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This paper presents a passive islanding detection method based on means of a neuro-fuzzy approach 
for wind turbines. Several methods based on passive and active detection scheme have been proposed. 
While passive schemes have a large Non detection zone (NDZ), concern has been raised on active 
method due to its degrading power quality effect. Reliably detecting this condition is regarded by many 
as an ongoing challenge as existing methods are not entirely satisfactory. The proposed method is 
based on voltage measurements and processing of the hybrid intelligent system called the Adaptive 
neuro-fuzzy inference system (ANFIS) for islanding detection. This new method based on passive 
methods will help to reduce the NDZ without any perturbation that deteriorates the output power quality 
opposite active methods. This method detects the islanding conditions with the analysis of these 
signals. The studies reported in this paper are based on an experimental system (wind turbine 
simulator). The results showed that, the ANFIS-based algorithm detects islanding situation accurate 
than other islanding detection algorithms. Moreover, for those regions which are in need of a better 
visualization, the proposed approach would serve as an efficient aid such that the mains power 
disconnection can be better distinguished. 
 
Key words: Distributed generation, islanding detection, non detection zone, adaptive neuro fuzzy inference 
system, fuzzy subtractive clustering. 

 
 
INTRODUCTION 
 
The increase of distributed resources in the electric utility 
systems is indicated due to recent and ongoing 
technological, social, economical and environmental 
aspects. Distributed generation (DG) units have become 
more competitive against the conventional centralised 
system by successfully integrating new generation 
technologies and power electronics. Hence, it attracts 
many customers from industrial, commercial, and 
residential sectors. DGs generally refer to Distributed 
Energy Resources (DERs), including photovoltaic, fuel 
cells, micro turbines, small wind turbines, and additional 
equipment (Jiayi et al., 2008). The total global installed 
wind capacity at the end of 2010 was 430 TWh  annually, 

which is 2.5% of the total global demand. Based on the 
current growth rates, World Wide Energy Association 
(WWEA) predicts that, in 2015, a global capacity of 600 
GW is possible. By the end of the year 2020, at least 
1500 GW can be expected to be installed globally 
(http://www.renewableenergyworld.com/rea/news/article/
2011/05/worldwind). However, connecting wind turbines 
to distribution networks produces some problems, such 
as islanding.  

Islanding when occurred, DG and its local load become 
electrically isolated from the utility grid (Behrooz et al., 
2011). However, the wind turbine produces electrical 
energy  and  supplies  the  local  load.  Islanding   creates
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many problems in system and causes the existing 
standards not to permit DGs to be utilized in islanding 
mode (Smith et al., 2000). Some of these reasons are: 
 
i) Create safety hazard for personals,  
ii) Power quality problems for customers load, 
iii) Overload condition of wind turbine generator, 
iv) Out of phase recloser connection (Vachtsevanous and 
Kang, 1989; Zeineldin et al., 2006). 
 
Thus, islanding conditions should be detected and 
interrupted. This application should be done in less than 
2 s (Vachtsevanous and Kang, 1989). Originally, the 
methods of islanding detections are divided to two 
methods: communication methods and local methods 

Local methods have been classified as active and 
passive techniques (Smith et al., 2000). Active 
techniques are based on directly interact with the on-
going power system operation, such as impedance 
measurement (IEEE, 2003), frequency shift, active 
frequency drift (IEEE, 2003), sandia frequency shift 
(IEEE, 2003; Karimi et al., 2008) sandia voltage shift 
(IEEE, 2003; Karimi et al., 2008), phase shift, current 
injection (Hernandez-Gonzalez and Iravani, 2006), 
negative sequence current injection method (IEEE, 
1999). Passive techniques are based on measurement 
and information at the local site, such as under/over 
frequency (IEEE, 2003), under/over voltage (IEEE,  
2003), voltage phase jump, voltage unbalanced and total 
harmonic distortion 
(http://www.renewableenergyworld.com/rea/news/article/
2011/05/worldwind), rate of change of frequency (Hung et 
al., 2003), vector surge (Hung et al., 2003; Hopewell et 
al., 1996), phase displacement monitoring (Hopewell et 
al., 1996), rate of change of generator power output 
(IEEE,  2003), comparison of rate of change of frequency 
(Imece et al., 1989). 

