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The study of the flow through pipes and channels either closed or open is a classical problem. In this 
paper, we make a theoretical investigation of the flow of an incompressible micropolar fluid through a 
straight elliptic pipe of uniform cross section under a constant pressure gradient. In any micropolar 
fluid flow problem, there is a need to determine two independent flow field vectors which includes, 

velocity vector q  and microrotation vector υ which are governed by a coupled system of partial 

differential equations. Herein the components of these vectors are determined in terms of Mathieu 
functions.  The arbitrary constants that arise in the solution are determined by solving an infinite non 
homogeneous system of linear equations adopting a numerical procedure. The variation of the volume 
flow rate through a cross section of the pipe is numerically studied with respect to the material 
parameters, geometric parameters and the pressure gradient. The results are presented through 
graphs.  
 
Key words: Flow, micropolar fluid, elliptic pipe, constant pressure gradient, Mathieu functions, volume flow 
rate. 

 
 
INTRODUCTION 
 
The theory of micropolar fluids, introduced by Eringen 
(1966) is a sub class of the theory of simple microfluids 
introduced earlier by Eringen (1964) himself. Physically 
micropolar fluids represent fluids consisting of rigid 
randomly oriented particles suspended in a viscous 
medium. Polymeric solutions, colloidal suspensions, 
animal blood, etc. can be modelled through micropolar 
fluid theory. During the last four and half decades, 
diverse fluid flow problems which were studied in viscous 
fluid and several non Newtonian fluid regimes have been 
investigated by several researchers in micropolar regime 
also. The micropolar fluid theory provides for micro 
rotational effects and sustenance of surface as well as 
body couples. The stress tensor is no longer symmetric. 
The theory constitutes a substantial generalization of the 
Navier Stokes model of classical hydrodynamics. An 
excellent exposition of the theory is available in 
Lukaszewicz (1999). 

The study of flow through pipes, and channels either 
closed or open is a  classical  problem.  Let  there  be  an 
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incompressible fluid flow through a circular pipe of 
uniform cross section under a constant pressure gradient. 
This flow is referred to as “Hagen-Poiselle flow “. Several 
authors have studied this problem with respect to diverse 
non-newtonian fluids. Eringen (1966) in his introductory 
paper on micropolar fluids discussed the flow of an 
incompressible micropolar fluid through a circular tube. 
To the extent the authors have surveyed, the flow of a 
micropolar fluid through an elliptic pipe of uniform cross 
section under a constant pressure gradient, has not been 
studied so far. The aim of the present paper is to study 
this classical problem. This problem can be of relevance 
in some context where flows occur through pipes of this 
shape. For example, flow problems through tubes of 
elliptic cross section are of fundamental importance in 
Biomedical engineering as observed by Haslam and 
Zamir (1998). The flow of blood in arteries and veins that 
occurs in human or animal bodies is essentially through 
tubes which are almost of elliptic cross section. The flow 
is in general oscillatory in character. This flow, taking the 
flow to be Newtonian viscous fluid, has been studied by 
modeling the tubes as those of circular cross sections by 
Sexl (1930), Uchida (1956) and Womersley (1955).But 
there  are  a  number of  important  places, particularly  in 
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heart, where the surrounding tissue compresses blood 
vessels which results in making them non circular 
(Haslam and Zamir, 1998). In view of this, the study of 
flows through tubes of noncircular cross sections as well, 
can be of importance. This is a motivating factor for our 
present study of flow through a pipe (or tube) of elliptic 
cross section. Further modeling blood as a micropolar 
fluid is more appropriate (Eringen, 1966; Lukaszewicz, 
‘1999) and this is yet another. This is a motivating factor 
for our present study. In the present paper, we have 
undertaken the study of the flow of a micropolar fluid 
through a tube of elliptic cross section. There seems to 
be no considerable work in recent years with respect to 
flows through elliptic tubes except the one by Haslam and 
Zamir (1998). 

The field equations of micropolar fluids are presentable 

in terms of the velocity vector q   and the micro rotation 

vector υ  associated with each particle in the fluid 

medium. The components of these vectors are evaluated 
in terms of series of Mathieu functions (McLachlan, 1947; 
Abramowitz and Stegun 1965). The determination of the 
arbitrary constants present in the expressions of the 
velocity and micro rotation is through the solution of an 
infinite system of nonlinear homogeneous equations. The 
volume flow rate across the pipe is evaluated and its 
variation is studied numerically with respect to the 
material parameters of the fluid, geometric parameter and 
the pressure gradient. Langlois (1964), in his treatise 
“Slow Viscous Flow” has discussed in a succinct form the 
problem of flow of a non polar viscous liquid (Newtonian 
viscous liquid) through an elliptic pipe under a constant 
pressure gradient.  The present problem is considerably 
involved, when compared with the nonpolar fluid case. 
The flow of a micropolar fluid through a tube of elliptic 
cross section under a periodic pressure gradient is under 
study by the present authors. 
 
