
International Journal of the Physical Sciences Vol. 6(21), pp. 4977-4989, 30 September, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.1114
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Using agents to improve the usability of the PSP
automated tool

Mohd Hairul Nizam Md Nasir1*, Salmiza Saul Hamid2, Mustaffa Kamal Mohd Noor1, Zarinah

Mohd Kasirun1 and Mohd Khalit Othman1

1Faculty of Computer Science and Information Technology, University of Malaya, Malaysia.
2Department of Advanced Research and Consultancy, Two Sigma Technologies, Malaysia.

Accepted 6 September, 2011

Various tools have been produced to assist personal software process (PSP) practitioners in
implementing their processes, which require strong discipline from the individual software engineer.
Nevertheless, most of the currently available tools still require software engineers to become involved
in time-consuming manual processes and offer limited assistance. This research study presents the
substantial potential for software agents to be incorporated into PSP automated tools by introducing
four new agent-based features. These features are the proactive interface agent, an integrated Gantt
chart with sensor-based scheduling, prediction ability and indirect management through multi-agent
deployment. This agent has the additional features of flexibility and privacy. Integrated with the
proactive assistant, the proposed tools are capable of collecting and processing accurate PSP data
metrics and translating them into informative and meaningful information for both the software
engineer and the project manager. The use of agents demonstrated in this paper is meant to
significantly help engineers to practice all of the PSP processes effectively and in a timely manner and
to get feedback on their performance with a visualisation platform at any time.

Key words: Personal software process, software agent, proactive assistance, software engineer, interface
agent.

INTRODUCTION

In recent decades, the software development process
has changed extensively. However, the gap between the
demands of the software industry and the requirements
of the development process in software delivery is still
large. Despite considerable effort on the part of software
engineer, software production is still sometimes delayed,
costs can exceed the budget and user requirements are
often not sufficiently met. For more than forty years, the
software development experience has not succeeded in
overcoming these problems. Researchers have
persevered and been proactive at seeking a solution that
improves the control of their software development and
efficiently produces quality products.

For the sake of these goals, there has been increasing
attention to the discipline of the software process to miti-
gate software development setbacks. Process standards,
such as ISO 9000, capability maturity model integration

*Corresponding author. E-mail: hairulnizam@um.edu.my.

(CMMI) and software process improvement and
capability determination (SPICE) have been proposed
and implemented to obtain more predictable
improvement outcomes by incorporating these disciplines
and procedures into organisations’ software development
processes. Because most process improvement
initiatives are focused on the organisational level and are
applied with a top-down approach, their strategies are
less applicable when scaled down to the level of a small
organisation. With the intention of providing a strong
foundation for the adoption of the CMM framework,
Humphrey (1995b) initiated the personal software
process (PSP), which is focused on the point of view of
the individual software engineer. The PSP provides a
framework to assist software engineers to practice quality
work, and it has been proven to dramatically improve the
quality, predictability and cycle time for software-intensive
systems. Various tools have been produced to assist
PSP practitioners at implementing their processes, which
require strong discipline and commitment from the
individual software engineer. However, most of the

4978 Int. J. Phys. Sci.

currently available tools still obligate software engineers
to become involved in time-consuming manual processes
and offer limited assistance, especially in properly
visualising the actual performance and productivity of
individual engineers. These limitations have placed PSP
strategies at a huge disadvantage, in spite of their
powerful potential and clear benefits.

This paper presents the idea of incorporating software
agent features into a PSP automated tool. This research
is aimed at increasing the usability of the PSP tool by
incorporating four software agent features, namely; the
proactive interface agent, an integrated Gantt chart with
sensor-based scheduling, a prediction capability and a
form of indirect management through multi-agent deploy-
ment; we also propose two additional features for the
PSP automated tool, which are flexibility and privacy.

Overview of the PSP

PSP is a defined software development framework that is
based on a process improvement principle with the goal
of assisting individual software engineers in producing
quality work (Hayes and Over, 1997). Through defined
techniques and operations prepared in PSP scripts, PSP
practitioners are guided thoroughly with the purpose that
they learn the most effective software process methods,
practice them and gradually improve their skills in
managing their own work. Scripts in general provide a
guideline to ensure that projects meet their requirements
and drive PSP practitioners from the initial planning
phase to the post-mortem phase of software projects.
Together, various types of forms that represent each of
the defined activities are provided to guide software
engineers in their development works.

PSP emphasises a continuous measurement practice
that requires individual software engineers to collect,
record and analyse three elements in the software
development activity, which are time, defect and size.
These metrics offer functional value to software
engineers and are used to statistically analyse their
performance on a project. A PSP framework consists of
seven levels; at each level, new skills and techniques are
incorporated into the process (Humphrey, 1996). A cyclic
development method encapsulates the whole PSP
process to be certain that measurement and improve-
ment skills can be built in a natural and consistent
manner (incrementally ordered).

PSP facilitates the development of planning skills
whereby engineers are trained to identify their tasks, to
make estimates based on similar experiences and to
judge how they are performing; all of these skills lead to
accurate estimates. Humphrey (1995b) mentioned two
types of planning; the first is based on a period of time
and the second is based on the activity. Both types are
important in the planning phase of scheduled work,
recording the time and the defect measurements and
generating an activity progress report. A summary of

information is provided at the end of the post-mortem
phase. With this report, engineers can revise the project
to resolve defects, update their personal checklist and
measure their performance by comparing their current
and previous work. Plan and track work better, estimate
time better, generate high commitment towards quality,
ensure continuous process improvement, increase cap-
ability of individual and improve personal work process
are supposed to be the results of PSP (Humphrey,
1995a). In other words, each new project can benefit
from the data collected in past projects, as PSP provides
insights into improving the planning, productivity and
quality of future work.

