) ≠ 0, we have:  

therefore from (30), we can obtain that, 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] = 𝑕𝐻1(𝑥, 𝑡)

∞

𝑚=1

 𝑅𝑚−1(𝑢𝑚−1 𝑥, 𝑡 ) = 0.

∞

𝑚=1

 

 

Since h ≠ 0 and H1(x, t) ≠ 0 , we have 

 𝑅𝑚−1(𝑢𝑚−1 𝑥, 𝑡 ) = 0.

∞

𝑚=1

 

                                                                                                     (49) 

By substituting Rm−1(um−1 (x, t)) into the relation (49) and simplifying it , we have 

 𝑅𝑚−1(𝑢𝑚−1(𝑥, 𝑡))

∞

𝑚=1

=  [𝑢𝑚−1 𝑥, 𝑡 +  𝛼  𝐹(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0

𝛽  𝐷3(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0

𝛾  𝐷5 𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 +  1 − 𝑥𝑚 𝑓 𝑥  =
𝑡

0

 𝑢 𝑥, 𝑡 − 𝑓 𝑥  

∞

𝑚=1

+ 𝛼  𝐹  𝑢 𝑥, 𝑡  𝑑𝑡 +  𝛽  𝐷 3 𝑢 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

𝛾  𝐷 5 𝑢 𝑥, 𝑡  𝑑𝑡.  
𝑡

0

 
𝑡

0

 

   (50) 
 

             (49)                      

                                                     

By substituting Rm−1(um−1 (x, t)) into the relation 

(Equation 49) and simplifying it, we have: 

 

therefore from (30), we can obtain that, 
 

 𝐿[𝑢𝑚 𝑥, 𝑡 − 𝑥𝑚𝑢𝑚−1 𝑥, 𝑡 ] = 𝑕𝐻1(𝑥, 𝑡)

∞

𝑚=1

 𝑅𝑚−1(𝑢𝑚−1 𝑥, 𝑡 ) = 0.

∞

𝑚=1

 

 

Since h ≠ 0 and H1(x, t) ≠ 0 , we have 

 𝑅𝑚−1(𝑢𝑚−1 𝑥, 𝑡 ) = 0.

∞

𝑚=1

 

                                                                                                     (49) 

By substituting Rm−1(um−1 (x, t)) into the relation (49) and simplifying it , we have 

 𝑅𝑚−1(𝑢𝑚−1(𝑥, 𝑡))

∞

𝑚=1

=  [𝑢𝑚−1 𝑥, 𝑡 +  𝛼  𝐹(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0

𝛽  𝐷3(𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 + 
𝑡

0

𝛾  𝐷5 𝑢𝑚−1 𝑥, 𝑡 𝑑𝑡 +  1 − 𝑥𝑚 𝑓 𝑥  =
𝑡

0

 𝑢 𝑥, 𝑡 − 𝑓 𝑥  

∞

𝑚=1

+ 𝛼  𝐹  𝑢 𝑥, 𝑡  𝑑𝑡 +  𝛽  𝐷 3 𝑢 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

𝛾  𝐷 5 𝑢 𝑥, 𝑡  𝑑𝑡.  
𝑡

0

 
𝑡

0

 

   (50) 
 

 (50) 
 

 
From Equations 49 and 50, we have: 

From (49) and (50), we have 
 

𝑢 𝑥, 𝑡 =  𝑓 𝑥 − 𝛼  𝐹  𝑢 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷 3 𝑢 𝑥, 𝑡   𝑑𝑡 − 
𝑡

0

𝛾  𝐷 5 𝑢 𝑥, 𝑡  𝑑𝑡.  
𝑡

0

 
𝑡

0

 

 

 

Therefore, u(x, t) must be the exact solution. 
 

 

 
  

 

We set, 
 

∅𝑛+1 𝑥, 𝑡 =  𝑢𝑖 𝑥, 𝑡 .

