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A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). The 
important features of the raw EEG data were extracted using two methods: Wavelet transform and 
energy estimation. This data was normalized and given as input to the neural network, which was 
trained using back propagation algorithm. Energy estimation was used as an amplitude threshold 
parameter. The wavelet transform (WT) is a powerful tool for multi-resolution analysis of non-stationary 
signal as well as for signal compression, recognition and restoration, which uses Daubechies 4 as the 
mother wavelet. The details of the wavelet decomposition level, 1, 2, 3 and energy estimation 
parameters are given as input to the neural network in order to detect spikes. The codes are written in C 
and implemented on the DSP Processor TMS320VC5402. The waveforms were observed on MATLAB. 
The effectiveness of the proposed technique was confirmed with and EEG layouts. 
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INTRODUCTION 
 
The electroencephalogram (EEG) is an important clinical 
tool for diagnosing, monitoring and managing 
neurological disorder related to epilepsy. This disorder is 
characterized by sudden recurrent and transient distur- 
bances of mental function and/or movement of the body 
that results from excessive discharge of groups of brain 
cells. The presence of epileptiform activity in the EEG 
confirms the diagnosis of epilepsy, which sometimes can 
be confused with other disorders producing similar 
seizures like activity. During seizures, the scalp EEG of 
patients with epilepsy is characterized by high amplitude 
synchronized periodic EEG wave- forms, reflecting 
abnormal discharge of large group of neurons. Between 
seizures, epileptiform transient waveform which includes  
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spikes and sharp  waves  are  typically  observed  on  the 
scalp EEG of such patients. Detecting and classifying 
sharp transient waveforms by visual screening of the 
EEG record is a complex and time consuming operation. 
Also, such EEG records require highly trained 
professionals who are generally in short supply. Hence, 
an automatic detection of EEG spikes and seizures is 
required. In addition, the use of EEG monitoring which 
produces 24 h longer continuous EEG recording is 
becoming more common thus increasing the need for 
automated detection methods. In the past, many methods 
have been investigated to detect the EEG spikes. 
Mimetic techniques have been widely used to detect 
spikes, but difficulties arise with artifacts. These problems 
increase the number of false detection’s, which 
commonly plague all automatic systems. However, in 
recent years, an artificial intelligence approach using 
expert system methods have been introduced to solve 
these problems. Although fairly successful, this approach 
becomes increasingly difficult due to the proliferation of 
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Figure 1. EEG signal and its energy.  
 

 
 

the rules and the need for computers with large 
memories and large processing power. In addition, 
electroencephalographers (EEGers) cannot agree on a 
complete set of rules acceptable to all, limiting the 
success of this method. If we used Fourier transform (FT) 
to detect spikes, which gives only frequency information 
of the signal. However, the short time Fourier transform 
gives time and frequency information simultaneously, but  
it suffers from resolution problems. In this research work, 
the features of the raw EEG data were extracted using 
wavelet transform and energy estimation. Energy 
estimation was used as an amplitude threshold para- 
meter. This data was normalized and given as input to 
the neural network which was trained using back 
propagation algorithm. 
 
 
METHODOLOGY 

 
Spike detection in electroencephalogram (EEG) is an important 
task for the diagnosis of epilepsy. The shape and size of epileptic 
spikes essentially change from one patient to the other. They 
appear in the EEG as isolated events, as well as quasi periodic 
oscillations of spike-and-wave. Epileptic spike detection is a very 
difficult task since normal brain activity, non pathological events that 
resemble pathological ones, noise and instrumental artifacts can be 
misinterpreted as epileptic spikes. In this study, the approach to 
spike detection relies on the observation that the impulse-like shape 

of spike would result in a broad-band signal, displaying large 
energy at all frequencies. Indeed, when analyzed with a filter bank 
like the one provided by the wavelet multi-resolution decomposition, 
a spike generated events in all the sub-bands. On the contrary, 
normal brain activity and non-pathological events likely have low 
frequency contents and appear only in low resolution sub-bands. In 
the presence of broadband noise, on the other hand, the mid-range 
frequency sub-bands have a large spike signal-to-noise-ratio, thus 
allowing an easier detection. This scheme does not decimate the 

EEG sub-bands, as in non-redundant representations, avoiding the 
problems arising from the shift-variant property of the wavelet 
transform. The energy of the input signal is used as an amplitude 
threshold and the wavelet transform is used to retain the time and 
frequency information. 