There are seventy-six documents, which include forms,
processes scripts and instructions that are packaged
together in PSP to be used by software engineers to
collect software performance data. To support and
simplify the adoption of PSP practices, a number of
automated PSP tools have been developed. These tools
were initially built to support digital spreadsheets and
computerised software process systems related to PSP
data collection and analysis. The collection and analysis
of all the PSP data are too difficult without the use of
automated tools. The subsequent tool releases present
upgraded versions that include higher analysis for
digitally recorded information. A research study pointed
out that integrated tools in a PSP are necessary to obtain
high-quality PSP data (Disney, 1998). A single tool with
all needed functionalities could help PSP users to focus
only their work results rather than struggling with the
complexity of the PSP process. In fact, the collection and
analysis of all the PSP data are too tedious if performed
manually (without automation). Although, the currently
available PSP tools offer multiple choices of functions to
help software engineers utilise the PSP and their usage
is optional.

MATERIALS AND METHODS

A detailed study was conducted on the two main research areas,
namely PSP and software agents. The notion of the PSP and its
framework were studied and analysed, covering the analysis of
PSP scripts, forms, procedures, formulas and tools, to obtain an
understanding of the PSP operational framework. At the same time,
this study was conducted in the area of software agents, which
include concepts and taxonomies. The purpose of this study is to
determine the possibility of incorporating software agent features
into our proposed tool. We believe that by incorporating software
agent features, an informative and proactive version of a PSP
support tool can be built.

Subsequently, six widely discussed and/or recently released PSP
tools have been selected and extensively reviewed. The tools are
PSP studio (Design Studio Team, 2009), Dashboard (Team
Process Dashboard, 2009), Hackystat (Johnson, 2001; Johnson et
al., 2001, 2003), Personal Software Process Assistant (PSPA)
(Sison et al., 2005), Jasmine (Shin et al., 2007) and PSP.NET
(Nasir and Yusuf, 2005). The features and limitations of these tools
were compared and analysed. This process led to producing twelve
important features offered by tools, that is, environment, scripting,
data collection, interface, planning wizard, lines of code (LOC)

counter, defect sharing, user available, user privacy, report,
interface agent and metaphor. This comparative analysis is
essential in identifying and deriving a set of features for our newly
proposed tools.

Several solutions are proposed based on limitations identified in
the currently available PSP support tools. These newly proposed
solutions will become features of our new tool. PSP components
and the new proposed features are examined and investigated
separately, and they are treated as modules for the proposed tool.
As a result, high level systems architecture for the proposed system
was developed based on a 3-tier client-server architecture.

Finally, comparative analyses were made to compare our
proposed tools to existing PSP tools based on the identified
features.

Existing PSP tools

In this research, reviewing the six PSP tools enabled the
subsequent comparison of features that are offered by each tool.
The first PSP tool reviewed was PSP studio. This tool was
developed in 1996 to 1997 as a project of the design studio team at
East Tennessee State University (Design Studio Team, 2009). It
automates all seven levels and forms of PSP and is very simple and
straight forward in its implementation. PSP studio, however, is only
supported by the Win32 platform and is driven by the SQL
anywhere database system. Additionally, this tool lacks flexibility
when the PSP process flow is programmed in ‘fix’ mode, which
makes engineers unable to change the process according to their
needs.

The second PSP tool, Dashboard, is a powerful tool that helps
users to plan work and track progress easily. This tool was built by
the U.S. Air Force in 1998 as a fully automated PSP tool (Team
Process Dashboard, 2009). The main dashboard window is
designed to be as small as possible to coexist with an integrated
development environment (IDEs) and other developer tools. Built-in
time and defect logs allow the user to view, filter and edit time and
defect data. The process dashboard, on the other hand, supports
planning and tracking, data collection, data analysis and data
export. This tool is fully implemented in Java and runs on various
platforms, such as Windows, Unix, Linux and Macintosh. Finally,
the dashboard displays graphs and reports for performance
analysis, which are available only at the end of the project
completion phase.

Another tool, Hackystat, is an open source framework for
software project data collection and analysis. Hackystat was
developed in 2001 by a group from the University of Hawaii in
collaboration with commercial software companies (Johnson, 2001).
Using Hackystat, users typically attach software 'sensors' to the
development tools that come with the framework. The sensors
automatically collect metrics data from the engineers’ activities and
send the data to the Hackystat server to be analysed. Hackystat,
however, is not compliant with every developmental environment
tool, including notepad (Johnson et al., 2003). In addition, this
appliance focuses merely on automated metrics collection and
analysis rather than on the PSP processes as a whole (Shin et al.,
2007).

The fourth PSP tool, personal software process assistant
(PSPA), is a tool that was designed at De La Salle University to
address the issue of recording difficulties. Its concepts were based
on observed improvement feedback from a student with defect
handling skills in an advance course (Sison et al., 2005). PSPA is a
web system that is written in the .NET language and is combined
with a plug-in agent written in JAVA. The ability to perform
automatic recording of compile defects in a variety languages, such
as C and JAVA, differentiates the tool from others.

The fifth PSP tool, Jasmine, was developed to help engineers
perform the PSP (Shin et al., 2007) by automating data collection

Nasir et al. 4979

and providing enhanced support for planning and tracking. It has an
electronic process guide (EPG), which allows easy navigation on
PSP elements and an experience repository (ER), which allows
process-related information to be stored and shared. Both EPG and
ER integration help engineers to understand and use PSP
effectively.

The last PSP tool reviewed here, is the PSP.NET, and was
developed for a dissertation project at the University of Malaya
(Nasir and Yusuf, 2005). This tool addresses all levels of PSP from
PSP0 to PSP3.0, including all fields, log forms, checklists,
templates and summary. The core purpose of PSP.NET is to
simplify and facilitate the gathering of personal measures with an
individual-centric focus and to provide direct access for analysis of
the data collected (Nasir and Yusuf, 2005). However, the
shortcoming of the overhead in the PSP data collection process still
remains, because PSP.NET requires a significant amount of human
intervention. Furthermore, the tool is inapplicable to the project
manager.