𝑛+1

𝑖=1

 

 ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛+1 𝑥, 𝑡 ,∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛 + 𝑢𝑛 , ∅𝑛 = 𝐷 𝑢𝑛 , 0 

≤   𝛼  𝐹(𝑢𝑛 𝑥, 𝑡)  𝑑𝑡 +
𝑡

0

  𝛽  𝐷3 𝑢𝑛 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

  𝛽  𝐷5 𝑢𝑛 𝑥, 𝑡   𝑑𝑡.
𝑡

0

 

→   ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  ≤  𝛼1 𝑓(𝑥)  𝛼1
𝑛 .

∞

𝑛=0

∞

𝑛=0
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Therefore, u(x, t) must be the exact solution. We set, 
 

From (49) and (50), we have 
 

𝑢 𝑥, 𝑡 =  𝑓 𝑥 − 𝛼  𝐹  𝑢 𝑥, 𝑡  𝑑𝑡 −  𝛽  𝐷 3 𝑢 𝑥, 𝑡   𝑑𝑡 − 
𝑡

0

𝛾  𝐷 5 𝑢 𝑥, 𝑡  𝑑𝑡.  
𝑡

0

 
𝑡

0

 

 

 

Therefore, u(x, t) must be the exact solution. 
 

 

 
  

 

We set, 
 

∅𝑛+1 𝑥, 𝑡 =  𝑢𝑖 𝑥, 𝑡 .

𝑛+1

𝑖=1

 

 ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛+1 𝑥, 𝑡 ,∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛 + 𝑢𝑛 , ∅𝑛 = 𝐷 𝑢𝑛 , 0 

≤   𝛼  𝐹(𝑢𝑛 𝑥, 𝑡)  𝑑𝑡 +
𝑡

0

  𝛽  𝐷3 𝑢𝑛 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

  𝛽  𝐷5 𝑢𝑛 𝑥, 𝑡   𝑑𝑡.
𝑡

0

 

→   ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  ≤  𝛼1 𝑓(𝑥)  𝛼1
𝑛 .

∞

𝑛=0

∞

𝑛=0

 

  
Therefore, 
 
Therefore, 
 

lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡 = 𝑢 𝑥, 𝑡 . 

 

Theorem 3.8. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  to problem 

 
 

(1) by using HAM is estimated to be 
 

        α1
nk

’

  

||en|| ≤
   

          k’ = max | u1(x, t) | . 

        1 − α1 

  

Proof. The proof is similar to the proof of theorem 3.6. 

Theorem 3.9. If | um(x, t) | ≤ 1, then the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  of problem (1) converges to  

the exact solution by using HPM. 

 Proof. We set, 

∅𝑛 𝑥, 𝑡 =  𝑢𝑖(𝑥, 𝑡),

𝑛

𝑖=1

 

∅𝑛+1 𝑥, 𝑡 =  𝑢𝑖 𝑥, 𝑡 .

𝑛+1

𝑖=1

 

 ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛+1 𝑥, 𝑡 ,∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛 + 𝑢𝑛 , ∅𝑛 = 𝐷 𝑢𝑛 , 0 

≤   𝛼   𝐹(𝑢𝑚−𝑘−1 𝑥, 𝑡)  𝑑𝑡 +  𝛽 
𝑡

0

  𝐷3 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

 𝛾   𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡.
𝑡

0

𝑚−1

𝑘=0

 

→   ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  ≤  𝑚𝛼1 𝑓(𝑥)  (𝑚𝛼1)𝑛 .

∞

𝑛=0

∞

𝑛=0

 

 
 
 
Theorem 8  
 
The maximum value of truncation error of the series 

solution 

Therefore, 
 

lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡 = 𝑢 𝑥, 𝑡 . 

 

Theorem 3.8. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  to problem 

 
 

(1) by using HAM is estimated to be 
 

        α1
nk

’

  

||en|| ≤
   

          k’ = max | u1(x, t) | . 

        1 − α1 

  

Proof. The proof is similar to the proof of theorem 3.6. 

Theorem 3.9. If | um(x, t) | ≤ 1, then the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  of problem (1) converges to  

the exact solution by using HPM. 

 Proof. We set, 

∅𝑛 𝑥, 𝑡 =  𝑢𝑖(𝑥, 𝑡),

𝑛

𝑖=1

 

∅𝑛+1 𝑥, 𝑡 =  𝑢𝑖 𝑥, 𝑡 .