 
 
 Energy estimation 

 
In signal processing techniques, the word “spike” refers to localized 

high frequency and an increase in instantaneous energy. The 
quantitative descriptions of the amplitude and spectrum of spikes 
vary from signal to signal, subject to subject; it even varies from 
time to time for the same subject. As the spike based width 
increases, energy is concentrated more in the low-frequency band 
where the energy of the background signal is also located and 

detection becomes more difficult in the frequency domain. 
Therefore, the instantaneous energy of the output was estimated. 
Since spike, by definition has high energy, this can be implement to 
detect the spikes. The energy is estimated by the formula: 
                                                         
 

 
E(n) = x2(n)  

 
Where, E(n) is the output energy of the input.  x(n) is the raw EEG 

input. 
The resulting signal consists mainly of high amplitude spikes and 

this will emphasize the spike and de-emphasize the unimportant 
features of EEG. The wavelet representation is a powerful 
technique that has been successfully exploited in the analysis of 
non stationary signals, like biomedical signal processing (Unser and 
Aldroubi, 1996; Clark and Echeverria, 1995). Unlike classical 
Fourier analysis, the wavelet representation allows for trading 
frequency resolution and time resolution. In its discrete 
implementation, the wavelet transform can be viewed as a filter 
bank which provides a multi-resolution decomposition of the signal 
(Vetterli and Kovacevic, 1995). The signal is decomposed into a 
series of sub-bands, each relative to a peculiar spectral region, 
whose bandwidth linearly increases with frequency (Mallat, 1989).  
    The simplest approaches that could be devised for spike 
detection in a multi-resolution analysis framework consist of energy 
estimation, which is used as an amplitude threshold parameter 

(Attellis et al., 1997). Although very fast, a single-resolution 
approach like that in (Sartoretto and Ermani, 1999) has some 
limitations. In (Mukhopadhyay and Ray, 1998), a nonlinear energy 
operator (SNEO) is proposed for the direct analysis of the EEG 
signal (Figure 1). This study shows that multi-resolution analysis 
combined with energy estimation give some advantages and 
provide a useful tool for EEG analysis (Simoncelli and Adelson, 
1991).  

 
 
Sub-band decomposition principles 

 
In this section we briefly review the discrete-time wavelet transform 
and its relations with sub band decomposition.  

Consider the two-channel filter bank (Figure 2). The input signal 
x(n) is decomposed into two sub-bands by filtering with the low-
pass filter Ho(z) and the high pass filter H1(z). The output of the 
filters is decimated by a factor, 2. It is well know that it is possible to 
design  the  analysis  filter Ho(z), H1 (z) and  the  synthesis filter pair  



   ` 

    

2666          Int. J. Phys. Sci. 
 
 
 

 

          y0
0 

 ‎Ho(z)‎‎‎‎‎→‎‎‎↓2‎‎→‎‎→‎‎‎↑2‎‎‎→‎‎‎‎Fo(z) 
 

 

x(n)                    +   xˆ‎(n)‎ 

                   

                                              y1
0  

‎                  
                  H1(z)‎‎‎‎‎‎→‎‎‎↓2‎→‎‎→‎‎‎↑2‎→‎‎‎F1(z) 

    

 
Figure 2.2: Two- channel subband system.  

 

 
 

Figure  2. Two- channel sub-band system.  
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Figure 3. Equivalent scheme for two levels of multi-resolution analysis. 

