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This paper is to investigate the effect of soil-pile interaction for integral prestressed concrete box-girder 
bridge under low intensity earthquake. The soil-pile interaction was compared to fixed base support to 
see its effect. In this case study, one integral prestressed concrete box-girder bridge in Selangor, 
Malaysia had been chosen, that is, Kampung Sawah Bridge. To produce the low seismic loading, the 
ground response analysis had been conducted to produce three synthetic acceleration time histories 
loading. For soil-pile interaction, the p-y curves were determined by using LPILE program. The seismic 
analyses conducted were vibration analysis and nonlinear time history analysis. Free vibration analysis 
presented the periods and mode shapes of the structure while nonlinear time history analyses 
presented the maximum displacement at the top of pier and middle of deck and pier and deck forces 
response. It can be concluded that the soil-pile interaction support gives the longer period compared to 
fixed base support which almost differ about more than five times higher for the first mode. The 
displacement soil-pile interaction is higher compared to fixed base support; the increasing of 
displacement is more at transverse direction event for deck and pier. The all forces response from soil-
pile interaction support is higher compared to fixed base support, except the axial force response of 
pier. 
 
Key words: Nonlinear time history, integral concrete box-girder bridge, soil-pile interaction, fixed base. 

 
 
INTRODUCTION 
 
Integral prestressed concrete box-girder bridge has 
become best choices due to its ability to construct 
bridges with long span; reducing of maintenance cost 
problem and aesthetic value. However, the performance 
of this type of bridge under earthquake loading is very 
important to study due to the deck continuity and 
monolithic system for deck and pier. 

Normally, during the analysis, the bridge engineer often 
assumed the bridge support  as  the  fixed  base  support.  
 
 
 
*Corresponding author. E-mail: meldis_um@yahoo.com. Tel: 
+603-79677679. Fax: +603-79675318. 

The fixed base model is simpler, but it neglects the soil 
effects and could lead to overly conservative bridge 
designs for short bridges (Chen, 1996; Karbakhsh et al., 
2011a). The assumption of rigid supports at abutments 
and piers should not be made based on ground simplicity 
and ease of calculation (IStructEng, 1989). For the 
seismic analysis, soil-pile interaction effects are 
accounted due to the soil flexibility contribution which is 
more than 20% of the total displacement at the top of the 
pier (British Standard Institution, 2005b). Therefore, the 
effect of soil-pile interaction support (SPIS) and fixed 
base support (FBS) for integral prestressed concrete box-
girder bridge was investigated. In this study, Kampung 
Sawah Bridge in Selangor Malaysia had been chosen.  
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Figure 1. Various depth of soil stiffness curve for piers of Kampung Sawah Bridge. 

 
 

 

For soil-pile interaction, the p-y curves will be 
determined by using LPILE program (LPILE V5.0, 2007). 
The behaviour of a pile under lateral loading creates soil 
reaction which is a function of the lateral deflection of a 
pile. The foundation stiffness is a major element in the 
seismic analysis of the bridge structure, provided there is 
interplay between superstructure and substructure 
responses of the bridge. The foundation stiffness can be 
modelled by a set of springs that represent the stiffness 
of the foundations (Karbakhsh et al., 2011b). The bridge 
structure and substructure, including soil-pile interaction 
will be modelled by using SAP 2000 Finite Element 
software (SAP 2000, 2009). 

The seismic analyses conducted were vibration 
analysis and non-linear time history analysis. Free vib-
ration analysis presented the periods and mode shapes 
of the structure while non-linear time history analyses 
considered the displacement and response forces on the 
deck and piers (Hashamdar et al., 2011). 

Based on Yashinsky and Ostrom (2000), vertical 
accelerations are addressed separately from the 
horizontal bridge analysis. A vertical load analysis is not 
required for bridge site with peak rock accelerations less 
than 0.5 g, because the vertical ground motion is 
assumed to attenuate rapidly as the distance between 
the site and the fault increases. In this study, only lateral 
accelerations are considered since the maximum 
acceleration at the surface is about 0.0555 g. 
 