Issues with the current PSP tools

Lack of visualisation

Existing automated PSP tools facilitate software engineers’ tracking
of their development work so that they can manage their schedules
effectively. In the process, there are many computerised forms that
must be filled out and organised, especially if the engineers are
involved in many projects. This situation makes it difficult for the
software engineers to plan and track their actual position on a
project’s individual task unless their work progress is automatically
processed and updated every time they input new data into the
forms. Although, recently developed PSP tools provide data
analysis functions, meaning that the input (inserted) raw data will be
automatically processed and generated as reports, these reports
are available only at the end of each project phase completion. The
reports include a project plan summary (PPS), time-related reports
and graphical reports. If the engineers need to check on their
performance or work progress in the middle of project development,
a report/result must be manually generated. This specification
demands extra time and commitment, not only from the individual
software engineers, but also from the project managers, because
they have to spend significant time visiting and speaking to their
engineers whenever needed. Thus, currently available automated
PSP tools are considered to be lacking in terms of the visual
presentation of work progress and performance.

This problem can be addressed by transforming existing PSP
tools into a visualisation plan to help engineers move quickly
through the process of presenting their work progress. Additionally,
it is practical if the project manager is given a space to monitor the
software engineers’ progress at any point in time without personally
going to each developer’s workstation or waiting until a progress
report is sent to them. This ensures that they can make appropriate
decisions or adjustments (if needed) as early as possible.

Conventional GUI

Current interaction with an automated PSP tool is via a
conventional graphical user interface (GUI), which follows an
interaction paradigm known as ‘direct manipulation’. In this
paradigm, a PSP program will only do something if it is explicitly
directed to perform that particular task, for example, by clicking on
an icon or selecting an item from a menu. We follow the instructions
and click the button to fill in the form or perform work without having
an assistant to give advice or recommendations on the required
actions. Timely predictions are pointed out as a key to improve the
effectiveness of the whole software process (Ardil and Sandhu,

4980 Int. J. Phys. Sci.

2010). A PSP automated tool is typically organised according to
generic process functions rather than the context of the task and
situation (Hassan et al., 2009). It is clear that direct manipulation
interfaces offer limited usage in terms of how PSP practitioners
interact with the tools to overcome their overhead in the PSP
practices. This restriction is applied to the PSP tools reviewed here.

Rigidity in phase flow

The final issue with existing PSP tools is their rigidity. The PSP can
be divided into six phases: planning, design, coding, compiling,
testing and post-mortem (Humphrey, 1995b). Although, these
approaches are generic, they do not allow software engineers to
move back and forth between phases. Instead, software engineers
have to move sequentially through each phase that is appropriate
for the process. For example, when a user is in the coding phase
and then discovers a plan defect, he or she cannot go back to the
planning phase to fix the defect (Hassan et al., 2009). Disney
(1998) classified this case as a sequence error. ‘The time recording
log shows a student moving back and forth between phases, such
as compile and test phases, instead of sequentially moving through
the phases appropriate for the process’ (Disney and Johnson,
1998).

This limitation forces process restrictions on software engineers,
which makes process improvement impractical and inflexible. In a
development environment, such as IBM’s visual age for Java, the
code is automatically compiled as it is saved, which makes the
compiling phase unnecessary.

Hence, the tools for an improvement process model should not
congeal, rather should support the practice by offering flexibility in
their process flow so that the process can be conveniently used by
the user. Currently, only PSP.NET provides this flexibility.

PROPOSED AGENT-BASED TOOLS

Agent-based technology has recently received a high
level of interest, and is becoming popular in the software
engineering field, particularly due to its outstanding
potential for the development of application tools. For
example, Microsoft has employed agent technology in
their office application known as ‘clipper’ or ‘paperclip’,
which is an interface agent that assists users by making it
easier, more pleasant and more human for users to
interact with Microsoft applications (Johnson et al., 2000).
Another example is research conducted by Amiri and
Shirgahi (2011) which recommended intelligent agents
for electronic market buyer and seller to increase the
effectiveness of computer decision making systems.

Inspired by the Microsoft paperclip agent (Maes, 1994),
PSP support tools should also be upgraded to have
informative and assistive responses to its practitioners in
a natural way, such as through an interface agent
expression (Hassan et al., 2009); this strategy would also
reduce the manual intervention of humans and increase
automation in all of the PSP processes.

Interface agent is one of the agent categories. The
other categories are information, intelligent collaborative,
reactive, hybrid and mobile agent. An interface agent can
be described as a personal assistant to a particular
application. Such an agent usually works by observing,
gathering feedback from the user, receiving explicit

instructions and communicating to other agents to collect
information. Interface agents have the ability to learn and
can trigger actions automatically when required (Maes,
1994).

Based on the shortcomings identified in the data
gathering and analysis phase, we next describe the
proposed features for the automated PSP tools.

Proactive user interface assistants

Current PSP automation is comparable to traditional
command-line or menu-driven interfaces, which are
known as conversational user interfaces. The user enters
an input; the system reacts by receiving the input, makes
the computation, records the result and displays the
output. This method requires the users to manually read
and analyse the result produced by the tool.

The visualisation information method can be effectively
implemented using an interface agent, which supports
the software engineer in the PSP environment. The user
can see and view all the processes and their
performance through the interface agent, which retrieves
the information by communicating with other agents and
a knowledge repository. Moreover, the interface agent
proactively alerts the software engineers if their progress
is too slow or needs more attention. At the project
manager level, the software agent proactively updates
the project status performance and the team member
status performance based on the PSP metrics on a real-
time basis. In this case, tracking data are always
available in real time, and the main emphasis changes
from collecting tracking data to making decisions with the
data and taking corrective actions based on the tracking
data. Moreover, based on the analysis of the current and
previous project data, the interface agent will also
proactively report any interesting patterns to the project
team. This approach makes the automated tool more
intelligent, and proactive assistants can wrap the tool with
agent capabilities rather than producing only raw
graphical reports at the end of a phase or project; these
strategies are currently being implemented in some PSP
automated tools.