 
 
 

Fo(z), F1(z) in order to have perfect reconstruction of x(n) at the 
output of the synthesis stage. One possible way to achieve perfect 
reconstruction is to design the analysis filter impulse response Ho(n) 

such that its z-transform satisfies. 
 

Ho (z)Ho (z
-1

) +Ho (-z) Ho (-z
-1

) = 2,      (1) 
               (1) 

 
Choose fo (n) = ho(-n), f1(n) = h1(-n), h1 (n) = (-1)

1-n
 ho(1-n). Note 

that the above equation implies that the filter impulse response 
ho(n) is orthogonal to its even-translates, namely 
 

 

<ho, n, ho, n+2k > = Σ   ho (n)ho (n+2k) =  δ(k), 

                                 
n  

 
And that < h1, n, ho.n+2k > = 0, for all k. It is easy to see that the 
synthesis filters satisfy similar orthogonality conditions.  
If we explicitly write the synthesis stage output as a function of the 
sub-band signal y0

0
 (n) y1

0
(n), we have for an orthogonal perfect 

reconstruction system,  
 

x(n) = Σ yo
0
 (k)fo(n-2k) + Σ y1

o
 (k)f1(n-2k)  (2) 

           
k                 k               (2) 

 
Thus Equation 2 can be interpreted as the series expansion of the 
input over the orthogonal family of function {fo(n-2k), kЄz}. 

  In an octave filter bank, or discrete time wavelet transform, the 
low-pass signal yo

0
 (n) is further splited  by a low-pass  filtering  and 

sub-sampling with the analysis filter. Figure 2 shows the equivalent 
scheme for a two-stage sub-band scheme, where yo

0
(n) is split into 

yo
1
 (n) and y1

1
 (n), and Ho,o(z = Ho(z), Ho (z

2
), Ho,1(z) = H 0 (z) 

H1(z
2
). The equivalent scheme is obtained by applying the noble 

identities, which allow exchange of the role of decimators and filters 
in the iterated sub-band scheme (3). Note that, for an analysis filter, 
Ho(z) with approximate bandwidth [0,fc/4], the equivalent filters Ho,o 
(z), Ho,1(z), and H1 (z), have bandwidth [0, Fc/8], [fc/8, Fc/4], [Fc/4, 
Fc/2], respectively, where Fc is the input signal sampling frequency. 
Thus, the sub-bands y1

j
(n) provide a  multi resolution representation 

of the input, each relative to a different frequency band.  In 
particular, yo

1
 (n) is a decimated smooth version of x(n), while y1

1
(n) 

and y1
0
 (n) are detailed signals to be added in the synthesis stage. 

Note that the decimators in Figure 3 give rise to a ship-variant 
analysis stage. This is not a desirable feature when the goal for this 
research is performing time localization of events rather than 
providing a compact representation of the signal. To perform spike 
detection, the signals z1

j
 (n) is considered before decimation in 

Figure 3, where j denotes the multi resolution level, and i Є{0,1}.  
 

 
The SNEO operator in the frame work of multi-resolution 
analysis  

 
Figure 4 shows original EEG and Energy output Data file 1. The 
smoothed Nonlinear Energy Operator (SNEO) has been proposed 
in [7] for the analysis of EEG signals. SNEO is a smoothed version 
of the nonlinear energy operator.  
 

[x(n)] = x
2
 (n) – x (n+1) x(n-1)  (3) 

                                           (3)
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Figure  4. Energy output Data file1. 
 

 
  

Smoothing is achieved by low-pass filtering [x(n)], in order to 

obtain an estimate SNEO [x(n)] of the expectation E[(n)]. Indeed, 
taking the expectation of Equation 3, for a stationary zero mean 
process x(n) we obtain, 
 

E[[x(n)]] = rx (0) – rx (2) =  
2 Rx(e

j) (1 – cos2) d/2 (4) 

   0  
 
Where, rx(k) = E [x(n)x(n+k)] is the input process autocorrelation 

function and Rx(e
j

) is the spectral density of x(n). 

