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In this paper, an efficient modification is introduced into the well-known homotopy perturbation method 
which proves very effective to control the convergence region of approximate solution. By using this 
scheme, explicit exact solution is calculated in the form of a convergent power series with easily 
computable components. The proposed algorithm is tested on some neutral stiff functional-differential 
equations with proportional delays (DDEs). Numerical results explicitly reveal the complete reliability, 
efficiency and accuracy of the suggested technique. It is observed that the approach may be 
implemented on other models of physical nature. 
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INTRODUCTION 
 
Consider the delay differential equation (DDE) by Zhu 
and Xiao (2009): 
 

          (1) 

 

where  and 

 are any given functions and  is any 

given constant. In recent years, stability and convergence 
of numerical methods for DDEs have been frequently 
studied (Bartoszewski and Jackiewicz, 2002; Cong et al., 
2004; Zennaro, 2003). Especially, two-step Runge-Kutta 
(RK) methods were frequently investigated. For example, 
a class of two-step RK methods for ordinary differential 
equations (ODEs) was introduced by Jackiewicz and 
Tracogna (1995). Moreover, order conditions and errors 
for two-step RK methods were investigated and some 
methods with good behaviors were constructed by 
Tracogna and Welfert (2000). Some numerical tests on a 
parallel computer showed the efficiency of special parallel 
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explicit two-step RK method for non-stiff problems (Cong 
et al., 1998). 

System of stiff delay differential equations (SDDE) is 
often used in mathematical modeling of immune 
response. The use of mathematical models to study 
physiological processes has provided significant insight 
that was not possible through experimental study. Most 
codes available in solving DDEs do not cater for stiff 
DDEs. Most of them used explicit Runge-Kutta methods 
to solve DDEs, for instance, Hayashi (1996). The 
classical efforts on stiff DDEs are the work of Roth 
(1980). He solved stiff DDEs using three methods, which 
are backward differentiation method (BDF), the Adams 
method and the Runge-Kutta Fehlberg method (Suleiman 
and Ismail, 2001). Also, Zhu and Xiao (2009) discussed 
for stiff DDEs, parallel two-step Rosenbrock-Wanner 
(ROW)-methods. 

In recent years, the homotopy perturbation method 
(HPM) has successfully been applied to solve many 
types of linear and nonlinear functional equations. This 
method which is the combination of homotopy in topology 
and classic perturbations techniques is useful for 
obtaining exact and approximate solution of linear and 
nonlinear differential equations. In spite of the efficiency 
of this method, it cannot solve stiff DDEs. In this paper, 
we illustrate the ability of the new  form  of  the  homotopy 
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perturbation method (NHPM) on stiff DDEs, introduced by 
Aminikhah and Hemmatnezhad (2011) to solve stiff 
ODEs. Also, we apply the Pade approximation technique 
for improving the result obtained. The numerical results 
show that NHPM-PADE technique gives the approximate 
solution with higher accuracy than using NHPM. 
 
 
STIFF DELAY DIFFERENTIAL EQUATIONS (DDEs) 
 
Formulation in 1975 of the simplest mathematical model 
of an infectious disease marked the beginning of 
applications of DDEs for studying the immune system 
and dynamics of infections. This motivated our sub-
sequent research in developing efficient computational 
algorithms for solving stiff DDEs. 

A system of DDEs is considered stiff when it contains 
processes of widely different time scales. From a 
computational point of view, the stiffness implies that, 
while solving numerically, the corresponding initial value 
problem by a given method with assigned tolerance, a 
step size is restricted by stability requirements rather than 
by the accuracy demands. For example, the response of 
an immune system cannot be represented correctly 
without the hereditary phenomena being taken into 
account: cell division, differentiation, etc. The kinetic 
parameters of the models represent high-rate (molecular) 
and slow-rate (cellular) interactions in the immune system 
that span a time scale from seconds to days. Therefore, 
the systems of DDEs appearing in immune response 
modeling are typically stiff (Bocharov et al., 1996).  