 
FORMULATION OF THE PROBLEM 
 

The field equations of micro-polar fluid flow as in Eringen (1966) are  
 

t∂

ρ∂
+ )( qρ•∇  = 0                                           (1)  
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dt
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in which υ,q   are velocity and micro rotation vectors, ,f  

l are body force per unit mass, body couple per unit mass 
respectively. p is the fluid  pressure  at  any point  and ρ  and  j  are 

 
 
 
 
the density of  the fluid  and gyration parameters  respectively and 

are assumed to be  constants. The material constants ,( 1λ  ,µ  k) 

are viscosity coefficients and ( ),, γβα  are gyro viscosity 

coefficients. These constants confirm to the inequalities,  
 

k 0≥ ; 2 0k ≥+µ ; 3 0k21 ≥+µ+λ  
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The constitutive equations for the stress tensor 
ij

t and the couple 

stress tensor 
ij

m  are given by 
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where iυ  and 2 iw  are the components of micro rotation and the 

vorticity vector respectively. The quantities 
ij

e  denote the rate of 

deformation components, 
ij

δ  denotes the Kronecker symbol and 

comma denotes the covariant differentiation. 
Let us consider the steady flow of an incompressible micropolar 

fluid through a straight elliptic tube of uniform cross-section under a 
constant pressure gradient. Let the centre of a typical cross 
sectional ellipse be taken as origin and the major axis as x-axis. Let 
the axis of the tube in the flow direction be the positive z-axis. 

Let us assume that,  
  

,0(q =  0, w(x, y)) 
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where G is a constant. Let the body force f  and body couple l  be 
absent. In view of the incompressibility of the fluid and the above 
assumptions, the equations governing the fluid flow are seen to be 
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Let ( ,ξ  ,η  z) denote an elliptic coordinate system introduced 

through  
  

(x + i y) = c Cosh ( ),iη+ξ   z = z                                (11) 

  

with ( ξe , ηe , 
ze  )  as the unit base vectors and (

,1
h  

,2
h 3h )  



 
 
 
 
as the scale factors of the system. We note that 
  

)2cos2(coshchh 21 η−ξ== ;  1h 3 =                          (12) 

             
where c is the semi-focal distance of the cross sectional ellipse. 
Let us write 
  

,(ξυ f=•∇ )η ;   ,(ξυ g=×∇ )η   
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Taking curl of (2), we have 
  

k∇  × (∇ × υ ) - ( )k+µ  ∇×{∇×(∇× 0)}q =  
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Taking curl of (3), we get, 
  

-2k ∇ × υ+ k∇  × (∇ × q )- γ  ∇×{∇×(∇× υ )} = 0 

 
Taking curl of (9) and (10), we can express ‘g’ in terms of ‘w’ 
through the equation 
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The equations for the determination of A, B are given by 
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Let the boundary  Γ of the cross-sectional ellipse be taken as 
  

Γ : 01
b

y

a

x
2

2

2

2

=−+                                                                       (21) 

           

and let this be given by   0ξ=ξ . 

  
The hyperstick boundary conditions that are to be satisfied by w, A 
and B are given by 
  

w( 0),0 =ηξ  ;  A( 0),0 =ηξ  ;  B( 0),0 =ηξ  .                         (22)      

     
Also the flow quantities are to be finite in the flow regime and must 
satisfy   
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Thus the velocity component w and the micro rotation components 
A, B can be completely determined by solving  
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and using Equations  (14), (19) and (20) subject to the  boundary 
conditions given in (22). 
 
 

SOLUTION OF THE PROBLEM 
 

A solution of the Equation (24) can be obtained by the 
superposition of the general solutions of  
          

0w2 =∇ ,                                                       (26) 

           

0w
c2

2
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 λ
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and the particular integral that satisfies the Equation (24). 
Consider 
 

0w
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which is equivalent to  
  

0
ww
2

2

2

2

=
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∂
+
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Using the method of separation of variables, it can be 
seen that a typical  solution  of  this  equation  is  a  linear 
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combination of  
 

{
ξ−ξ qq e,e }, {cos q sin,ξ q ξ } 

 
In view of the periodicity, symmetry, regularity and 
finiteness of the solution within the flow regime, the most 
general solution of (26) appropriate for the present 
problem is 
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Using the method of separation of variables and writing, 

W = R(ξ). S(η)  we get 
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where 
*λ  is a constant of separation. We note that these 

are Mathieu equations (Clachlan, 1947). Solutions of (30) 
which are periodic corresponding to a discrete set of 

characteristic values of 
*λ  are the Mathieu functions. 
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Solutions of (29) corresponding to the above functions 
are respectively  
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In view of the comments made concerning the symmetry, 
periodicity, finiteness and regularity in the flow regime 
earlier, the appropriate solution to be chosen for the 
present equation is given by  
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We can directly verify that  