 
From Equation 4, one can see that SNEO [x(n)] is an approximation 
of the power of a band pass filtered version of the input process. 
For non-stationary process, a similar interpretation can be given in 
terms of the evolutionary spectrum (Miroslaw and Ziemowit, 2002). 
Moreover, if the smoothing low-pass filter has a short compact 
support, the information provided by SNEO [x(n)] is relative to the 
local characteristics of x(n) around time n. 
      Beside its good properties for spike detection, the SNEO 
operator has dome disadvantages pointed out in the sequel, with 
respect to interference immunity in which multi-resolution approach 
obtained, should overcome. Assume first that a constant value K is 

added to the EEG signal x(n), during a given time interval then such 
a phenomenon is produced, as an example of patient movements, 
which produce an offset in the EEG measurement. Thus: 
 

[x(n) + K] = [x(n)] + K (2x(n) – x(n – 1) – x(n + 1)). 
 

 
Although low pass filtering attenuates the interference term, it is 
apparent that SNEO [x(n)] depends on the local DC value of the 
signal, and this is not a desirable effect in spike detection. 
   This scheme exploits the SNEO operator in the framework of 
multi-resolution analysis (Suresh and Udaya, 2005). The signal was 
analyzed using three level discrete-time wavelet decomposition. 
The 5-tap almost, an orthogonal linear phase filters of [8] are used 
in the experiments. The detail signals z1

0
(n), z1

1
(n) and z1

2
(n) were 

then processed using the SNEO operator. Note that, when the EEG 
signal was sampled by an Fs Hz frequency, the three details signals 
pertain to the frequency bands [Fs/4, Fs/2] Hz, [Fs/8, Fs/4] Hz and 
[Fs/16, Fs/8] Hz, respectively. An impulse-like signal, as a spike, 

generates a significant output in all the three sub-bands. On the 
other hand, sinusoidal, band pass and low pass interference are 
present in some or none of the sub-bands. This idea was to devise 
a spike detector based upon the values SNEO [zI

j
(n)],  j = 0, 1, 2,  i 

= 1. Given  a specific threshold on each of the three levels, it could 

be concluded that a spike is detected at time n what at that time 
SNEO [zI

j
(n)], is above the level threshold, for all  j = 0, 1, 2,  i = 1. A 

specific threshold value was used in each sub-band to take into 
account the peculiar sub-band amplitudes corresponding to a spike. 
 
 
Data selection  

 
The EEG data required for the detection of spikes was obtained 

from the National Institute of Mental Health and Neurosciences 
(NIMHANS), Bangalore. The data acquired was from both normal 
and epileptic patients and these data was recorded using a “10-20” 
system with bipolar montages. 
 
 
EXPERIMENTAL RESULTS 
 
Energy estimation  
 
The spikes are always associated with high energy. We 
can obtain the instantaneous energy of spikes by using 
squaring, the input EEG signal. Figures 5 and 6 consist of 
256 and 512 data samples. On executing the C code, an 
ENERGY.TXT data file is generated, which has the 
normalized energy values. The values from this file were 
plotted using MATLAB and the raw EEG data was 
squared to obtain the energy output. 
 

 
Wavelet transform 
 
A feature extraction scheme using the wavelet transform 
(WT) has been applied. Through  wavelet  decomposition  
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Figure 5. Energy output data file2. 

 
 
 

              
 

 

Figure 6. Wavelet transform decomposition. 

 
 

 
 

of the EEG records, transient features are accurately 
captured and localized in both time and frequency 
context. The mother wavelet was chosen from the 
Daubechies family for its easy implementation in this 
application. Daub4 characterized by 4 vanishing 
moments was implemented here. Both scales 2 and 3 
coefficients were given as input to artificial neural 
networks for training and testing, and the results obtained 
from these 2 were compared. The differential of this 
output was given as an input to the artificial neural 
network for training. Figure 6 shows the decomposition 
principle of wavelet transform.  