Another example of a real-life modeling stiff problem is 
the dynamics of hepatitis B virus infection over 130 days 
interval. The disease dynamics is governed by the 
system of ten stiff DDEs (Bocharov et al., 1996). 
 

 
 
 
 
HOMOTOPY PERTURBATION METHOD 
 
The HPM, proposed first by He (1999) was further developed and 
improved by scientists and engineers (Chun, 2007; He, 2006; 
Yusufoglu, 2009). The method, which is a coupling of the traditional 
perturbation method and homotopy in topology, deforms 
continuously to a simple problem which is easily solved. This 
method, which does not require a small parameter in an equation, 
has a significant advantage in that it provides an analytical 
approximate solution to a wide range of nonlinear problems in 
applied sciences. The HPM is applied to nonlinear oscillators (He, 
2004), to bifurcation of nonlinear problems (He, 2005), to the 
differential-difference equations (Yıldırım, 2008), to the system of 
linear equations (Liu and Xiao, 2007), to boundary value problems 
(He, 2006; Noor and Mohyud-Din, 2008; Yildirim, 2008) and to 
other fields (Jafari et al., 2010; Koçak and Yıldırım, 2009; Mohyud-
Din and Noor, 2009). Since this method is an iterative method, so 
the Banach's fixed point theorem can be applied for convergence 
study of the series solution (Biazar and Ghazvini, 2000).  

To illustrate the basic ideas of this method, we consider the 
following nonlinear differential equation: 
 

         (2) 

 

where  is a general differential operator,  is an initial 

approximation of Equation 2,  is a known analytical function 

on the domain . The operator  can be divided into two parts, 

which are  and , where  is a linear, but  is nonlinear. 

Equation 2 can be, therefore, rewritten as follows:  
 

 
 
By the homotopy technique, we construct a homotopy  
 

, which satisfies: 

 

             (3) 

 

                                 (4) 

 

where  is an embedding parameter, which satisfies the 

boundary conditions. Obviously, from Equations 3 or 4, we will 
have: 

 

,
 

                                   (5) 

 
The changing process of p from zero to unity is just that of 

 from  to . In topology, this is called 

homotopy. According to the HPM, we can first use the embedding 

parameter  as a small parameter, and assume that the solution of 

Equations 3 or 4 can be written as a power series in : 

 

         (6) 

 

Setting , results in the approximate solution of Equation 2: 

 

                         (7) 
 

Applying the inverse operator  to both sides of 

Equation 4, we obtain: 
 

 

                                                                                                (8) 
 

where . Now, suppose that the initial approximations 

to the solutions  have the form: 

 

                                                 (9) 

 

where  are unknown coefficients, and 

 are specific functions. 
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Substituting Equations 6 and 9 into 8 and equating the coefficients 

of  with the same power leads to: 

 

 (10) 

 

Now, if these equations are solved in such a way that 

, then Equation 10 results in, 

 and therefore, the exact 
solution can be obtained by using: 
 

 
 

It is worth noting that, if  is analytic at , then their 

Taylor series: 
 

 
 

can be used in Equation 10, where  are known 

coefficients and  are unknown ones, which must be computed. 

 
 

PADE APPROXIMANT 
 

The results demonstrate that PADE technique gives the 
approximate solution with faster convergence rate and 
higher accuracy than using the standard HPM or NHPM. 
 
 

Definition 1 
 

Let  be a function that is analytic in a neighborhood of 

zero, with  (Partington, 2004). Then, an  

Padé approximant to  is a function  , where 

 and  are polynomials of degree at most , such 

that  and 

 
The basic idea is to match the series coefficients as far 

as possible. Evan though the series has finite region of 
convergence, we can obtain the limit of the function as 

 if  (Dehghan et al., 2007). This is an 

alternative to truncating the Taylor expansion of  (taking 

a polynomial approximation) and in many cases it is a 
better behaved method of approximation. Note that   

having   chosen    ,   we must  determine   the  
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remaining  coefficients of  and , in order 

to solve the  simultaneous equations implied 

by the identity: 
 

. 