Integrated Gantt charts with sensor-based
scheduling

In the software development process, projects often fail
because engineers are unable to see progress toward
their goal as the project develops. Thus, it is important to
guide engineers to ensure that a project runs as planned.
The solution is a Gantt chart. The Gantt chart is a
graphical representation that shows the tasks and
milestones for a project. A Gantt chart is a well-known
tool and is easy to build; however, Gantt charts are
difficult to follow, mainly because the chart is rarely auto-
mated and is typically not built into an automated tool,

including a PSP tool. Although, the PSP is well-known as
a method that can help engineers to observe their
personal performance progress, it is difficult for the
developer to visualise where they are with respect to a
milestone or a checklist.

Our proposed tool has a built-in Gantt chart function,
where the deadlines for every task keyed in by the
engineers can be visualised in the form of a Gantt chart.
This capability provides informative and meaningful
information. For example, once a cursor is moved to
project timeline in the Gantt chart, the time budget
information will automatically appear to let engineers
know how many days they should spend on each task or
phase.

Prediction ability

Prediction ability means that an agent can analyse
historical data and, thus, learn from previous experiences
and provide recommendations and advice. With current
PSP tools, engineers can view their project status using
product plans. However, engineers must trace their
progress through a report form or with a generated graph.
It is difficult for software engineers to obtain information
about their progress when completing a task. Moreover,
no current PSP automated tools provide predictions to
improve individual performance.

For example, when discussing the remaining duration
and effort estimation errors in a software development
project, Morgenshtern et al. (2007) used ‘estimation error’
to denote the difference between the estimated time and
the actual time. Two types of estimation error were
identified: overestimation and underestimation. When the
actual results exceed the planned values, this condition is
called overestimation, whereas underestimation happens
if the actual result falls below the planned values. Both
terms are familiar estimation terms; however, without
prediction ability, the current system cannot inform the
engineer about their condition and cannot provide advice.

In a normal system, there is no need for prediction in
the system. However, when a system is related to human
decision-making, this function could be very helpful. An
intelligent agent observes and acts depending on the
situation and the environment. Such an agent could
collect and read data to predict and give suggestions to
the user on what to do base on the information that it
generates. As the agent collects more data, the agent
becomes more intelligent. In this way, the agent-oriented
concept is regarded as encompassing the strengths or
capabilities of other paradigms, such as object-oriented
and service-oriented paradigms (Akbari, 2010). In fact,
this adopted concept in our research can surpass these
methodologies when first, an agent possesses the
common characteristics of an object that comes together
with mental states (Iglesias et al., 1999). Therefore, the
agent in an agent-oriented method is an intelligent version

Nasir et al. 4981

of an object in an object-oriented approach. Second, an
agent not only performs service whenever service is
demanded, but also explicitly acts according to its
environment, meaning that it is capable of providing
information or services whenever necessary (Jennings
and Wooldridge, 1996). An agent can learn and grow
within its environment and can even change its goal over
time (Wooldridge and Jennings, 1995). By being
predictive, an agent can perform tasks with minimal or no
interference towards its goal due to its ability to interact
with the environment or another entity as an information
source. As a result, such an agent can provide a variety
of information.

Indirect management through multi-agent
deployment

In the coming decades, we expect to see increasing
efforts to develop software that can perform large tasks
autonomously and that can hide as many details as
possible from the user. Rather than invoking a sequence
of commands that causes a program to perform small,
well-defined and predictable operations, the user
specifies the overall goals of a task and delegates the
tasks to the computer to work out the details. In the
specification process, the user must describe tasks rather
than just select them from predefined alternatives.

All of the processes in each phase are performed
automatically, and the multi-agent interacts with other
agents to fulfil the goal of the task. Multi-agents can be
designed to consider the context of the task as they
present information and take action. A collaboration of
multi-agents is capable of flexible autonomous action in
some environments. The multi-agent can be flexible in a
PSP environment when the agent is reactive (maintains
an ongoing interaction with its environment), proactive
(takes the initiative) and social (interacts with other
agents). Because of a basic change in the orientation of
the metaphor, the agent-based PSP tool becomes an
assistant rather than just a tool (Maes, 1994).

As the PSP becomes more and more useful to
engineers in small organisations and for self-improve-
ment, a more user-friendly human computer interface is
needed for an increased marketable and commercial
value. If the user could interact with the computer more
naturally, the work could be done in a less frustrating
manner (Hassan et al., 2009). Figure 1 shows the way
that a multi-agent will be operated in our proposed tool.
This figure will follow the original PSP procedure, which
consists of an analysis, design and implementation
process. The multi-agent that is placed between a
standard PSP and the PSP’s personal summary report
will do its part to track and predict based on the input
from the Gantt chart and other interface agent tools.
Once the analysis is completed, the performance will be
visualised for the users and will help the users to achieve

4982 Int. J. Phys. Sci.

Figure 1. Multi-agent as indirect management flow.

their personal targets and to achieve better reports in the
personal summary reports.

Additional features

Flexibility via phase customisation

The automated PSP tool should allow for phase
customisation, which allows software engineers to define
their own development process and to follow it.
Moreover, this tool should not enforce a specific
development process model on software engineers, as in
the case with the PSP. An automated PSP tool should
offer the software engineers full control and the ability to
determine their own way of working. If software engineers
do not desire to have a planning phase or to follow a
sequence like the PSP waterfall model in their software
development project, the tool should support this desire.
Software engineers should have the privilege to define
and customise their own defined processes, with the PSP
tool continuously supporting the data collection and
analysis, based on their process definition model. In
addition, the tool should allow software engineers to
incorporate other non-programming activities, such as
system maintenance, report writing, or documenting with
the PSP. However, if the engineers desire to employ
similar processes as the processes in the PSP waterfall
model, then they may still do so. The aim is to provide an
alternative to achieve flexibility through user customisa-
tion. Our proposed tool offers flexibility by allowing the
users to use either the standard PSP or to use their own
process definitions. In other words, the users are able to
create and customise new process definitions. It also
allows users to add new sub-processes in their process
definition. The new process definition is then saved in the
personal database once the users have completed the

process. Furthermore, phase customisation allows the

users to reorder and rename the phases. The tool will
then generate the PSP forms, Gantt chart and
documents, and continuously support data collection and
analysis based on the users’ process definition model.

