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Forecasting suspended sediment load is crucial for river water quality continuous management. This 
paper investigates the accuracy of a time-lagged recurrent network (TLRN) for forecasting suspended 
sediment load (SSL) occurring episodically during the storm events in Kaoping River basin located in 
Southern Taiwan. For this study, two major stations of Kaoping River basin; Liukwei and Lao-Nung are 
taken into account where important data have been collected between years 1984 to 2005. The ability of 
TLRN in SSL estimation is assessed by using hydro-meteorological data such as rainfall, water level 
and discharge as input sets. The network accuracy was evaluated with the goodness-of-fit measures of 
normalized mean square error, mean absolute error and coefficient of correlation between estimated 
and observed data. The results showed that the TLRN has a good performance in SSL forecasting when 
using only water discharge variable as the network input for both stations. However, Liukwei station 
presented a better statistical performance than Lao-Nung. It was found that among the input variables 
considered in this study, water discharge is the most effective for sediment load forecasting in the two 
stations. Finally, TLRN can be successfully employed in Southern Taiwan for modeling river 
sedimentation if the other factors related to SSL are apprehended. 
 
Key words: Neural network, performance, hydro-meteorological data, river sedimentation, water quality 
management. 

 
 
INTRODUCTION 
 
River water quality management has become increasing-
ly complex in recent decades in Taiwan, with higher 
demands for clean water for domestic and industrial use. 
River water quality is troubled by the presence of the 
suspended sediment load transported by the runoff. The 
river water quality problem can be addressed through a 
continuous monitoring of the suspended load for 
providing at real time reliable information to users and 
managers (Argent et al., 2009). Sediment load estimates 
can contribute to improved monitoring design and water 
quality, decision-making, model application, and 
regulatory formulation (Harmel et al., 2009). Estimates of 
suspended sediments load are essential for the river 
transportation research and management. According to  
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Leahy et al. (2008), river study is necessary for reliable 
study is necessary for reliable forecasting, but it is a 
difficult task due to the complexity and inherent non-
linearity of its hydrological system. The sediments trans-
portation monitoring required a good sample technique 
which is very lengthy and expensive (Pavanelli and 
Palgliarani, 2002). Therefore, it is necessary to develop a 
model that can predict accurately the suspended 
sediments load from continuous water data set. 

The artificial neural network (ANN) is capable to model 
any arbitrarily complex nonlinear process that relates 
sediments load to continuous hydro-meteorological data. 
The artificial neural network is a massively parallel distri-
buted information processing system based on concepts 
derived from research on the nature of human brains, 
and has many distinct advantages for data modeling (Zhu 
et al., 2007; Koutsoyiannis, 2007). The ANN is capable of 
storing the information gained by the process of learning, 
and of making it available for future use. The  emergence   
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of ANN technology has provided many promising results 
in the field of hydrology and water resources simulation 
(Kumar et al., 2002; Sudheer et al., 2003; Trajkovic et al., 
2003; Adeloye and Munari, 2006; Kisi, 2007; Rai and 
Mathur, 2007). The hydrological characteristics of the 
river such as sediments concentration change temporally 
and spatially, therefore the difficulties for their estimation 
have encouraged the employment of the artificial neural 
models. Artificial neural network is as a worth technique 
in sediment modeling (Cigizoglu and Alp, 2006). It appro-
ximates any arbitrary function between input and output 
vectors, drawing the function estimate directly from the 
training data. The artificial neural network models are 
primarily lumped, thus needing only cause-effect informa-
tion of the system (Sahoo, 2006). According to Cigizoglu 
and Alp (2004), ANNs generally were found superior to 
conventional statistical techniques in suspended sedi-
ment estimation. In general, it has been demonstrated 
that the modeling of sediment, including load in a river is 
possible through the use of the ANN. 