 
MATERIAL PROPERTIES AND ANALYSIS 
 
Soil-pile interaction 
 

The   foundation   stiffness  is  a  function  of  the  properties  of  the  

substructure and surrounding soil (soil-structure interaction) in 
addition to the level of loading from the superstructure. It is 
important in this study to determine the nonlinear and dynamic 

properties of the soil to obtain the accurate soil stiffness for seismic 
analysis. 

Based on Boulanger et al. (1999), soil-pile interaction can be an 
important consideration in evaluating the seismic response of pile-
supported structures, particularly in soft clay or liquefying sand. 
Methods of analyzing seismic soil-pile-structure interaction have 
included 2D and 3D modeling of the pile and soil continuum using 
finite element, or finite difference methods, dynamic beam on a 
nonlinear Winkler foundation (that is,” dynamic p-y”) methods and 

simplified two-step methods that uncouple the superstructure and 
foundation portions of the analysis. 

The p-y method is a method of analyzing the ability of deep 
foundations to resist loads applied in the lateral direction. This 
method uses the finite element method. The p-y graphs are graphs 
which relate the force applied to soil to the lateral deflection of the 
soil. In essence, non-linear springs are attached to the foundation in 
place of the soil. The springs can be represented by the following 
equation 

 
P = ky                                              (1) 

 
where k is the non-linear spring stiffness defined by the p-y curve, y 
is the deflection of the spring, and p is the force applied to the 
spring.  

The p-y curves model of the Bridge location can be seen in 
Figure 1.  

 
 
Site response analysis 

  
Soil data were collected from existing soil investigation (SI) of the 
bridge. The shear wave velocity (Vs) were obtained by converting the 
N-SPT value from Standard Penetration Test to shear wave velocity 
using empirical formula proposed by Ohta and Goto (1978), Imai and 

Tonouchi (1982) and by averaging those two formulas. Based on the 
analysis, the Vs-30 of BH2 (located at pier 1) and BH3 (located at pier 
2) are 135 and 145 m/s. Generally, the site  can  be  classified  as  soft
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Figure 2. Response spectra and recommended design response spectra at the bridge location (TR = 500, Soil type Se).  
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Figure 3. Spectral matching analysis for producing earthquake time history loading. 

 
 
 
soil or site class E (Se) in accordance with Uniform Building Code, 
UBC (1997). Based on seismic hazard assessment study for west 
Malaysia (Adnan et al., 2009), the bridge location peak ground 
acceleration (PGA) at the bedrock for 500-year return period of 
earthquake is 0.0555 g. The predominant periods of the spectra 
generally occur in the range of 0.1 to 0.9 s. The design acceleration 
response spectra curves can be drawn based on equations in the 
IBC 2000 code of practice (International Code Council, 2000) 
(Figure 2). By conducting spectral matching analysis (Figure 3), three 
synthetic time histories at the surface are shown in Figure 4. 

Finite element modelling 

 
AASHTO LRFD Bridge Design Specification (AASHTO LRFD, 2005) 
and Eurocode 8 Part 1 (British Standard Institution, 2005a) have 
stated that the elastic seismic force effects on each of the principal 
axes of a component resulting from analyses in the two perpendicular 

directions are combined to form two load cases. In this study, 100  of 
the absolute value of the force effects in one of the perpendicular 

directions combined with 30  of the absolute value of the force effects 
in the second perpendicular direction is taken into account.  
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Figure 4. Time history at surface for 500 years return period. 

 
 
 
The analyses implemented in this research are free vibration and 

time history analyses. Figure 5 shows all of the bridge components 
that were taken into account in finite element modelling. The reference 
nodes at the middle of deck and top of pier were selected for 
displacement monitoring. The displacement monitoring of the bridge 
can be seen in Figure 6. Node 217 is the top of pier and node 2636 
is the middle of span. 

 
 
RESULTS AND DISCUSSION 

 
Free vibration analysis 
 
The free vibration analysis considers ten modes of bridge  

finite element model. Table 1 shows the comparison 
between soil-pile interaction support and fixed based 
support for the first 10 mode shapes. The soil-pile 
interaction support gives the longer period of 5 times 
compared to fixed base support for the first mode. Figure 7 
shows the mode shapes for both types of bridges.  