Privacy

Evaluating software engineering performance is critical,
especially with respect to project progress. It is the
manager’s responsibility to measure their performance.
However, it is not always practical, given the time
constraints, for a project manager to approach each of
his or her co-workers to see their progress. At the same
time, it is an ineffective way to identify the software
engineers’ performance exclusively after project
completion according to the evaluation report. The
assessment and monitoring of performance throughout a
project is the key to producing a better product and can
even improve the quality of the software engineering
work. The proposed tool is intended to be a benefit to
both engineers (software engineers) and managers
(project managers).

A project manager is constantly in need of knowing the
project status on a real-time basis, to report to their
superior or clients. Unfortunately, it is not appropriate and
might be interruptive to ask the engineers about their
progress every hour. Moreover, the proposed system
provides an efficient way to determine which developer
works better than others with guidelines. In this situation,
we see the usefulness of an agent; an assistant that can
work at any time and tells project managers the current
progress and performance of their engineers.

To maintain privacy and minimise measurement
dysfunction (Nasir and Yusuf, 2005), two user types can
be distinguished by user ID. Applying this control, the
privacy of individual software engineers can be protected,
because their private tasks are irretrievable by others.
With the proposed tool, the project manager can monitor
their software engineers without manipulating data or
altering their work. Project managers may only view the
progress of and provide advice or notes to the software
engineers that they supervise.

High-level design of the proposed tool

Twenty-one modules will be constructed, as shown in
Figure 2. The modules are derived based on three main
components, that is, PSP components, agent features
and tool administration.

The functional aspect of the proposed tool will include
multi-agent features of three different agent roles: the
task agent, search agent and interface agent. The task
agent (TA) acts like a problem solver for the software
engineer and will perform some performance calculations
that are relevant to deciding what actions and states to
consider while following goal formulations. A TA will

Nasir et al. 4983

M
o

d
u

le
s

 fo
r A

g
e

n
t

Figure 2. Modules of the proposed tool.

Figure 3. Sample of project performance output.

calculate and analyse project progress, will generate
graphical results and will become an advisor that
recommends a solution if an error occurs. A search agent
(SA), on the other hand, provides intelligent access to a
heterogeneous collection of information sources. Such an
agent plays an important role in making sure that the
agent system is successful in the searching process by

probing into the database system. An interface agent (IA)
will act as a presenter between an agent system and the
end user that interacts with the user by receiving user
specifications and delivering results. For example, once
IA receives information generated by either the task
agent or the search agent, it will display the result via a
dialog box or an agent icon. Figure 3 provides a sample

4984 Int. J. Phys. Sci.

Figure 4. Samples of agent icons.

of a project status that is displayed using the IA. In
general, the multi-agents in the proposed system are
required to perform several tasks for the purpose of
simplifying the plan and schedule, performing multi-
tasking and visualising the defects and project progress
as well as the performance of the software engineers.

An agent library will be created to handle the multiple
agent actions and behaviours. In this case, a behaviour
controller will be included that will play important roles in
controlling the agent’s appearance. This component will
have a timer to set and will control the agent’s animation,
which is pleasing in appearance and sound. Once any
actions are triggered to the agent, the IA will stop and
reset the agent’s animation and will assign relevant
animations to the agent.

The design of the IA is to be specifically constructed to
bring a positive tone or to lighten the mood of the
software engineers. For example, in the case of good or
excellent performance, the appearance of the IA that
presents the message will be as shown in Figure 4. On
the other hand, a poor performance outcome will use an
agent icon that will advocate engineers to do better and
to improve their performance. This simple approach,
which touches on human psychology, is very well suited
to the working environment of software engineers, who
regularly deal with complex tasks. Based on the study of
social models and interface agents literally and
empirically, Rosenberg-Kima et al. (2007) indicated that
the visual presence of an IA would definitely result in
greater self-efficacy and positive attitudes toward
engineering.

Figure 5 shows the agent’s library of the proposed
system, which is based on an If-Else rule when creating
reactions to consequence results displayed by the
system. Using the If-Else rule, four strategic steps will be
developed into the agent’s library.

Strategy I

“OBJECT” is a type of EVA, “EVENTS” is a module of
EVA, “ACTIONS” is set of EVA’s action, and “EMOTIONS”
is all the emotion types in the agent’s library.

Strategy I is the first step, where all the variables in the
agent’s library are declared. The type of EVA is called
“OBJECT”, the module of EVA is called “EVENT”, a set of
EVA’s actions is known as “ACTION” and all the emotion
types in the agent library are called “EMOTIONS”.

Strategy II

Suppose that x∈TARGET and t is time; then the state-
space searching function Attr (x, t) returns a variable that
represents which emotional state the target x is in at time
t.

In strategy II, this step is the step that returns the
variable that represents which emotional state the target
x is in at time t.

Strategy III

Suppose that x∈TARGET and t is time and R (x, t)
represents the If-Else rules:

If the input is R (x, t) > 0
Else if the input is R (x, t) < 0
Else R (x, t) = 0; normal action.

Strategy III is the step that assigns an action for an agent
through If-Else rules. This step is where the agent’s
policy and characteristics are set up to ensure that the
agent acts as it should.

Strategy IV

IAe finally returns to the emotional type of interface agent
(IA):

y = IAe (Attr (x,t), R (x, t), (y∈EMOTIONS)

Strategy IV is a final step in the agent’s library process. In
this step, IA will represent the result by the agent
emoticon and complete the task of IA.