In recent years, several studies using neural network 
algorithms have been carried out by researchers in river 
water resources modeling. Among them exist the employ-
ments of generalized regression neural network for river 
sediment load (Ki�i, 2006), feed forward back propaga-
tion network (Wang et al., 2008), adaptive neuro-fuzzy 
inference system for river flow forecasting (Firat, 2008), 
radial basic function for rainfall-runoff modeling (Cigizoglu 
et al., 2007). Another promising ANN type used with 
success for time series data modeling is the time-lagged 
recurrent networks (TLRNs). The TLRN is a very appro-
priate model for processing temporal (time-varying) 
information. Examples of temporal problems include time 
series prediction, system identification and temporal 
pattern recognition. The training algorithm used with 
TLRN is more advanced even than the standard back-
propagation. The time-lagged recurrent network topology 
is found to be very suitable to deal with flood forecasting 
problem (Xue and Dibike, 2001). It has a fast 
convergence in time series data prediction than the back-
propagation learning algorithm that can get trapped in 
local minimal (Hussain et al., 2008). The performance of 
TLRN over the standard back-propagation for time series 
data prediction is recently evidenced in Badjate and 
Dudul (2009), Kale and Dudul (2009) studies. According 
to Geqay and Liu (1997), the recurrent network filters 
noise successfully in small as well as large samples. In 
the past, Coulibaly and Evora (2007) indicated that a 
major feature of this architecture is that the nonlinear 
hidden layer receives the content of both the input time 
delays and the context units. Consequently, the TLRN 
has both static and adaptive memory that makes it suit-
able for complex sequential input learning. To the know-
ledge of authors, there is a very limited literature related 
to TLRN application for river suspended sediment load 
modeling. However, due to the river data serial structure, 
TLRN can provide real time sediment load information. 

 
 
 
 

Although ANNs offer advantages over mechanistic or 
conceptual hydrological models for river study, their 
applicability is limited by the fact that each ANN has to be 
specifically optimized and trained for a particular pre-
diction problem and suitable input vectors selected. Kote 
and Jothiprakash (2008) employed successfully time-
lagged recurrent networks for river level prediction. Time- 
lagged recurrent networks are known to be more po-
werful than feed forward multilayer neural networks and 
in nonlinear systems identification and control (Liu, 2001). 
TLRN is one of the most challenging works in water 
resources engineering. In this study, TLRN algorithm has 
been selected to carry out the suspended sediment load 
forecasting. The complex nonlinearity process of 
sediments flow provides an impetus for evaluating the 
accuracy of TLRN performance in Southern Taiwan. This 
could have potentially an advantage to monitor episodic 
rivers sediment flux at short time step during the storm 
events. However, in Taiwan, very few studies reported 
the use of ANN on river suspended sediment load 
modeling. 

The main objective of this paper is to evaluate the 
accuracy of a TLRN model for forecasting suspended 
sediment load of Liukwei and Lao-Nung stations located 
at Kaoping River basin area in Southern Taiwan, where 
most of the water from the river is supplying for civil and 
industrial use. The activities in Southern Taiwan have 
been flourishing in recent years, the population has in-
creased, and the demand for quality water and industrial 
water use increased around the Kaoping River basin. In 
this present study, the suitability of TLRN with time delay, 
laguarre memory structure is investigated for suspended 
sediment load forecasting by using the daily rainfall data, 
water level and discharge as input sets. Suspended 
sediment forecasting is essential to provide basic 
information on a wide range of problems related to the 
water quality monitoring, the operation systems and the 
river management. 
 
 
Study area  
 

Kaoping River basin is located in Southern part of Taiwan 
at 22° 57’ 30” North latitude and 120° 12’ 0” East longi-
tude (Figure 1). Its two major stations selected for this 
study are the Liukwei and Lao-Nung. The Kaoping River 
basin is the largest and the most intensively used river 
basin in Taiwan. It is the Taiwan's second-longest river 
with its 171 km long and drains a catchment covering 
3,257 km2 of land that is roughly 9% of the island's total 
area. The island is well known as a typhoon prone area. 
Because of abundant rainfall during the summer season, 
the river accounts for as much as 12.7% of the total water 
on the island. But, the abundant river water has been 
contaminated by illegal dumping and sewage discharge 
from pig farms upstream. The pollution has left residents 
in Southern Taiwan short of water every year. According 
to Kao et al. (2003), the  Kaoping  River  basin  is  heavily 
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Figure 1. Sketch map of the investigation area. 

