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Power System Stabilizers (PSSs) are the most well-known and efficient devices to damp the power 
system oscillations caused by interruptions. This paper introduces a novel algorithm to determine the 
PSS parameters, using the multi-objective optimization approach called particle swarm optimization 
with the passive congregation (PSOPC). The tuning of the PSS parameters is usually formulated as the 
objective function with constraints, including the damping ratio and damping factor. Maximization of 
the damping factor and the damping ratio of power system modes are taken as the goals or two 
objective functions, when designing the PSS parameters. The optimization procedure handles the 
problem-specific constraints using a penalty function. This could enhance the diversity of the swarm 
and lead to a better outcome. The two-area multi-machine power system, under a wide range of system 
configurations and operation conditions is investigated, to illustrate the performance of the proposed 
approach. In this paper, the performance of the proposed PSOPC is compared to the Standard Particle 
Swarm Optimization (SPSO) and Genetic Algorithm (GA) in terms of parameter accuracy and 
computational time. The results verify that, the PSOPC is a much better optimization technique, in 
terms of accuracy and convergence, compared to PSO and GA. Furthermore, nonlinear simulation and 
eigenvalue analysis based results also confirm the efficiency of the proposed technique.  
 
Key words: Passive congregation, design power system stabilizers (PSS), penalty function, particle swarm 
optimization. 

 
 
INTRODUCTION 
 
Constantly increasing intricacy of electric power systems, 
has enhanced interests in developing superior 
methodologies for Power System Stabilizers (PSSs). 
Transient and dynamic stability considerations are among 
the main issues in the reliable and efficient operation of 
power systems. Low Frequency Oscillation (LFO) modes 
have been observed when power systems are 
interconnected by weak tie-lines (Liu et al., 2004; 
Messina et al., 1998). The LFO mode, with weak 
damping, is also called the electromechanical oscillation 
mode, and it usually happens in the frequency range of 
0.1  to  2 Hz.  PSSs   are  the  most  efficient  devices  for  
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damping both local mode and inter-area mode small 
signal LFOs by increasing the system damping, thus 
enhancing the dynamic stability of the power systems 
(Anderson and Fouad, 1997). The generators are 
equipped with PSS, which provides supplementary 
feedback and stabilizes the signal in the excitation 
system (Demello and Concordia, 1969). The problem of 
PSS design is to tune the parameters of the stabilizer so 
that the damping of the system’s electromechanical 
oscillation modes is increased. This must be done without 
adverse effects on other oscillatory modes, such as those 
associated with the exciters or the shaft torsional 
oscillations. The stabilizer must also be so designed, that 
it has no adverse effects on a system’s recovery from a 
severe fault. The concept and parameters of PSS have 
been  considered  in  various  studies  (Klein  et al., 1991;  



 
 

 

 
 
 
 
Kundur, 1999). The PSS has been usually used for 
mitigating the influences of LFO modes (Ishimaru et al., 
2004). 

Currently, many generating plants prefer to use 
Conventional Lead-Lag Structure of PSS (CPSS), due to 
the ease of online tuning and reliability (Hongesombut et 
al., 2004). CPSSs are greatly being used in the power 
systems, and this may be pursuant to some problems 
behind utilizing the new methods. Intelligent optimization 
based methods have been initiated to solve the problems 
of PSS design (Arredondo, 1997; Dubey and Gubey, 
2005; Viveros et al., 2005; Mishra et al., 2007; Wang et 
al., 2009). Two main techniques used for the parameter 
tuning of PSS in the power system are sequential tuning 
and simultaneous tuning. To achieve a set of optimal 
PSS parameters under different operating conditions, the 
tuning and testing of PSS parameters must be repeated 
under different operating conditions of the system. The 
simultaneous tuning of PSS parameters is generally 
formulated as a very large scale nonlinear non-
differentiable optimization problem (Cai and Erlich, 2002). 
This type of optimization problem is very difficult to solve 
by applying traditional differentiable optimization 
algorithms. Many random investigating techniques, for 
instance, Genetic Algorithm (GA) and simulated 
annealing (SA), Tabu search (TS), evolutionary 
programming (EP), have recently gained acceptance due 
to their effectiveness and the ability to investigate the 
near-global optimal results in problem space. Abdel-
Magid and Abido (1999, 2000, 2002, 2003) have used 
the TS, SA, EP and GA to optimize the parameters of the 
PSSs. The problem of the robust PSS design is 
formulated as a multi-objective optimization problem to 
solve it. Modifying damping ratio and damping factor of 
the lightly damped or un-damped electro-mechanical 
modes are two objectives. It has been observed that, 
taking just one of the objectives into account may yield an 
unacceptable result for another objective. The objective 
function is devised to optimize the desired damping factor 
and/or the desired damping ratio of the lightly damped 
and un-damped modes. In this way, only the unstable or 
lightly damped oscillation modes are relocated. Zhang 
and Coonick (2000) have suggested frequency domain 
based methods for the same purpose which appears to 
be more appropriate than the others. They proposed a list 
of objectives and used GA to optimize them. While GA is 
satisfactory in finding near-global optimal result of the 
problem, it often yields revisiting the same sub-optimal 
solution; it needs a very long run time that may be 
several minutes or even several hours depending on the 
size of the system under study.  