The data files have shown Figures 7, 8, and 9 have 512 
samples and the raw EEG data is decomposed into 3 
levels. This is differentiated as this result is stored in the 
output file. On executing the C code, two data files were 

generated; COEFFS.TXT which has the details of the 
specific level and DIFF.TXT which has the differential of 
the details. The values from these files were plotted using 
MATLAB. Figures 7, 8 and 9 represent the detailed and 
differentiated results of Levels 1, 2, and 3 of wavelet 
transform. 
 
 
Normalization  
 
The operation on a digital computer system limits the size 
of the input number. So, the values of input must be 
restricted between 0 and 1. Since this does not affect the 
resolution of input data, the input values are normalized 
between the values 0 and 1. This makes the learning 
process simpler. 
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Figure 7.  Level 1 Details (d1) and d/dt of d1 for Data file. 

 
 
 

   
 
Figure 8. Level 2 Details (d2) and d/dt of d2 for Data file1. 

 
 
 
Implementation using back propagation algorithm 
   
The functional diagram gives a description of the method 
adapted for spike detection. Here, the features of the raw 
EEG   data  are   extracted  using  wavelet  transform and 

energy estimation technique.  
This data was normalized and given as input to the 

neural network that is trained using back propagation 
algorithm. Hence, the spike output was obtained. The 
steps for  this  procedure and  the output  waveforms  are  
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Figure 9.  Level 3 Details (d3) and d/dt of d3 for Data file1. 

 
 
  

  
 
Figure 10. Functional diagram. 

 
 
 
included in this chapter. Figure 10 shows the functional 
diagram of the neural network. The Input Data files 
shown in Figure 10 have 512 samples and the two 
extracted features were given as inputs to the back 
propagation algorithm and the output is obtained. On 
executing the C code, two files were generated, 
NETOUT.TXT which contains the output of the neural 
network (Figure 11) and PULSE.TXT  which  contains 1’s 

at the points of spike occurrence. The values from this file 
were plotted using in MATLAB. 
 
 
Spike output 
 
The pulse train output obtained from the back 
propagation algorithm is logically ANDed with  the original  
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Figure 11. Network outputs for data file 1. 

 

 
 

  
 
Figure 12. Pulse outputs for Data file1. 

 
 
 
signal (Figure 12); that is, raw EEG data to retain only 
spikes as the output. 
 

 

The Input Data files have 512 samples. The pulse train is 
given as input which is logically ANDed and the spike 
output was obtained (Figures 13 and 14). On executing 
the C code, an output file SPIKE.TXT was generated 
which contains only spikes and the values from this file 
were plotted using MATLAB. 
   Feature extraction is necessary  to  enhance  the  spike 
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Figure 13. Spike outputs for Data file 1. 

 
 
 

 

 
 

 

Figure 14. Spike outputs for Data file2. 

 
 
 
information and suppress the unwanted background 
activity. The two chosen features; energy of the EEG 
signal and the wavelet decomposed signal of the raw 
EEG data are given as inputs to the neural network. 
  The neural network uses back propagation algorithm for 
training. However, the efficiency of the back propagation 

algorithm depends on the choice of learning rate and the 
momentum. Variations in the input thus have little effect 
on the output. Also, if the values are very small, the 
learning process is slow. After executing the code several 
times, the value of learning rate and momentum have 
been chosen to be 0.35 and 0.15, respectively.  Then  the  
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network was trained to give an output pulse train in the 
presence of spike activity. The pulse train was used to 
window the original signal so as to retain only the spikes. 

In this research, the outputs obtained from three 
different levels of wavelet decomposition were compared 
with the energy of the raw EEG signal and this was given 
as one of the inputs to the neural network. However, it 
was observed that the implementation with level 3 
produced better results as compared to d1 and d2. 
 
 
Conclusion 
 
Results found reveal that, the spikes were successfully 
detected using neural network based on wavelet 
transform and energy estimation as a preprocessor. 
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