 
 
 
polluted. Therefore, concern about the deteriorating con-
dition of the river led the Government of Taiwan to amend 
the relevant legislation and strengthen the enforcement of 
the discharge regulations to effectively manage the river 
and control the pollution. Beside the industrial wastes 
exists the river sedimentation problem occurring during 
the storms events. The data for this study are conti-
nuously recorded, year to year, and the episodic loadings 
of suspended sediment occurrs during the storm events. 
The data sets collected between years 1984 to 2005 for 
this study were comprised of daily water level (mm), 
water discharge (m3/sec), rainfall (mm) and suspended 
sediment load (MT/Day). In Kaoping area, the total 
cumulated of annual rainfall were around 3054 mm for 
the year 2005 with an abundance rainfall occurring in the 
wet season from May to October, conversely to the dry 
season from November to April.  
 
 
Data processing 
 
Daily hydro-meteorological data, which include water 
level (mm), water discharge (m3/sec), rainfall (mm) and 
suspended sediment load (MT/Day), have been collected 
over a twenty five year period. The investigation area has 
a typical rainfall pattern and topography, and most of the 
sediment is due to the typhoon storms. The correlation 
procedure was carried out between hydrological input 
data and suspended sediments load in order to pre-screen 
the potential inputs variables in the sediment loads (Table  
1). From results,  rainfall  and  water  discharge  variables  

show relatively high relationships with the suspended 
sediment load in Liukwei and Lao-Nung stations. These 
two variables might have direct driving force of sediment 
production and transportation in the river. While, the 
water level (WL) variable is poorly correlated to the sus-
pended sediment load. Therefore, in the beginning of our 
study, in order to determine the best configuration, water 
discharge (Q) which provided the highest correlation with 
the sediment load was considered as input of the neural 
network. To ensure an equal treatment for each variable 
in the model, the data are structured in seven different 
combinations of TLRN models. Table 2 illustrates the 
TLNR models and their input data structures. 

The data set had a total of 647 patterns and was 
divided into three parts for the purpose of training (70%), 
cross validation (20%) and testing (10%) to reach the 
best generalization (SNNS, 1995). The training data set 
is used to train the neural network by minimizing the error 
of this data set during the training. The cross validation 
data are used to find the network performance by 
monitoring the training and guard against overtraining. 
Then, the test set is used for checking the overall 
performance of the trained network. 
 
 
TIME-LAGGED RECURRENT NETWORK MODEL 
 
Model theory 
 
Multilayer perceptrons (MLPs) are the most commonly 
used ANN in  hydrological  predictions  (Govindaraju  and
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Table 1. Correlation between hydrological variables and suspended sediment load for Liukwei and Lao-Nung stations. 
 
 Water Level (mm) Rainfall (mm) Water discharge (m3/sec) 
Liukwei 

0.037 0.325** 0.769** Suspended Sediment 
Load (MT/Day) (.173) (.000) (.000) 
Lao-Nung 

0.020 0.254** 0.774** 
Suspended Sediment Load (MT/Day) 

(.236) (.000) (.000) 
 

** Correlation is significant at the 0.01 level (1-tailed). 
 
 

Table 2. TLRN models inputs structures. 
 

Neural network model Input variable 

TLRN1 Q 
TLRN2 R 

TLRN3 WL 
TLRN4 Q, R 

TLRN5 Q, WL 
TLRN6 R, WL 
TLRN7 Q, R, WL 

 

NB:Q (water discharge); R (rainfall); WL (water level). 
 
 
 
Rao, 2000). Their main advantage is that they are easy to 
use, and able to approximate any input/output map. Time- 
lagged recurrent networks (TLRNs) are MLPs extended 
with short term memory structures and local recurrent 
connections. The input layer used the inputs delayed by 
multiple time points before presented to the network. 
Most real-world data contains information in its time 
structure that is how the data changes with time. Yet, 
most neural networks are purely static classifiers. TLRNs 
are the state of the art in nonlinear time series prediction. 
Basically, it is a gradient descent technique to minimize 
some error criteria. The network general architecture has 
three layers and the feedback connection from the hidden 
layer back to the input layer. Training of the TLRN was 
done with back-propagation through time with trajectory 
learning parameters. Back-propagation training involves 
information processing in two directions, the feed forward 
of the input information and the back-propagation of the 
error. The input information is processed in the neurons 
of the input layer and is passed down to the next layer 
through the links. Each neuron calculates its net input. 