Cloud computing and internet applications have
become popular; thus, we decided to develop the tool in
a web-based environment. With the introduction of Web
2.0, it is no longer impossible to put a software agent into
a web-based application. Most importantly, the problems
of platform dependent and incompatibility legacy hard-
ware issues can be accommodated (Nasir and Yusuf,
2005), which makes the proposed system applicable to
multiple platforms. This tool will be useless as a user
friendly tool unless it is easily accessible under various
conditions and environments.

Hence, the proposed PSP tool will be implemented as
a web-based application with three important layers: the
presentation layer, the application layer and the database
layer. The following items portray the structural and

Nasir et al. 4985

�

���������	
����

����

�

����	

�����

������	�����

�	�
������
�����
���
���
��������
����
��������	�
��������� 	�

�����������	
���

!��
�������������	�
"�	��
����������	
#	�� �����!�������	�������	�
$������%�����������	
�	��
�������	

�������������	������	

�	��&'��	�"�"������

�	�
�������

��	
�����

�'(
��

!���)�	�
	

���	 	���

�������

��	���

Figure 5. Agent’s library based on If-Else rule.

functional aspect of each layer:

1. The presentation layer: this layer is the outermost layer
in the proposed system, where the system user interacts
with the system. The system user includes individual
software engineers and project managers who participate
in software projects. Different user roles will be granted to
different sections of the system where the project
manager is only allowed to view project progress and
reports, and does not have permission to alter or
manipulate the data.
2. The application layer: this layer is where the multi-
agent system will be operated.
3. The database layer: this layer is the storage area for
the proposed system, which will be composed of two
storage sections; the PSP database data and the agent
library.

The use of multi-agents is the core aspect in this
research, whereby interface agent tools will provide con-
ventional mechanisms for the agents to allow interactions
or communications with the software engineer. Because
the proposed system emphasises the visualisation aspect
of the PSP automated tool, the name chosen is PSP-
expert visualisation agent (PSP-EVA). By incorporating
the multi software agent in this automation system, PSP-
EVA not only is devised to be readily accessible to the
application but also provides an interface informative

agent for communication between the user and the
application.

DISCUSSION

Previously, we highlighted six existing PSP tools. Here,
we compare the existing PSP tools and the proposed
agent-based PSP system, PSP-EVA. Table 1
summarises the similarities and differences among these
tools under twelve criteria: environment, scripting, data
collection, interface, planning wizard, LOC counter,
defect sharing, user available, user privacy, report,
interface agent and metaphor.

Comparative analysis of PSP tools

Web 2.0 enables software agents to operate in a web-
based application system. This structure has the benefit
that a software agent can act as an actor in a web system
that allows network communication between its users.
Actors represent anything that interacts with a system,
and an actor can be an intermediary between a user and
a system. According to Gillet et al. (2008), “an actor is
any entity capable of initiating an event in the
collaborative environment”. The foundation of PSP-EVA
is agent-based, which is a new paradigm in the area of

4986 Int. J. Phys. Sci.

Table 1. Comparative analysis of different types of PSP automated tools.

 PSP studio Dashboard Hackystat PSPA Jasmine PSP.NET PSP-EVA

Environment Windows only Windows, Unix, Linux,
Macintosh, etc

Eclipse, Visual
Studio, Jbuilder Open source IDE Eclipse, Microsoft

office, JBuilder
Windows and
Linux platform

Windows and Linux
platform

Scripting Not stated Java Java Java, C Language Java, XML PHP PHP

Data
collection

Manual and
auto Manual and auto Auto Auto Auto Manual and auto Manual and auto

Interface Simple and
easy to learn GUI GUI GUI and Pop-up

windows GUI GUI & Pop-up
windows GUI and interface agent

Planning
wizard PSP template Project plan template Project plan template Schedule planning

template
Project plan
template

Schedule
planning
template

Sensor based scheduling
(Gantt chart)

LOC counter No Auto (but offline) Auto (sensor-based) Auto(Sensor-based) Auto (Sensor-
based) Auto Auto

Defect
sharing No No No Yes (Auto) No Yes (Auto) Yes (Auto)

User
available Developer only Developer only Developer only Developer and project

manager Developer only Developer only Developer and project
manager

User privacy No No No Yes (login and privacy
task) No Yes (Login) Yes (Login and Privacy

Task)

Report Graphical
analysis report

PPS, graph and chart
(estimation and defect)

Summaries and
graph

PPS, graph (defect
classification and
ranking)

Test report
summary

Graph, and
Report summary

Agent visualisation report
(summary and graph)

Interface
agent No No No No No No Yes

Metaphor Not stated Not stated ‘Toolbox’ ‘Knowledge
management portal’ Not Stated ‘Web-based’ ‘Software agent-based’

software development process improvement. Compared
to other PSP automated tools, PSP-EVA will be built in a
web application platform using the PHP language. Thus,
the system will be applicable to multiple environments
and will span all connected devices. Regardless of its
availability to both software engineer and project
manager, the privacy of an individual software engineer is
protected. Currently, only PSPA supports both the
developer and the project manager, even though this
feature is crucial, and only PSPA and PSP.NET have the
privacy feature.

Some engineers of PSP automated tools include agent
elements in their system that focus only on sensor-based
inputs for tracking lines of code (LOC), but none of these
engineers fully utilised this element for other purposes
(Hassan et al., 2009). Indeed, the sensor-based inputs
are only limited to the eclipse environment, as with Java,
and are not compatible with the use of web platforms for
PSP automated tools. PSP-EVA, on the other hand,
provides sensor-based scheduling to improve planning
quality. Planning is the first step in the PSP process after
gathering and analysing all the requirements for the
project. It is always difficult to track the plan. Although,
PSP has a systematic process structure that helps
engineers to plan and manage their workloads effectively,
it is incomplete without flexible scheduling. Sensor-based
scheduling is proposed to help engineers monitor the
timeline of their project efficiently. It is believed that the
overhead cost of utilising PSP in software development
can be minimised if the scheduling is planned effectively.