 
 
Nonlinear time history analysis 
 

The combination of 100  of earthquake force from x-

direction and 30  of earthquake force from y-direction 
(100%X+30%Y)  for  bridge  displacement  responses  with
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Figure 5. Finite element modelling of Kampung Sawah Bridge. 

 
 
 

 
 
Figure 6. The node reference location for displacement monitoring of the Bridge. 

 
 
 

Table 1. Dynamic characteristics of the bridge. 

 

No. of mode shape 
Period (s) 

Soil –pile interaction Fixed base support 

1 3.47013 0.68339 

2 3.04016 0.64320 

3 1.72289 0.52127 

4 0.68368 0.49408 

5 0.63760 0.33936 

6 0.54754 0.33372 

7 0.49745 0.32251 

8 0.45038 0.24034 

9 0.43610 0.21250 

10 0.42278 0.20198 
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Figure 7.  Mode shapes for fixed base and soil-pile interaction support of the bridge. 

 
 

 

 

Figure 8.  Longitudinal and transversal displacement response for top of pier under 

TH1, TH2, and TH3 loading (Fixed base support with 100%X+30%Y earthquake 

direction)  
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Figure 8. Longitudinal and transversal displacement response for top of pier under TH1, TH2, and TH3 loading (Fixed 
base support with 100%X+30%Y earthquake direction). 

 
 

 

fixed base support can be seen in Figures 8 and 9; Figures 
10 and 11 show the displacement responses of soil-pile 
interaction support. Table 2 shows the maximum value of 
displacement response for SPIS and FBS Bridge.  

The combination of 30  of earthquake force from x-

direction and 100  of earthquake force from y-direction 
(30%X+100%Y) with fixed based support can be seen in 
Figures 12 and 13. Figure  14  and  15  shows  the  soil-pile
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Figure 9. Longitudinal and transversal displacement response for middle of deck under TH1, TH2, and TH3 

loading (Fixed base support with 100%X+30%Y earthquake direction). 
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Figure 10. Longitudinal and transversal displacement response for top of pier under TH1, TH2, and TH3 
loading (Soil-pile interaction with 100%X+30%Y earthquake direction). 
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Figure 11. Longitudinal and transversal displacement response for middle of deck under TH1, TH2, and TH3 
loading (Soil-pile interaction with 100%X+30%Y earthquake direction). 

 
 
 

Table 2. Structure displacement for 100%X+30%Y earthquake direction combination. 

 

Combination earthquake 
loading direction 

Joint node 
Max displacement (m) 

Description 
X- direction Y- direction 

SPIS 
217 0.01372 0.00650 Top of pier 

2270 0.01261 0.01567 Middle of span 

 

FBS 
217 0.00761 0.00105 Top of pier 

2270 0.00834 0.00472 Middle of span 
 

SPIS, Soil pile interaction support; FBS, fixed base support. 

 
 
 
interaction support under the same combination of 
earthquake direction. Table 3 shows the maximum value 
for displacement response at 30%X + 100%Y earthquake 
direction. 

Table 4 shows that the soil-pile interaction support gives  

higher displacement compared to fixed base support for 
structural responses. For 100%X+30%Y earthquake 
direction, the top of piers response shows the transversal 
maximum displacement of SPIS is five times higher 
compared to FBS, while longitudinal displacement is more
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Figure 12. Longitudinal and transversal displacement response for top of pier under TH1, TH2, and TH3 loading 
(Fixed base support with 30%X+100%Y earthquake direction). 
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Figure 13. Longitudinal and transversal displacement response for middle of deck under TH1, TH2, and 
TH3 loading (Fixed base support with 30%X+100%Y earthquake direction). 
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Figure 14. Longitudinal and transversal displacement response for top of pier under TH1, TH2, 
and TH3 loading (Soil-pile interaction with 30%X+100%Y earthquake direction). 
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Figure 15. Longitudinal and transversal displacement response for middle of deck under TH1, TH2, and 
TH3 loading (Soil-pile interaction with 30%X+100%Y earthquake direction). 
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Table 3. Structure displacement for 30%X+100%Y earthquake direction combination. 
 