The gradients of the error function at time t is denoted 
by )(tE . Considering only the error at time t, output unit 

k ’s error signal is 
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is the activation of a non-input unit i with differentiable 
transfer function if , and ijw is the weight on the connec-

tion from unit j to i . The corresponding contribution to 

ilw ’s total weight update is )1()( −ττηδ lj a , where η  is 

the learning rate, and l stands for an arbitrary unit 
connected to unit j . 

The error path integral occurring at k at time step t is 
propagated back in time for st − time steps, to an arbi-
trary unit υ at time ts < . This scale the error by the 
following factor: 
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For ts << τ let τl denote the index of a generic non 
input unit in the replication of the network at time τ . 
Moreover, let υ=sl  and klt = . 

Figure 2 shows a typical time-lagged recurrent network 
used in this study for the development of suspended 
sediment concentration estimation model. 
 
 
Model parameters 
 
Memory structures: There are several memory structures                                                                                                  
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Figure 2. Time-lagged recurrent network structure. 

 
 
 
at the input layer to choose from the TLRN parameters. 
We have applied Laguerre memory function to the data in 
order to search the best network structure that is the 
lowest value of statistical criteria. The equation (6) gives 
the Laguarre functions in which u  is the memory 
resolution, and 1−z  represents the delay operator. 
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Learning algorithms: The depth of the memory was 
setup to 10, which was later adapted by the network 
according to the Laguarre memory function. The learning 
rule for each layer in this study was the momentum setup 
to 0.7. For the activation function, tangsig transfer 
function which worked best was applied on the hidden 
layer and output layers. The number of nodes so-called 
processing elements in the hidden layers, the number of 
hidden layers and the epoch of learning were determined  
by trial-and-error method. The number of processing 
elements and the number of hidden layers are the two 
major factors to be determined. Since the study focus on 
a single variable forecasting, one output node which is 
the suspended sediment load is exclusively used in the 
output layer.  
 
 
Performance measures 
 
TLRN performances evaluation criteria were the norma-
lized mean square error (NMSE), mean square error 
(MAE) and the square value of coefficient of correlation 
( )r  between estimated and observed   SSL.  
These statistical criteria are given by the following 
equations: 
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Where iy  and id represent the observed and estimated 
values for the ith values, respectively. 

The coefficient of correlation has been used for further 
analysis to evaluate the performance of the models in 
SSL estimation. It is defined as follows: 
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Where iy  and y  are the observed and its average va-

lues; id  and d  are the estimated and its average values; 
N  is the number of observations. Additionally, a linear 
regression d = �1 y  +�0 is applied for evaluating the per-

formance of models, where d is the dependent variable; 
y  the independent variable; �0 the intercept; and �1 the 

slope. 
 
 
DISCUSSION OF RESULTS 
 
A time-lagged recurrent network (TLRN) was configured 
and trained to forecast the suspended sediment load by 
using the water discharge since its correlation with the 
suspended sediment was highly significant. The TLRN 
inferred time dependence through training features of the 
networks used to learn natural input-output relationships 
over time using feedback mechanisms. For setting up the 
best network configuration in this study, the water dis-
charge is the independent variable used as input of the 
network. The suspended sediment load is used as the 
dependent variable for the network output. The determi-
nation of the number of the processing elements (PEs) in 
a hidden layer providing the best training results was the 
initial process of the training procedure. The numbers of 
PE in the hidden layer play a significant role in TLRN 
model performance. The hidden layers may be one or 
more depending on the data type and the model error 
statistics. Also, the numbers of nodes in the hidden layer 
play a significant role in ANN model performance 
(Sarangi and Bhattacharya, 2005). There are no fixed 
rules for developing an ANN model with predefined 
optimum number of PE, hidden layer and epoch 
parameters. Since no clear-cut guidelines are available 
(Vemuri, 1992), therefore, the trial-and-error method was 
decided. The normalized mean square error was chosen 
as the criterion for selection of optimal architecture. 
Various nodes have been tried in this study, and the 
optimum values were found with four and fives PEs for 
Liukwei and Lao-Nung, respectively. Figure 3 shows the 
optimum parameters reaching the best configuration of 
the network during the testing period for Liukwei (a, b, c) 
and Lao-Nung (d, e, f). The results also showed that only 
one hidden layer is enough for computing the sediment 
concentration in these two stations. The highest 
performances of the TLRN were found when learning the 
program at 2000 and 2500 epochs for Lao-Nung and 
Liukwei, respectively. The final and most important step 
in this work of neural networks is to test the program 
designed. 