The table shows that all the current PSP automated
tools support report generation. However, the reports on
a software engineer’s performance and work progress
are generated only at the end of project phase
completion. The availability of the reports has been
considered to be lacking due to improper data
visualisation. Thus, software engineers still face difficulty
when visualising their performance, which impedes their
ability to maintain fast and high-quality work according to
a project timeline. As an alternative, an autonomous,
adaptive and semi-intelligent agent that provides support
has the benefit of analysing current and previous project
data and reporting interesting patterns. These features
would make the user’s development process responsive
by assisting and reflecting on what has changed in the
current environment. For example, an agent could report
to the user when his or her productivity is outside of the
average bound, when tracking progress against the user
estimation and when alerting the user of whether he or
she is running over or under budget. The agent is like a
proactive mentor who can guide an engineer to improve
his or her performance. Indeed, the application of a multi-
agent system, where, for example, three agents
communicate and collaborate in a coalition, would result
in the fast generation of outcomes process (TSP) and
project (Shamshirband et al., 2010). A coalition approach
is indicated for improving task performance of autono-
mous agents operating in a common environment (Sarne

Nasir et al. 4987

and Kraus, 2005). Thus, PSP-EVA is projected to be able
to predict, analyse and provide immediate suggestions or
reports based on the current situation and environment.
From there, decision-making and improvement processes
can be performed faster.

In terms of functionality, Hackystat is an example of a
PSP tool that can be easily expanded, because
Hackystat can come out with another tool to broaden its
functional coverage. For PSP-EVA, the application of an
agent library paradigm during the design enables easy
system expansion and contraction in the future. New
agents, characters or transformation techniques to be
added can be translated into different behaviours. New
behaviours can be implemented by adding classes to the
database of the agent library. Conversely, a behaviour
that is no longer considered to be appropriate can be
deleted from the system.

Finally, PSP-EVA will be the first PSP tool to implement
an interface agent as a personal assistant to the software
engineer. The central activity of a PSP in data collection
for the purpose of tracking, measuring and analysing
personal performance of an individual software engineer
has required its practitioners to spend enormous amounts
of time and effort to reach their intended benefits. This
condition entails extra commitment, not only from the
individual software engineers, but also from the project
manager and management side, because enough
resources and time must be allocated to measure and
evaluate the empirical software project data. An interface
agent will be an intermediate agent that allows a software
engineer and project manager to communicate with other
agents assisting them in performing their tasks or making
inquiries during user access to the PSP-EVA.

The incorporation of a software agent in the PSP tool
provides a significant advantage, by hiding the complexity
of a PSP system using the agent. PSP methodology is a
good example of how a complex system design can be
simplified from a user’s point of view by having an agent
represent the system to the user. Therefore, the user
would be more comfortable using a complex system with-
out knowing the hidden processes with the assistance of
the agent.

Generally, this solution reduces the overhead of
adopting the PSP method, because the PSP implement-
tation process is simplified and a substantial amount of
time can be saved by using multi-agents to process,
record and display data as compared to accomplishing
these tasks manually. Subsequently, the accuracy of data
processing and visualising ensures that there is a large
quantity of data available. Therefore, software engineers
can concentrate on their development projects rather
than allocating a significant amount of time to collecting,
analysing and computing data concerning their
performance indicators.

CONCLUSIONS AND FUTURE WORK

This paper proposed an agent-based automated PSP

4988 Int. J. Phys. Sci.

tool where software agent attributes are incorporated into
the automated PSP tool, known as PSP-EVA. The
purpose of PSP-EVA is to overcome the three core
issues identified in the current PSP tools highlighted in
this paper: lack of visualisation, conventional GUI and
rigidity of phase flow, and the emphasis is placed on the
effective visualisation aspect.

Six existing automated PSP tools have been studied
and compared, and the comparative analysis shows that
none of the tools use an IA as one of their features. An IA
is capable of providing meaningful responses to a
system’s users and of learning the characteristics of its
environment and triggering automatically when required.
Such a capability would greatly help software engineers
to comfortably use PSP tools as intelligent personal
assistants. Moreover, the existing PSP automated tools
still require much management commitment and effort.
Looking at all the issues, the significance of incorporating
an agent-based paradigm is emphasised by introducing a
new agent (that is, a proactive interface agent), an
integrated Gantt chart with sensor-based scheduling, a
prediction ability and indirect management through multi-
agent deployment with two additional functions: flexibility
and privacy.

Using an agent concept, which reflects a paradigm shift
in the software engineering world, we target the
achievement of better information delivery from the
computer to the user. Furthermore, a software agent has
the potential for producing a paradigm that is closer to the
real world and that provides a more accurate prediction
capability as compared to traditional and object-oriented
approaches. This approach also provides the benefits of
visualisation and anti-freezing, which allow for an easy
evolution of the system. Furthermore, the major
functionalities in the PSP framework not only must be
operated in an automation mode but they also must be
attractive, supportive and persuasive (the presentation of
the analysis result must affirm either the engineers’
strengths or weaknesses) for the software engineers not
to perceive the tool and subsequently the PSP processes
as burdensome. Therefore, the inclusion of compelling
elements in the PSP tool would be highly significant.

The ultimate aim of this research is to develop an agent
in the automated PSP domain that incorporates the
proposed features. Thus, future work would be to
produce the proposed PSP-EVA, a new system that
incorporates an interface agent, supports both the
developer and manager, has privacy controls to prevent
unauthorised users from accessing the data and, of
course, has a friendly GUI, has a good usability and
supports multiple platforms.

For future work, we are now upgrading the PSP
automated tool to address software development at team
level. In this context, we plan to deploy team software
management body of knowledge (PMBOK) on top of PSP
discipline as what has been suggested by (Nasir and
Sahibuddin, 2011a), so that it can better address the

software critical success factors (Nasir and Sahibuddin,
2011b). It is our hope that our proposed research here
will complement existing studies in the area of software
engineering, particularly in software process and software
process improvement.