Particle Swarm Optimization (PSO) is a type of random 
search algorithm that simulates the evolutionary process 
of nature and shows the excellent characteristic in solving 
some  complex  optimization  problems. PSO  has   some  
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attractive characteristics compared to GA and other 
similar evolutionary techniques. First, this method 
requires very few parameters to adjust, and thus it is 
convenient for algorithm parameter optimization where 
the large amount of computations is required. Secondly, 
PSO can discover the optimal solutions with a faster 
convergent speed, because it has just two computations 
formulae for iteration (Kennedy and Eberhart, 1995; Shi 
and Eberhart, 1998). Optimization of PSS parameters 
using standard PSO were reported by Abido (2002), 
Panda and Ardil (2008). In addition, the design of a 
particle swarm optimization-based lead-lag power system 
stabilizer (PSOLLPSS) and particle swarm optimization-
based fuzzy logic power system stabilizer (PSOFLPSS) 
were presented to damp oscillations of the multi-machine 
system (El-Zonkoly et al., 2009). In recent times, many 
researchers have been undertaken to modify the act of 
the Standard PSO (SPSO) to improve its performance.  

One of the best improvements on this method has been 
done by He et al. (2004). He improved the PSO with the 
passive congregation (PSOPC), which can enhance the 
convergence rate and the accuracy of the SPSO 
efficiently. Passive congregation is an important 
biological force which preserves swarm integrity. It helps 
each swarm member in receiving a multitude of 
information from other members, and thus decreases the 
possibility of a failed attempt at detection or a 
meaningless search. Furthermore, PSOPC has shown a 
faster convergence rate than other evolutionary 
algorithms such as genetic algorithms, and it has very 
few parameters to adjust. Moreover, by introducing 
passive congregation, the information sharing 
mechanism is improved, and the optimization result is 
more accurate.  

Hence, in this study, particle swarm optimizer with the 
passive congregation is used to determine the optimal 
gain and time constants of PSSs for the multi-machine 
system. The algorithm handles the constraints by using a 
penalty function. The effectiveness of the proposed 
PSOPC is investigated on a two-area power system 
under various operating conditions during eigenvalue 
analysis and some performance indices. The results 
show that the proposed method achieves good 
performance for damping LFOs under various operating 
conditions rather than the SPSO and GA. This provides 
an excellent negotiation opportunity for the system 
manager, manufacturer of the PSS and customers to pick 
out the desired PSS from a set of optimally designed 
PSSs. 

This paper is organized as follows. The proposed 
controller structure and problem formulation are 
described next. This is followed by a brief overview of 
GA, PSO and PSOPC optimization techniques are 
presented. The power system under study and simulation 
results  are  provided, discussed  and  finally, conclusions  



 
 

 

2576          Int. J. Phys. Sci.  
 
 
 

i

i

sT
sT

4

3

1
1

+
+

iK
w

w

sT
sT
+1 i

i

sT
sT

2

1

1
1

+
+

 
 
Figure 1. Structure of power system stabilizer. 