A collection of Pade approximants formed by using a 

suitable set of values of  and  often provides a means 

of obtaining information about the function outside its 
circle of convergence, and of more rapidly, evaluating the 
function within its circle of convergence. Every power 

series has a circle of convergence . If the given 

power series converges to the same function for  

with , then a sequence of Pade approximants 

may converge for , where  is a domain larger than 

. Employing higher order Pade approximations 

produces more efficient results. In this work, we used well 
known software Maple to calculate the series and the 
rational functions obtained from the proposed techniques. 
We explain this method by considering several examples. 
 
 

ILLUSTRATIVE EXAMPLES 
 

Here, we demonstrate the effectiveness of the proposed 
NHPM-Pade technique with three illustrative examples. It 
will be shown that the NHPM-Pade method is very 
efficient for solving the systems of stiff delay differential 
equations. The algorithms are performed by Maple 12. 
 
 

Example 1 
 

Consider the systems of stiff delay differential equations 
taken from (Suleiman and Ismail, 2001): 
 

 (11)                                                                 

 

Where 
 

 
 

The exact solution is  and 

. 

Results are given for . For solving system 

(Equation 11) by NPHM, we construct the following 
homotopy: 
 

 
 

or
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(12) 

 

 where  and  is an embedding 

parameter. 
Assume that 

and from the initial conditions, 

  Applying the inverse 

operator  to Equation 12, we have: 

 

 

   (13) 

 
Suppose the solutions of the system (Equation 13) to be 
in the following form: 
 

 (14)                                                                          

 

where in   and  are functions 

which should be determined. 
Substituting Equation 14 into Equation 13, and equ-

ating the coefficients of  with the same powers leads to: 

 

 
 

 
 

 
 

Now, if we set the Taylor series of  at  equal 

to zero, we have: 
 

 
 

 
 

In a similar manner, setting the Taylor series of  

at  equal to zero, leads to: 
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Table 1. Absolute error for example 1.   
 

t 
NHPM  NHPM-Pade [15,15] 

|y1E-u1| |y2E-u2|  |y1E-u1| |y2E-u1| 

0 0 0  0 0 

1 1.09e-18 4.50e-18  1.02e-18 4.40e-18 

2 3.49e-16 2.82e-17  1.13e-19 4.75e-18 

3 1.22e-10 1.13e-11  4.25e-16 4.82e-15 

4 1.02e-06 1.26e-07  1.94e-13 2.98e-12 

5 0.00112 0.000173  1.40e-11 2.62e-10 

6 0.338 0.0626  3.32e-10 7.00e-09 

7 42.1 9.06  3.81e-09 8.56e-08 

8 2.74e+03 671  2.65e-08 6.10e-07 

9 1.09e+05 2.97e+04  1.29e-07 2.96e-06 

10 2.94e+06 8.80e+05  4.76e-07 1.08e-05 

 
 
 
It can easily be shown that: 
 

 
 

 
 
Therefore, the approximate solutions of the system of 
differential Equation 11, can be expressed as: 

 

 

 
 

 
 

This results achieved for . 

Now, we apply NHPM-Pade technique to approximate 

 and  using the rational approximation [15,15] 

(Table 1). 
 
 
Example 2 
 
Consider the stiff linear delay differential equation (Zhu 
and Xiao, 2009): 

 

  (15) 

 

 
 
where 
 
 
 

 

 
 
 
The exact solution is: 

. 



1030          Int. J. Phys. Sci. 
 
 
 
For solving the system (Equation 15) by NPHM, we 
construct the following homotopy: 

 
 
 
 
 

 

                                   (16) 
 
  

where  and  is an embedding parameter. 