In this paper, a new method based on Discrete Wavelet 
Transform (DWT) has been proposed for islanding 
detection of wind turbines. The proposed technique, 
which is suitable for asynchronous DGs, is explained in 
Section 3. Section 4 explains the simulation and 
experimentally test system used to verify the 
effectiveness of the proposed technique. Section 5 
explores the effectiveness of the proposed technique 
applied on simulation and experimentally test system, 
Section 6 concludes the paper. The simulation test 
systems were simulated in MATLAB/ SIMULINK using 
SimPowerSystemBlockSet. Simulation and 
experimentally results show that, the proposed islanding 
detection technique works well in discriminating between 
switching and islanding conditions. 
 
 

Adaptive neuro-fuzzy inference system (ANFIS)  
 

Artificial intelligence, including neural network, Fuzzy 
logic (FL) inference  (Gupta  and  Rao,  1994;  Yen  et al.,  
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1995) has been used to solve many nonlinear 
classification problems. The main advantages of a Fuzzy 
logic system (FLS) are the capability to express nonlinear 
input/output relationships by a set of qualitative if-then 
rules. The main advantage of a neural network (NN), on 
the other hand, is the inherent learning capability, which 
enables the networks to adaptively improve its 
performance. The key properties of neuro-fuzzy network 
are the accurate learning and adaptive capabilities of the 
neural networks, together with the generalization and fast 
learning capabilities of FLS. The ANFIS is a very 
powerful approach for modeling nonlinear and complex 
systems with less input and output training data with 
quicker learning and high precision. ANFIS is an adaptive 
network which permits the usage of neural network 
topology together with FL. It not only includes the 
characteristics of both methods, but also eliminates some 
disadvantages of their lonely-used case. Basically a 
Fuzzy inference system (FIS) is composed of five 
functional blocks (Figure 1). 

Operation of ANFIS looks like feed-forward back 
propagation network. Consequent parameters are 
calculated forward while premise parameters are 
calculated backward. There are two learning methods in 
neural section of the system: Hybrid learning method and 
back-propagation learning method. In fuzzy section, only 
zero or first order Sugeno inference system or 
Tsukamoto inference system can be used. The ANFIS 
approach learns the rules and membership functions 
from data. The objective of ANFIS is to adjust the 
parameters of a fuzzy system by applying a learning 
procedure using input-output training data. 

The basic structure of the type of FIS is a model that, 
maps input characteristics to input membership functions, 
input membership function to rules, rules to a set of 
output characteristics, output characteristics to output 
membership functions, and the output membership 
function to a single-valued output or a decision 
associated with the output.  

This section introduces the basics of ANFIS network 
architecture and its hybrid learning rule. The Sugeno 
fuzzy model was proposed by Takagi, Sugeno, and Kang 
in an effort to formalize a systematic approach to 
generating fuzzy rules from an input-output dataset. A 
typical fuzzy in a Sugeno fuzzy model has the format: 

 
If x is A and y is B then z = f (x, y) 

 
Where A and B are fuzzy sets in the antecedent; z = 
f(x,y) is a crisp function in the consequent. Usually f(x, y) 
is a polynomial in the input variable x and y, but it can be 
any other functions that can appropriately describe the 
output of the system within the fuzzy region specified by 
the antecedent of the rule. When f(x, y) is a first-order 
polynomial, this first order sugeno fuzzy model is 
proposed in sugeno (1998). When f is a constant, then, 
the zero order Sugeno fuzzy model, which  is  functionally  



1426          Int. J. Phys. Sci. 
 
 
 

 
 
Figure 1. Fuzzy inference system. 

 
 
 

 
 
Figure 2. ANFIS architecture. 

 
 
 
equivalent to a radial basis function network under certain 
minor constraints. The architecture of ANFIS with two 
inputs, one output and two rules is given in Figure 2. In 
this connected structure, the input and output nodes 
represent the training values and the predicted values, 
respectively, and in the hidden layers, there are nodes 
functioning as membership functions (MFs) and rules. 
This architecture has the benefit that, it eliminates the 
disadvantage of a normal feed forward multilayer 
network, where it is difficult for an observer to understand 

or modify the network. Here x, y are inputs, F  is output, 
the circles represent fixed node functions and squares 
represent adaptive node functions. 