Table 3 summarizes in the two stations the models 
performances during the testing stage. The models per-
formances are ranged in the study areas from 0.0213 to 
0.9442, 0.2088 to 14.9343 MT/Day and 0.6501 to 8.8593 
MT/Day for r2, NMSE and MAE, respectively. In this stu-
dy, the highest r2 obtained during the  testing  stage  were 

 
 
 
 
0.8010 and 0.9442 for Lao-Nung and Liukwei, respec-
tively. Cobaner et al. (2009) by using four different neural 
network algorithms in Mad River and Arcata/Eureka 
station in California found during the testing stage the 
highest r2 at 0.880. Note that the r2 term provides infor-
mation for linear dependence between observation and 
corresponding estimates values. According to Kisi et al. 
(2009), it is not always expected that the coefficient of 
correlation is in agreement with performance criteria such 
as root mean square error, and an r value equal to 1 
does not guarantee that a model captures the behavior of 
the investigated time series. Therefore, they suggested in 
suspended sediment estimation study the root mean 
square error as the main performance criterion when 
selecting the best model. 

Hence, in this study the normalized mean square error is 
employed as the main criterion for the model determination. 
The TLRN1 model with only water discharge (Q) variable 
provides the highest performances for Liukwei (r2 = 
0.9442, NMSE = 0.2088 MT/Day, MAE = 0.6501 MT/Day) 
and Lao-Nung (r2 = 0.8010, NMSE = 0.4938 MT/Day, 
MAE = 1.0020 MT/Day). Based upon the normalized 
mean square error criteria, the poorest performances 
were obtained with the model of TLRN6 in both stations 
with the highest NMSE, 3.4689 and 14.9343 MT/Day for 
Liukwei and Lao-Nung, respectively. However, the high-
est MAE value belongs to TLRN7 in Liukwei station. For 
time series suspended sediment estimation, a mean 
square error criterion is the best statistical criteria for 
selecting the models since the high correlation does not 
reflect always the model performances (Cobaner et al., 
2009). It can be observed in both stations that the TLRN1 
whose input is only water discharge variable has the best 
accuracy among the seven inputs combinations from the 
NMSE, MAE and r2 viewpoints. From these results, water 
discharge is found as a dominant input variable over 
water level and rainfall data in the observed condition. 
Water discharge seems to be the most effective variable 
among the data considered in this study for Kaoping 
River basin sedimentation. 

Figures 4a and b show the plots of suspended sedi-
ment predicted with the model TLRN1 during the testing 
period for Liukwei and Lao-Nung, respectively. From 
Figure 4, it can be clearly seen particularly for Liukwei 
station that, the time-lagged recurrent networks can be 
potentially used for suspended sediment load forecasting 
when only water discharge variable is available. Accor-
ding to Weigend and Gershenfeld (1994), recurrent net-
works store information about past values in the network 
itself; therefore it can be potentially used for forecasting. 
From the results of this study, neural network can be a 
potential estimation method which could be used for a 
better understanding of sediments flux. Cigizoglu and Kisi 
(2006) reported on the nonlinearity of the neural network 
so-called black box model which seems to be a useful 
alternative for modeling the complex suspended sedi-
ment series. The predictive accuracy of the neural 
network model was found to be better for  modeling  sedi- 
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Figure 3. TLRN performances statistic under the variation of the network parameters (processing 
element, epoch, hidden layer) for Liukwei (a, b, c) and Lao-Nung (d, e, f) during the testing process. 

 
 
 
transport (Bhattacharya, 2005). The good performance of 
neural network for river suspended sediment prediction 
study can be attributed to their capability to capture the 
non-linear dynamics and generalize the structure of the 
whole data set (Celikoglu and Cigizoglu, 2007). Previous 
report (Kisi, 2004) demonstrated from the daily 
suspended sediment concentration simulation that, the 
modeling of sediment concentration in a river  is  possible  

through the use of neural network. In a recent study done 
by Kisi et al. (2009), the advantages of using the artificial 
neural network are their flexibility and ability to model 
non-linear relationships. So, this technique could be 
suggested for sediments forecasting in Kaoping River 
basin. The results from combining the inputs variables 
which are represented by TLRN4, TLRN5, TLRN6 and 
TLRN7 showed significant decreasing of the models  per-
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Table 3. Time-lagged recurrent network models performance statistics summary during the testing stage. 
 