Assume that 

 and from 

the initial conditions, 
 

 

 

Applying the inverse operator  to Equation 

16, we have: 

                        

(17) 

 
 Suppose the solutions of the system (Equation 17) to be 
in the following form: 
 

       (18)                                                                    

 

where in   and  are functions 

which should be determined. 
Substituting Equation 18 into Equation 17, and equa-

ting the coefficients of  with the same powers leads to: 

 

 

 
 

Now, if we set the Taylor series of  at  equal 

to zero, we have: 
 



 
 
 
 

In a similar manner, setting the Taylor series of  

at  equal to zero, leads to: 
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It can easily be shown that:  
 

 

 
 

Therefore, the approximate solutions of the system of 
differential Equation 1 can be expressed as: 
 

 
 

 
 

This results achieved for . 

Now, we apply NHPM-Pade technique to approximate 

 and  using the rational approximation [15,15] 

(Table 2). 
 
 
Example 3  
 
Now, consider the stiff delay equation (El-Hawary and 
Mahmoud, 2003): 
 

                        (19)                                                  

 
where 
 

 

The exact solution is given by  
 

For large negative values of , the solution consists of 

a short transient of exponential decay, followed by a 

periodic sinusoidal oscillation. The parameter  also 

enters the delay equation exponentially; therefore, its 
effect on the stiffness of the equation is dramatic. 

For solving Equation 19 by NPHM, we construct the 
following homotopy: 
 

  (20)                                               

 

where  and  is an embedding parameter. 

Assume that  and from the initial 

conditions,  Applying the inverse operator 

 to Equation 20, we have:
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Table 2. Absolute error for example 2.   
 

t 
NHPM  NHPM-Pade [15,15] 

|y1E-u1| |y2E-u2|  |y1E-u1| |y2E-u1| 

0 0 0  0 0 

1 2.0e-19 3.5e-19  2.0e-19 2.1e-19 

2 8.29e-18 5.90e-17  1.1e-19 3.06e-19 

3 2.33e-12 2.44e-11  4.21e-19 2.73e-17 

4 1.69e-08 2.32e-07  3.21e-17 6.86e-14 

5 1.68e-05 0.000281  1.95e-15 5.28e-12 

6 0.00473 0.092  5.88e-14 7.09e-11 

7 0.558 12.3  9.50e-13 7.44e-10 

8 34.8 845  9.58e-12 5.40e-09 

9 1.34e+03 3.52e+04  6.76e-11 2.86e-08 

10 3.49e+04 9.88e+05  3.61e-10 1.18e-07 

 
 
 

           
(21) 

 
 Suppose the solutions of the system (Equation 21) to be 
in the following form: 
 

        (22)   

                                                                                            

where in   and  are functions 

which should be determined. 
Substituting Equation 22 into Equation 21, and 

equating the coefficients of  with the same powers leads 

to: 
 

 
 

 
 

 
 

Now, if we set the Taylor series of  at  equal 

to zero, we have: 
 

 

 
 
It can easily be shown that:  
 

 
 
Therefore, the approximate solutions of the system of 
differential Equation 1 can be expressed as: 
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Table 3. Absolute error for example 3.   
 

t 
NHPM NHPM-Pade [25,25] 

|yE-u| |yE-u| 

0 0 0 

 
2.17e-06 2.17e-06 

 4.33e-07 4.33e-07 

 
9.11e-13 9.11e-13 

 
8.71e-10 1.75e-10 

 
6.10e-05 4.69e-11 

 
0.666 1.10e-07 

 
 
 

This results achieved for . 

Now, we apply NHPM-Pade technique to approximate 

 and  using the rational approximation [25,25] 

(Table 3). 
 
 
Conclusion 
 
In this work, we proposed an efficient modification of the 
HPM based on NHPM and Pade approximation which 
achieves to the exact or approximate solution of the 
systems of stiff delay differential equations. The present 
technology provides a simple way to adjust and control 
the convergence region of approximate solution for any 
values of t . Numerical results explicitly reveal the 

complete reliability, efficiency and accuracy of the 
suggested technique.  
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