Consider a first order Sugeno FIS which contains two 
rules: 
 
Rule 1: If X is Al and Y is B1, then f1 = P1x + q1y+r1 
Rule 2: If X is A2 and Y is B 2 then f2 = P2x + q2y+r2 
 
Where, P1, P2, q1, q2, r1, andr2 are linear parameters 
and A1, A2, B1, and B2 are nonlinear parameter. ANFIS 
is an implementation of a FL inference system with the 
architecture of a five-layer feed-forward network. The 
system architecture consists of five layers, namely,  fuzzy 

layer, product layer, normalized layer, de-fuzzy layer and 
total output layer. With this way, ANFIS uses the 
advantages of learning capability of neural networks and 
inference mechanism similar to human brain provided by 
FL. The operation of each layer is as follows: Here the 

output node i in layer l is denoted as
l
iO

. 
Layer 1 is the fuzzification layer. Every node i in this 

layer is an adaptive node with node function: 
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membership function is popular method for specifying 
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Figure 3. Generalized bell function. 

 
 
 

Here { ia
, ib

, ic
} is the parameter set of the membership 

function. The center and width of the membership 

function is varied by adjusting ic
 and ia

. The parameter 

ib
 is used to control the slopes at the crossover points.  

Figure 3 shows the physical meaning of each parameter 
in a generalized bell function. The parameters in this 
layer are called premise parameters. This layer forms the 
antecedents of the fuzzy rules (IF part). 

Layer 2 is the rules layer. Every node in this layer is a 
fixed node and contains one fuzzy rule. The output is the 
product of all incoming signals and represents the firing 
strength of each rule: 
 

2,1),()(2  iyxwO
iBiAii 

            (3)
 

 
Layer 3 is the normalization layer. Every node in this 

layer is a fixed node and thi
 node calculates the ratio of 

thi
 rule’s firing strength to the sum of all rules’ firing 

strengths. Outputs of this layer are called normalized 
firing strengths computed as: 
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Layer 4 is the consequent layer. Every node in this layer 
is an adaptive node and computes the values of rule 
consequent (then part) as: 
 

)(4
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(5) 

 

Here iw
is the output of Layer 3 and the parameters { ip

,

iq
, ir ) are known as consequent parameters.  Layer  5  is 

the summation layer and it consists of single fixed node 
which calculates the overall output as the summation of 
all incoming signals as: 
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ROPOSED DETECTION ALGORITHM 

 
 
In this study, we propose to use a hybrid intelligent system called 
ANFIS for islanding detection. We combine the ability of a NN to 
learn with FL to reason in order to form a hybrid intelligent system 

called ANFIS.  
ANFIS training algorithm can be efficiently used to build fuzzy 

rules from correct input-output numerical data pairs. The main 
motivations for such an investigation are:  
 
i) The ANFIS is a well known and successful solution 
ii) It can be used directly on the data recorded in the learning stage, 
and so it can be further considered for a real-time implementation 

iii) It stands as a classical algorithm, with trustful implementation as 
the one included in MATLAB.  
 

More specifically, in the forward pass of the hybrid learning 
algorithm, node outputs go forward until layer 4 and the consequent 
parameters are identified by the least-squares method. In the 
backward pass, the error signals propagate backwards and the 
premise parameters are updated by gradient descent. We don’t 
necessarily have a predetermined model structure based on 

characteristics of variables in our system. There will be some 
modeling situations in which we can’t just look at the data and 
discern what the membership functions should look like. Rather 
than choosing the parameters associated with a given membership 
function arbitrarily, these parameters could be chosen so as to tailor 
the membership functions to the input-output data in order to 
account for these types of variations in the data values.  

These techniques provide a method for the fuzzy modeling 

procedure to learn information about a data set, in order to compute 
the membership function parameters that best allow the associated 
FIS to track the given input/output data. Using a given input/output  
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Figure 4. Membership function. 

 
 
 
data set, the ANFIS constructs a FIS whose membership function 
parameters are tuned (adjusted) using either a back propagation 
algorithm. This allows our fuzzy systems to learn from the data they 
are modeling. 

The proposed approach is based on the passive method of 
islanding detection considering the data clustering approach. In 
addition, this method includes building a simplified and robust fuzzy 
classifier initialized by the subtractive clustering and makes a FIS 
for islanding detection. As a result of the increasing complexity and 
dimensionality of classification problems, it becomes necessary to 
deal with structural issues of the identification of classifier systems. 
Important aspects are the selection of the relevant features and 
determination of effective initial partition of the input domain. The 

purpose of clustering is to identify natural groupings of data to 
produce a concise representation of a system’s behavior. 
Subtractive clustering is a fast, one-pass algorithm for estimating 
the number of clusters and the cluster centers in a set of data. 

In this paper, an ANFIS models which takes voltage signal as 
inputs and islanding condition as output. Firstly, voltage data taken 
from the DG for provide a dataset. The next step, construct a FIS 
that could best predict the islanding condition or normal condition. 