Location Model Input structure ∝∝∝∝1 ∝∝∝∝0 r2 NMSE MAE 
TLRN1 Q 1.1974 25253 0.9442 0.2088 0.6501 
TLRN2 R 0.6802 123898 0.5246 0.5852 1.4906 
TLRN3 WL 0.1601 291864 0.0213 2.2157 3.3673 
TLRN4 Q R 0.9062 13532 0.7628 0.2644 0.8283 
TRLN5 Q WL 0.7135 219440 0.1687 2.8475 2.7146 
TRLN6 R WL 0.3812 265526 0.0497 3.4689 3.4072 

Liukwei 

TRLN7 Q,R, WL 0.4971 323886 0.0869 3.3837 3.6011 
TLRN1 Q 0.325 74699 0.8010 0.4938 1.0020 
TLRN2 R 0.249 16877 0.0500 1.9024 1.8818 
TLRN3 WL 0.936 77496 0.2500 9.6026 7.8147 
TLRN4 Q, R 0.6070 16099 0.2367 1.5568 1.8719 
TLRN5 Q, WL 0.5150 16877 0.4746 0.6480 1.7657 
TLRN6 R, WL 0.6340 87978 0.0598 14.9343 8.8593 

Lao-Nung 

TLRN7 Q, R, WL 0.4880 16054 0.4065 0.7983 1.7987 
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Figure 4. Suspended sediment load estimated by TLRN1 using water discharge variable during the testing stages for Luikwei (a) and Lao-
Nung (b) stations. 
 
 
 
performances. The variables such as rainfall and water 
level variables are less effective as evidenced by the 
performances of TLRN2 and TLRN3 models in compari-
son with TLRN1 which used water discharge. In general, 
it was observed that the performance of TLRN models for 
Liukwei is significantly higher than Lao-Nung. Even using 
the most effective water discharge variable, TLRN1 pre-
dicts better in Liukwei than Lao-Nung. This implied that 
some key variables causing the suspended  

Other factors involved in the sediment loads but not 
included in the network input could explain the perfor-
mance of TLRN for Lao-Nung station. Studies done by 

Zhou et al. (2004) and Lu (2005) denoted that human 
activity related to land surface disturbance increase the 
suspended sediment flux.  Data  analysis  of  hydrological  
processes of the watershed reveals that the water quality 
parameters are mostly affected by weather forces and 
land use of the watershed (Sahoo, 2006). Human activity 
could increase the suspended flux independently to the 
water discharge. More input variables need to be explored 
for modeling with high accuracy the suspended sediment 
load in Kaoping River basin. Finally, time-lagged recur-
rent network algorithm can be considered for hydrological 
modeling studies in Southern Taiwan where reliable esti- 



 
 
 
 
mates models are not available. 
 
 
Conclusion 
 
Time-lagged recurrent network was applied to forecast 
daily suspended sediment load in Kaoping River basin by 
using the data of rainfall, water level and water discharge 
as input variables. From the results of this study, it was 
observed that water discharge is the most effective 
variable for event suspended sediment loads forecasting 
in Kaoping River basin. TLRN is capable to forecast 
successfully the episodic event suspended sediment load 
using only water discharge in both stations. However, the 
statistical performances were found to be high in Liukwei 
than Lao-Nung station. Additionally, the water discharge 
is seen as the most dominant among the variables consi-
dered for the suspended sediment loads forecasting. The 
results of Lao-Nung station indicate that it must be some 
key variables that have caused the suspended sediment 
loads such as land use due to human activity which are 
missing in the neural network model. Therefore, addi-
tional information about the land uses information which 
are not taken into account in this study are extremely 
required to be into the model for Lao-Nung station. 
Human activity related to land surface disturbance could 
probably increase the suspended sediment flux indepen-
dently to the water discharge. Time-lagged recurrent 
network can be successfully employed in Southern 
Taiwan for providing real time information related to rivers 
sedimentation problem if the factors causing the 
sediment loads are apprehended. 
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