𝑛+1

𝑖=1

 

 ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛+1 𝑥, 𝑡 ,∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛 + 𝑢𝑛 , ∅𝑛 = 𝐷 𝑢𝑛 , 0 

≤   𝛼   𝐹(𝑢𝑚−𝑘−1 𝑥, 𝑡)  𝑑𝑡 +  𝛽 
𝑡

0

  𝐷3 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

 𝛾   𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡.
𝑡

0

𝑚−1

𝑘=0

 

→   ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  ≤  𝑚𝛼1 𝑓(𝑥)  (𝑚𝛼1)𝑛 .

∞

𝑛=0

∞

𝑛=0

 

 to problem (Equation 1) by 

using HAM is estimated to be 

Therefore, 
 

lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡 = 𝑢 𝑥, 𝑡 . 

 

Theorem 3.8. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  to problem 

 
 

(1) by using HAM is estimated to be 
 

        α1
nk

’

  

||en|| ≤
   

          k’ = max | u1(x, t) | . 

        1 − α1 

  

Proof. The proof is similar to the proof of theorem 3.6. 

Theorem 3.9. If | um(x, t) | ≤ 1, then the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  of problem (1) converges to  

the exact solution by using HPM. 

 Proof. We set, 

∅𝑛 𝑥, 𝑡 =  𝑢𝑖(𝑥, 𝑡),

𝑛

𝑖=1

 

∅𝑛+1 𝑥, 𝑡 =  𝑢𝑖 𝑥, 𝑡 .

𝑛+1

𝑖=1

 

 ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛+1 𝑥, 𝑡 ,∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛 + 𝑢𝑛 , ∅𝑛 = 𝐷 𝑢𝑛 , 0 

≤   𝛼   𝐹(𝑢𝑚−𝑘−1 𝑥, 𝑡)  𝑑𝑡 +  𝛽 
𝑡

0

  𝐷3 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡 + 
𝑡

0

 𝛾   𝐷5 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡.
𝑡

0

𝑚−1

𝑘=0

 

→   ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  ≤  𝑚𝛼1 𝑓(𝑥)  (𝑚𝛼1)𝑛 .

∞

𝑛=0

∞

𝑛=0

 

 
 
 

Proof  
 

The proof is similar to the proof of Theorem 6. 
 
 

Theorem 9  
 

If | um(x, t) | ≤ 1, then the series solution 

 of problem (Equation 1) converges 

to the exact solution by using HPM. 
 

 

Proof  
 

We set, 
 

Therefore, 
 

lim
𝑛→∞

𝑢𝑛 𝑥, 𝑡 = 𝑢 𝑥, 𝑡 . 

 

Theorem 3.8. The maximum value of truncation error of the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  to problem 

 
 

(1) by using HAM is estimated to be 
 

        α1
nk

’

  

||en|| ≤
   

          k’ = max | u1(x, t) | . 

        1 − α1 

  

Proof. The proof is similar to the proof of theorem 3.6. 

Theorem 3.9. If | um(x, t) | ≤ 1, then the series solution 𝑢 𝑥, 𝑡 =   𝑢𝑖 𝑥, 𝑡 ∞
𝑖=0  of problem (1) converges to  

the exact solution by using HPM. 

 Proof. We set, 

∅𝑛 𝑥, 𝑡 =  𝑢𝑖(𝑥, 𝑡),

𝑛

𝑖=1

 

∅𝑛+1 𝑥, 𝑡 =  𝑢𝑖 𝑥, 𝑡 .

𝑛+1

𝑖=1

 

 ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛+1 𝑥, 𝑡 ,∅𝑛 𝑥, 𝑡  = 𝐷 ∅𝑛 + 𝑢𝑛 , ∅𝑛 = 𝐷 𝑢𝑛 , 0 

≤   𝛼   𝐹(𝑢𝑚−𝑘−1 𝑥, 𝑡)  𝑑𝑡 +  𝛽 
𝑡

0

  𝐷3
 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡 + 

𝑡

0

 𝛾   𝐷5
 𝑢𝑚−𝑘−1 𝑥, 𝑡   𝑑𝑡.