ANFIS training can use alternative algorithms to reduce the error of 
the training. A combination of the gradient descent algorithm and a 
least squares algorithm is used for an effective search for the 
optimal parameters. The main benefit of such a hybrid approach is 
that, it converges much faster, since it reduces the search space 
dimensions of the back propagation method used in neural 
networks. ANFIS was trained with the first half epochs and the next 
half epochs were used for validation. The Root mean squared error 
(RMSE) from each of the validating epochs was calculated. 

Averages of RMSE per patient were calculated for all patients to 
give the average RMSE. Thus before training a FIS, the data set 
has been divided into training set and test sets. The training set is 
used to train a fuzzy mode, while the test set is used to determine 
when training should be terminated to prevent over fitting. After 
training, for verify the model FIS we calculate, the RMSE of the 
system generated by the training data that, it is equal to 0.1068. To 
validate the generalize ability of the model; we apply test data to the 
FIS that, it is equal 0.018.  Figure 4 shows the membership function 

obtained only from dataset for all conditional of islanding and 
normal  operation  without  any  setting  of  threshold   for   islanding 

detection parameter. In this paper, we can overcome the problem of 
setting the detection thresholds for islanding detection. 

ANFIS models takes voltage as inputs and islanding condition as 
output. If the islanding is detected, the output ANFIS is higher than 

0.6. Conversely, if the islanding is not detected, the output ANFIS is 
around 0 or less than 0.5. The result obtained indicates that, ANFIS 
is effective method for islanding detection. 
 
 
CASE STUDY  

 
Figure 5 shows a schematic diagram of a wind turbine unit. The DG 
unit is a wind turbine induction generator, and a capacitor bank is 

used to improve the power factor. The local load is a three-phase 
parallel RL before the circuit breaker (CB), in which “r” denotes the 
series resistance inductance and Vf indicates the voltage drop 
across the parallel load. The parallel RL is conventionally adopted 
as the local load for the evaluation of islanding detection methods 
when the load inductance is tuned to the system frequency. This 
system, as shown in Figure 5, is connected to a Point of Common 
Coupling (PCC) with a step-up transformer. To obtain the 

experimental results, a wind turbine simulator, as shown in Figure 
6, was implemented.  Figures 7 and 8 showed the implemented 
simulator system. The implemented system parameters are given in 
Table 1. The parallel load inductance is considered infinite. Thus, 
the parallel load is only a resistance, and hence the unit of “L” is 
“inf”. Figure 9 shows the motor saturation curve. In the grid-
connected condition, the switches SW1 and SW2 are closed. The 
islanding condition occurs when SW2 is open. 

The voltage and frequency of DG should have admissible values 

in both grid-connected and islanded modes. In the grid-connected 
mode, the voltage magnitude and frequency of the local load at the 
PCC are regulated by the grid. 
 
 

IMPLEMENTATION RESULTS  
  
In this study, the simulation is conducted in four 
scenarios to illustrate the effectiveness of the proposed 
method. 
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Figure 5. Single line diagram of study system.    

 
 
 

 
 

Figure 6. Single line diagram of implementation system in order to islanding 

condition detection. 

 
 
 

 
 
Figure 7. Implementation system in order to islanding condition detection. 
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Figure 8. Implementation system in order to islanding condition detection.  

 
 
 

Table 1. Parameters of the implemented system. 
 

Parameter Value 

Induction motors Sn 2  KVA 

Vn 400  V 

F 50  HZ 

PF 0.78 Lag 

Rs, Rr 2.3541 Ω 

Lr, Ls 0.01678 H 

Lm 0.275 H 

   

Local load R 180 Ω 

L Inf 

   

Capacitor C 36.75 μF 

 
 
 

 
 
Figure 9. Motor and generator saturation curves. 
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Figure 10. Match power condition: (a) phase voltage, (b) frequency. 

 
 
 

 
 
Figure 11. ANFIS output for match power conditional. 

 
 
 
Match power condition 
 
In this test, the active and reactive power of local load is 
0.8 KW and 0Kvar, respectively. The value of capacitor is 
36.0 μF, the distributed generator is assumed to separate 
from the grid, where the event is assumed to take place 
at 2.2 s. In Figure 10a and b, the waveforms of phase 
voltage and frequency of DGs are individually depicted. 
Immediately following this loss of utility, proposed method 
relay fails to detect islanding condition.  Figure 11 shows 
the output of proposed  method  algorithm  result.  ANFIS 

output is rich to above “0.5” value which leads to 
islanding detection. So the ANFIS based protection 
algorithm produced the trip signal and sends it to DG. 
 