 
 
 
are given.  
 
 
PROBLEM FORMULATION 
 
Power system model 
 
In this study, each generator is modeled as a two-axis, six-order 
model. For all operating conditions, the power system with 
generators, PSSs, and excitation systems can be modeled by a set 
of nonlinear differential equations as:  
 

( , )x f x u=�
                                                                               (1) 

 
where x = [��, ��, Eq�, �d�, Ed�, �q�] and u are the vector of state 
variables and the vector of the PSS output signals, respectively.  
 
In the PSS design, the power system is usually linearized in terms 
of a perturbed value in order to perform the small signal analysis. 
Therefore, the system in (1) is linearized around an equilibrium 
operating point of the power system. Equation (2) describes the 
linear model of the power system: 
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where A is the power system state matrix, B is the input matrix, C is 
the output matrix, D is the feed-forward matrix. From (2), the eigen 
values �j =�j ± i�j of the total system can be evaluated. 
 
 
Structure of power system stabilizer 
 
The function of a PSS is to generate appropriate torque on the rotor 
of the machine, in such a way that, the phase lag between the 
exciter input and the machine electrical torque is compensated. In 
this study extensively used speed based PSS design is considered 
where the stabilizing signal is assumed to be proportional to the 
speed perturbation. The structure of PSS is shown in Figure 1. It 
consists of a gain block with gain Ki, a signal washout block and 
two-stage phase compensation blocks. Hence, the transfer function 
of the ith PSS is given by: 
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where ��i and Ui are the perturbations of the synchronous speed 
and the output voltage signal respectively, which are added to the 
excitation system reference perturbation. The signal was hout block 

acts as a high-pass filter, with the time constant Tw that allows the 
signal associated with the oscillations in rotor speed to pass 
unchanged, and it does not allow the steady state changes to 
modify the terminal voltages. From the view of the washout 
function, the value of Tw is generally not critical and may be in the 
range of 0.5 to 20 s. In this study, it is fixed as 10 s. The phase 
compensation blocks with time constants T1, T2 and T3, T4 supply 
the suitable phase-lead characteristics to compensate for the phase 
lag between the input and the output signals. The five PSS 
parameters consisting of the four time constants T1 to T4 and the 
gain K need be optimally chosen for each generator to guarantee 
optimal system performance under various system configurations 
and disturbances. 
    
 
Objective function 
 
During an unstable condition, the declining rate of the power 
system oscillation is determined by the highest real part of the 
eigenvalue (damping factor) in the power system and the 
magnitude of each oscillation mode is determined by its damping 
ratio. Hence, the objective functions naturally contain the damping 
ratio and the damping factor in the formulation for the optimal 
setting of PSS parameters. Therefore, for the optimal tuning of PSS 
parameters, a multi-objective function may be formulated as 
follows: 
 
Maximize: F1=min (abs (�k))                                                        (4) 
 
Maximize: F2=min (�k)                                                                  (5) 
 

Minimize: f(x) = (F1+ϖ.F2)-1= [min (abs (�k)) +ϖ.min (�k)]-1
        (6) 
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Figure 2. Region of eigenvalue location for 
objective function F. 

 
 
 
where k=1, 2, 3 represent the number of electromechanical modes 
of oscillation and j=1, 2, 3,…, n. n is the total number of eigen 
values. i=1, 2, 3, 4 is the number of PSSs. �k is the real part of the 
kth electro-mechanical mode and 	k =− �k /
 �k ²+�k ² is the 
damping ratio of the kth electro-mechanical mode. 	min is 
considered experimentally as 0.2. Figure 2 shows the expected 
performance of the multi-objective function F. Observe that all the 
oscillation modes can be relocated by the above multi-objective 
function. In (7), � and � are empirically considered limits of 
frequency for the electro-mechanical modes. ϖ is a weight for 
combining both damping factor and damping ratio. The constraint 
set is made up of bounds of PSS parameters, which can be 
formulated as (8).The proposed approach employs PSOPC to solve 
this optimization problem and search for an optimal set of PSS 
parameters.  
 