𝑡

0

𝑚−1

𝑘=0

 

→   ∅𝑛+1 𝑥, 𝑡 − ∅𝑛 𝑥, 𝑡  ≤  𝑚𝛼1 𝑓(𝑥)  (𝑚𝛼1)𝑛 .

∞

𝑛=0

∞

𝑛=0

 

 

Therefore, 
 

 
 
 

Theorem 10  
 

If | um(x, t) | ≤ 1, then the series solution 

 of problem (Equation 1) converges to 
the exact solution by using MHPM. 
 
 
Proof  
 
The proof is similar to the proof of Theorem 9. 

Theorem 11  
 

The maximum value of truncation error of the series 

solution  to problem (Equation 1) by using 

HPM is estimated to be: 

            (nα1)
nnk’  

||en|| ≤                                                                                                                                                k’ = max | u1(x, t) | . 

             1 − α1  
 
 

Proof    
 

The proof is similar to the proof of Theorem 6. 
 
 

NUMERICAL EXAMPLE 
 
Here, we compute a numerical example which is solved
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Table 1. Numerical results for Example 1. 
 

(x, t) 
Errors 

ADM (n = 14) MADM (n = 11) VIM (n = 7) MVIM (n = 6) 

(0.1, 0.15) 0.080437 0.072436 0.051789 0.042675 

(0.2, 0.17) 0.081779 0.073765 0.052447 0.043168 

(0.3, 0.20) 0.082556 0.074158 0.052879 0.043721 

(0.4, 0.23) 0.082799 0.074788 0.053262 0.044256 

(0.5, 0.25) 0.083472 0.075237 0.053791 0.044749 

(0.7, 0.30) 0.084185 0.075864 0.054187 0.045363 

 (0.9, 0.35) 0.085708 0.076332 0.054673 0.045887 

 

(x, t) 
Errors 

HPM (n = 7) MHPM (n = 6) HAM (n = 4) 

(0.1, 0.15) 0.060854 0.031654 0.023567 

(0.2, 0.17) 0.062743 0.034893 0.023941 

(0.3, 0.20) 0.063385 0.035172 0.024557 

(0.4, 0.23) 0.063847 0.035681 0.024839 

(0.5, 0.25) 0.064295 0.035897 0.02512 

(0.7, 0.30) 0.064673 0.036356 0.02561 

(0.9, 0.35) 0.065127 0.367952 0.025986 

(1.0, 0.40) 0.065682 0.037254 0.026263 
 
 
 

by the ADM, MADM, VIM, MVIM, HPM, MHPM and 
HAM. 
 
 

Lemma 1  
 

The computational complexity of the ADM and MADM 

are O(n3), HAM is O(6n), VIM and MVIM are O(9n), 

HPM and MHPM are O(n2). 
 
 

Example 1  
 

Consider the Kawahara equation as follows: 
  

ut + uux + uxxx + uxxxxx = 0, 

 

subject to the initial conditions: 

 

𝑢 𝑥, 0 =  −
25

78
+

57

120
𝑠𝑒𝑐𝑕2 𝑘𝑥 , 𝑘 =

1

5 10
. 

 

 
 

Subject to the initial conditions: 
 

 

ut + uux + uxxx + uxxxxx = 0, 

 

subject to the initial conditions: 

 

𝑢 𝑥, 0 =  −
25

78
+

57

120
𝑠𝑒𝑐𝑕2 𝑘𝑥 , 𝑘 =

1

5 10
. 

 
 

 

Table 1 shows that, approximate solution of the 
Kawahara equation converges with 4 iterations by using 
the HAM. By comparing the results of Table 1, we can 
observe that the HAM more rapid converges than the 
ADM, MADM, VIM, MVIM, HPM and MHPM. 
 
 

Conclusion 
 

In this paper, several methods to solve Kawahara 
equation were proposed. It was shown that, the HAM 

in comparison with ADM, MADM, VIM, MVIM, HPM and 
MHPM is more effective, rapid, easy and accurate. 
Also, the complexity of HAM is less than the other 
methods. 
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