ACKNOWLEDGEMENTS

We are sincerely grateful to the Faculty of Computer
Science and Information Technology, the University of
Malaya and the Two Sigma Technologies Malaysia, for
supporting this research effort.

REFERENCES

Akbari OZ (2010). A survey of agent-oriented software engineering

paradigm: Towards its industrial acceptance. J. Comput. Eng. Res.,
1(2): 14-28.

Amiri S, Shirgahi H (2011). Designing buyer and seller intelligent agents
in an electronic market based on emergency decision making. Intl. J.
Phys. Sci., 6(6): 1244-1248.

Ardil E, Sandhu PS (2010). A soft computing approach for modeling of
severity of faults in software systems. Int. J. Phys. Sci., 5(2): 074-
085.

Design Studio Team (2009). PSP Studio. Available at:
http://www.cs.etsu.edu/psp/

Disney A, Johnson P (1998). Investigating Data Quality Problems in the
PSP. Proceedings of the ACM SIGSOFT Sixth International
Symposium on the Foundations of Software Engineering, Florida,
USA.

Disney AM (1998). Data Quality Problems in the Personal Software
Process. Master’s Thesis, University of Hawaii.

Gillet D, Helou SE, Yu CM, Salzmann C (2008). Turning Web 2.0 Social
Software into Versatile Collaborative Learning Solutions. First
International Conference on Advances in Computer-Human
Interaction. IEEE Comput. Soc., pp. 170-176.

Hassan H, Nasir MHNM, Fauzi SSM (2009). Incorporating Software
Agents in Automated Personal Software Process (PSP) Tools.
Proceedings of the 9th international conference on Communications
and information technologies, Incheon, Korea, pp. 976-981.

Hayes W, Over JW (1997). The Personal Software Process: An
Empirical Study on the Impact of PSP on Individual Engineers.
Technical Report, Software Engineering Institute.

Humphrey WS (1995a). The Personal Process in Software
Engineering. Proceedings of the Third International Conference on
the Software Process, Reston, Virginia, pp. 69-77.

Humphrey WS (1995b). A Discipline for Software Engineering,
Addison-Wesley.

Humphrey WS (1996). Using a Defined and Measured Personal
Software Process. IEEE Softw., 13(5): 77-88.

Iglesias CA, Garijo M, Gonzalez JC (1999). A Survey of Agent-Oriented
Methodologies. Proceeding ATAL '98 Proceedings of the 5th
International Workshop on Intelligent Agents V, Agent Theories,
Architectures, and Languages, London, UK. Springer-Verlag, pp.
317-330.

Jennings NR, Wooldridge M (1996). Software Agents. IEEE Rev., pp.
17-20.

Johnson P (2001). Project Hackystat: Accelerating adoption of
empirically guided software development through non-disruptive,
developer-centric, in-process data collection and analysis. Available
at: http://csdl.ics.hawaii.edu/techreports/01-13/01-13.pdf

Johnson PM, Kou H, Agustin J, Chan C, Moore C, Miglani J, Zhen S,
Doane WE (2003). Beyond the Personal Software Process: metrics
collection and analysis for the differently disciplined. Proceedings of
the 25th International Conference on Software Engineering,
Washington, DC. IEEE Comput. Soc., pp. 641-646.

Johnson PM, Moore CA, Miglani J (2001). Hackystat design notes.

Technical Report, Department of Information and Computer
Sciences, University of Hawaii.

Johnson WL, Rickel JW, Lester JC (2000). Animated Pedagogical
Agents: Face-to-Face Interaction in Interactive Learning
Environments. Int. J. Artificial Intell. Educ., 11(2000): 47-7.

Maes P (1994). Agents That Reduce Work and Information Overload.
Commun. ACM, 37(7): 94-103.

Morgenshtern O, Raz T, Dvir D (2007). Factors affecting duration and
effort estimation errors in software development projects. J. Inf.
Softw. Technol., 49(8): 827-837.

Nasir MHNM, Sahibuddin S (2011a). Addressing a Critical Success
Factor for Software Projects: A Multi-Round Delphi Study of TSP. Intl.
J. Phys. Sci., 6(5): 1213-1232.

Nasir MHNM, Sahibuddin S (2011b). Critical Success Factors for
Software Projects: A Comparative Study. Sci. Res. Essays, 6(10):
2174-2186.

Nasir MHNM, Yusuf A (2005). Automating A Modified Personal
Software Process. Malaysian J. Comput. Sci., 18(2): 11-27.

Sarne D, Kraus S (2005). Cooperative Exploration in the Electronic
Marketplace. Proceedings of the American Association for Artifical
Intelligence (IAAA).

Nasir et al. 4989

Shamshirband S, Kalantari S, Daliri ZS, Ng LS (2010). Expert security

system in wireless sensor networks based on fuzzy discussion multi-
agent systems. Sci. Res. Essays, 5(24): 3840-3849.

Shin H, Choi HJ, Baik J (2007). JASMINE: A PSP Supporting Tool.
Proceeding ICSP'07 Proceedings of the 2007 international
conference on Software process, Berlin, Heidelberg. Springer-Verlag,
pp. 73-83.

 Sison R, Diaz D, Lam E, Navarro D, Navarro J (2005). Personal
Software Process (PSP) Assistant. Proceedings of the 12th Asia-
Pacific Software Engineering Conference, pp. 687-696.

Team Process Dashboard (2009). Process Dashboard. Available at:
http://processdash.sourceforge.net/

Rosenberg-Kima RB, Baylor AL, Plant EA, Doerr C (2007). The
Importance of Interface Agent Visual Presence: Voice Alone Is Less
Effective in Impacting Young Women’s Attitudes Toward Engineering.
Proceedings of Persuasive 2007, Stanford, California. Springer, pp.
214-222.

Wooldridge M, Jennings NR (1995). Intelligent Agent: Theory and
Practice. Knowledge Eng. Rev., 10(2): 115-152.