Combination earthquake 
loading direction 

Joint node 
Max displacement (m) 

Description 
X- direction Y- direction 

SPIS 
217 0.00398 0.02947 Top of pier 

2270 0.00382 0.05563 Middle of span 

 

FBS 
217 0.00212 0.00351 Top of pier 

2270 0.00272 0.01482 Middle of span 
 

SPIS, soil pile interaction support; FBS, fixed base support. 
 

 
 
Table 4. Structure displacement: soil-pile interaction support versus fixed base support. 

 

Earthquake direction SPIS FBS Difference (%) Node displacement direction Description 

100%X+30%Y 

0.01372 0.00761 80.29 217-x 
Top pier 

0.00650 0.00105 519.05 217-y 

 

0.01261 0.00834 51.20 2270-x 
Middle span 

0.01567 0.00472 231.99 2270-y 

 

30%X+100%Y 

0.00398 0.00212 87.74 217-x 
Top pier 

0.02947 0.00351 739.60 217-y 

 

0.00382 0.00272 40.44 2270-x 
Middle span 

0.05563 0.01482 275.37 2270-y 
 

SPIS, soil pile interaction support; FBS, fixed base support. 
 
 

 

than 0.8 times. For 30%X+100%Y earthquake direction, the 
top of piers response shows the transversal maximum 
displacement of SPIS is seven times higher compared to 
FBS, while longitudinal displacement is more than 0.87 
times. 

It is the same for middle span maximum displacement 
responses. For 100%X+30%Y earthquake direction, the 
middle of span response shows the transversal maximum 
displacement of SPIS is twice higher compared to FBS, 
while longitudinal displacement is more than 0.5 times. For 
30%X+100%Y earthquake direction, the middle of span 
response shows the transversal maximum displacement of 
SPIS almost three times higher compared to FBS, while 
longitudinal displacement is more than 0.4 times. 

This seismic analysis approved the Eurocode 8 part2 
statement which says that the soil-pile interaction effects 
are accounted due to the soil flexibility contribution that is 
more than 20% of the total displacement at the top of the 
pier. 

The analysis results are higher compared to the study 
that had been done by Chang and Robertson (2003). This 
is because, only continuous bridge (non-integral) was 
considered in his study. Based on Chang and Robertson 
(2003), for continuous bridge, transverse pier displacement 
for models with soil springs were up to 21% larger than 
model without soil springs.  

Time history analysis of bridge model was performed by 
using the earthquake ground motion input at the surface 
(Figure 4). Based on the analysis result (Figures16 to 19), 
soil-pile interaction support bridge produced the maximum 
axial, shear force and bending moment for longitudinal and 
transversal direction for pier and deck. However, for pier 
response, the axial force of fixed base support bridge gives 
higher response compared to soil-pile interaction support 
bridge. 
 
 
Conclusions 
 
In this study, a detailed step by step soil spring, bridge 
modelling and seismic analysis procedure of integral 
prestressed concrete box-girder bridge was presented 
clearly. As a conclusion, soil-pile interaction support 
should be considered in seismic analysis due to the 
following statements: 
 
i. Soil-pile interaction support gives longer period of 
structure compared to fixed base support; 
ii. The displacement of soil-pile interaction is higher 
compared to fixed base support. The increasing of 
displacement happens more at transversal direction 
event for deck and pier; 
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Figure 16. Deck response for fixed base supports under both earthquake direction. 
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Figure 17. Pier response for fixed base supports under earthquake direction. 
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Figure 18. Deck response for soil-pile interaction support under both mix earthquake direction. 

 
 
 

iii. All forces response from soil-pile interaction support is 
higher compared to fixed base support, except the axial 
force response of pier. 
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Figure 19. Pier response for soil-pile interaction support under both mix earthquake direction. 
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