 
Mismatch power condition 
 
At first, the amount of capacitor bank is lesser than 
nominal condition. The active power set to 0.66 KW and 
reactive power set to 0.1 Kvar, respectively. The 
distributed generator  is  assumed  to  separate  from  the  

 
(min)  Time (sec) 

 (min) 

time 

 

Detection time 

Time (min)  Time (sec) 
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Figure 12. Mismatch power condition: (a) three phase voltage, (b) frequency. 

 
 
 

 
 
Figure 13. ANFIS output for Mismatch power condition. 

 
 
 
grid, where the event is assumed to take place at 1.15 s. 
In Figure 12a and b, the waveforms of phase voltage and 
frequency of DGs are individually depicted. Immediately 
following this loss of utility, frequency is increase and 
voltage is drop.  Figure 13 shows the ANFIS output that 
is rich to higher than “0.5” value which leads to islanding 
detection. So the ANFIS based protection algorithm 
produced the trip signal and sends to DG.  

At the next test, the amount of capacitor bank is higher  

than nominal condition and set to 40 μF. The active 
power set to 0.66 KW and reactive power set to 0.1 Kvar, 
respectively. After islanding event at 2.6 s, Figures 14a 
and b and c shows the waveforms of instantaneous 
phase voltage, RMS phase voltage and frequency of 
DGs, respectively. As can be seen, frequency is drop and 
voltage is increase.  Figure 15 shows the ANFIS output 
that is rich to higher than “0.5” value which leads to 
islanding  detection.   So  the   ANFIS   based   protection  

 Time (min)  Time (sec) 

 

Detection time 

 Time (min)  Time (sec) 
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Figure 14. Mismatch power condition: (a) phase voltage, (b) RMS voltage 

value, (c) frequency.  

 
 
 

 
 

Figure 15. ANFIS output for mismatch power condition (2).  
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Time (sec) 

 

Detection time 
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Figure 16. Motor starting condition: (a) three phase voltage, (b) frequency. 

 
 
 

 
 

Figure 17. ANFIS output for motor starting. 

 
 
 
algorithm produced the trip signal and sends to DG. 
 
 
Motor starting condition 
 
The starting of induction motors may cause a malfunction 
of the islanding detection algorithm. To study the 
reliability of the proposed algorithm, at t = 1.15 min an 
induction motor with P = 1KW and Q = 1.1 Kvar is 
starting and connected to the PCC. Figure 16a and b 
shows the waveforms of phase voltage and  frequency  of 

DGs, respectively.  Figure 17 shows the ANFIS results at 
this condition. The value of neural network output is not 
reach to threshold value. Therefore, the proposed 
method does not send a trip signal to DG and works in a 
reliable mode. 
 
 
Capacitor bank switching condition 
 
Large capacitor bank switching in distribution power 
systems initiates  disturbances.  These  disturbances  are  

 
Time (min)  
Time (sec) 

 
Time (min) 

 
Time (sec) 
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Figure 18. Capacitor bank switching condition: (a) three phase voltage, (b) 

frequency. 

 
 
 

 
 
Figure 19. ANFIS output for motor starting. 

 
 
 
propagated in the distribution system and have some 
effects on the proposed method. To test the proposed 
algorithm, at t = 2 s, a large 30 μF capacitor bank was 
switched at the PCC in the non-islanding case. In Figure 
18a and b, the waveforms of phase voltage and 
frequency of DGs are individually depicted.  Figure 19 
shows the neural network response. The value of neural 
network output is not reach to threshold value too. 
Therefore, the system  continue  to  working  without  any  

mistaken trip. 
 
 
Conclusion  
 
A new technique for islanding detection of DG is 
proposed based on ANFIS. Following the increased 
number and enlarged size of distributed generating units 
installed  in  a  modern   power   system,   the   protection  

 Time (min)  Time (sec) 

 Time (min) 
 

Time (sec) 
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against islanding has become extremely challenging 
nowadays. Islanding detection is also important as 
islanding operation of distributed system is seen a viable 
option in the future to improve the reliability and quality of 
the supply. The islanding situation needed to be 
prevented with DG due to safety reasons and to maintain 
quality of power supplied to the customers. By case 
studies with numerical simulations, the proposed 
approach was verified with feasibility, flexibility and 
robustness. 
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