 
 
 
 

=
p

w  








+ 22

22

2

2

ba

baGc

λ
 








−−

2

2

2

2

1
b

y

a

x
      (32) 

           
satisfies the equation 
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using 
 

x  =  c cosh ξ  cos η ,  y  =  c sinhξ  sin η  

  

The expression for  
p

w in (31) can be written in terms of  

ξ  and η . Hence the most general solution appropriate 

for the present problem is  
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Using the method of separation of variables as before 
and the requirements mentioned in (22) to (23), the 

solution appropriate for f ( )ηξ,  for the equation (25) is 

given by 
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adopting the notation of McLachlan (1947).Using (14) 
and (33), we have  
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The expressions (33) to (35) when used in (19) and (20) 
give rise to  
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The constants{ }n2B ,{ },C n2 { }n2D  in (33), (36) and (37) 

are to be determined using the boundary conditions  
  

w( ),0 ηξ = 0;   
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NON DIMENSIONALIZATION SCHEME 
 
Let us introduce the following non dimensionalization 
scheme.  
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DETERMINATION OF THE ARBITRARY CONSTANTS 
 
Let us now use the boundary conditions (22) to determine 

{B n }, {C n } and {D n }. The boundary of the cross-sectional 
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ellipse is  Γ : 0ξ=ξ . 

Since w = 0 on  0ξ=ξ  we get the following equations: 
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Eliminating B 2  from (43) and (44) we have, 
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Eliminating B 2n2 +  from (43) and (44) we have, 
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Eliminating B 2  from (43) and (46) we have, 
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Eliminating B 2n2 +  from (43) and (47) we have, 
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(45), (48), (49), (50), (51) constitute an infinite set of non-
homogeneous linear equations in the unknowns 
  

{C 0 , C 2 , C 4 ,….. C r2 , …..; D 2 , D 4 , D 6 , ….. D r2 , …..} 

 

and hence are to be solved by a numerical  procedure. 
When once the C’s and D’s are determined, the B’s can 
be evaluated using Equation (44). 
 
 

VOLUME FLOW RATE  
 

The volume flow rate across the pipe is given by,  
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integrated over the area of the cross sectional ellipse and 
is seen to be 
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Figure 1. Variation of flux with respect to Pl with varying p. 
 lamda = 1.0  alpha = 0.1. 
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NUMERICAL WORK 
 

The infinite system of equations given in (51) is truncated 
to a 10%10 system, taking 5 terms involving C’s and 5 
terms involving D’s. This truncation is resorted to in view 
of the smallness of the subsequent terms. Using the 

available C’s and D’s, the required B 2 is evaluated using 

Equation (44). The volume flow rate (flux) across the 
cross section of the pipe is numerically estimated for a 

number of values of the micropolarity parameters λ , p 

and Pl ( )k
k

+
= µ .  It is estimated for a prescribed para-

meter representing the pressure gradient. In the figures, 

alpha stands for 0ξ  and λ , Pl and p have their earlier 

meanings. Figures 1 to 4 depict the variation of flux with 

respect to Pl with varying p for fixed values of λ   and 0ξ . 

It  is  seen  that the  flux  decreases  as  the  micropolarity 
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Figure 2. Variation of flux with respect to Pl with varying p.  
lamda = 1.0  alpha = 0.6. 
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Figure 3. Variation of flux with respect to Pl with varying p.  lamda 

= 2.5 alpha = 0.2. 
 
 
 

parameter increases. Further as p increases, the flux 
decreases. An increase in p implies an increase in k 
which is an extra microrotation viscosity parameter and 
this increase results in the reduction of the speed of a 
particle which naturally reduces the flux.  Figures 5 to 8 

show the variation of flux with respect to alpha (= 0ξ ). It is 

seen that for fixed values of λ , p and Pl, the flux 

decreases as the area of cross section increases for a 
prescribed pressure gradient. 

The problem considered here deserves to be attempted 
for elliptic tubes with porous boundaries as well since it 
will be more realistic in the context of flows through 
arteries and veins. 
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Figure 4. Variation of flux with respect to Pl with varying p. lamda = 2.2  alpha =  0.1. 
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Figure 5.  Variation of flux with respect to alpha with varying Pl. lamda = 1.8 P = 1.0. 
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Figure 6. Variation of flux with respect to alpha with varying Pl. lamda = 1.8 P = 2.0. 
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Figure 7. Variation of flux with respect to alpha with varying Pl. lamda = 1.8 P = 2.5. 
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Figure 8. Variation of flux with respect to alpha with varying Pl.  lamda = 1.8 P = 3.0. 
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