 
Overview of applied optimization methods  
 
Here, we describe an overview of some optimization methods used 
in this work, to compare the performance of the proposed PSOPC, 
namely GA and SPSO. After highlighting the operation GA, the 
procedure of SPSO is given on which the PSOPC is developed. 
 
 
Genetic algorithm 
 
GA is inspired by biological systems’ improved fitness through 
evolution. The genetic algorithm is advanced by Holland (1975). It 
is an optimization approach based on the concepts of genetics and 
natural reproduction and the evolution of the living creatures, in 
which an optimum solution evolves through a series of generations. 
A solution to a given problem is represented in the form of a string, 
called ‘chromosome’/solution vector, consisting of a set of 
elements, called ‘genes’, that hold a set of values for the 
optimization variables (Goldberg, 1989).  

GAs work with a random population of solution vectors 
(chromosomes). The fitness of each chromosome is determined by 
evaluating it against an objective function. To simulate the natural 
“survival of the fittest” process, best chromosomes exchange 
information (through crossover or mutation) to produce offspring 
chromosomes. The offspring solution vectors are then evaluated 
and used to evolve the population if they provide better solution 
vectors   than  weak  population  members. Usually,  the  process is  
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continued for a large number of generations/iterations to obtain a 
best-fit (near-optimum) solution vector. More details on the 
mechanism of GAs can be found in Goldberg (1989). Four main 
parameters affect the performance of GAs: population size, number 
of generations, crossover rate, and mutation rate. Larger population 
size (that is, hundreds of chromosomes) and large number of 
generations (thousands) increase the likelihood of obtaining a near-
global optimum solution, but substantially increase processing time.  

Crossover among parent chromosomes is a common natural 
process and traditionally is given a rate that ranges from 0.6 to 1.0. 
In crossover, the exchange of parents’ information produces an 
offspring. As opposed to crossover, mutation is a rare process that 
resembles a sudden change to an offspring. This can be done by 
randomly selecting one chromosome from the population and then 
arbitrarily changing some of its information. The benefit of mutation 
is that it randomly introduces new genetic material to the 
evolutionary process, perhaps thereby avoiding stagnation around 
local minima. A small mutation rate less than 0.1 is usually used. A 
flowchart for the GA algorithm is shown in Figure 3. 
 
 
Particle swarm optimization  
  
Particle swarm optimization is a population based stochastic 
optimization method (Kennedy and Eberhart, 1995). It explores for 
the optimal solution from a population swarm of moving particle 
vectors, based on a fitness function. Each ith particle vector 
represents a potential answer and has a position (Xik) and a 
velocity (Vik) at the kth iteration in the problem space. Each ith 
vector keeps a record of its individual best position (Pik), which is 
associated with its own best fitness it has achieved so far, at any 
kth step in the iteration process. This value is known as pbesti. 
Moreover, the optimum position among all the particles obtained so 
far in the swarm is stored as the global best position (Pgk). This 
location is called gbest. The new velocity of particle will be updated 
according to the following equation: 
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               (9)                
 
where w is an inertia weight in the first part that represents the 
memory of a particle during a search, c1 and c2 are positive 
numbers illustrating the weights of the acceleration terms that guide 
each particle toward the individual best and the swarm best 
positions respectively, r1 and r2 are uniformly distributed random 
numbers in (0, 1), and N is the number of particles in the swarm. 
The second and the third parts of (10) represent cognitive part and 
social part respectively. The inertia weighting function in (9) is 
usually calculated using the following equation: 
 
w= wmax – (wmax – wmin) × iter / itermax                                       (10) 
 
where wmax and wmin are the maximum and minimum values of w 
respectively, itermax is the maximum number of iterations and iter 
is the current iteration number. The first term in (9) enables each 
particle to perform a global search by exploring a new search 
space. The last two terms in (9) enable each particle to perform a 
local search around its individual best position and the swarm best 
position. Each particle changes its position based on the updated 
velocity according to the following equation and Figure 4: 
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Figure 3. Algorithm of genetic algorithm.  

 
 
 

 
 
Figure 4. Position update of particle in PSO. 

 
 
 
As the PSO’s equations reveal, unlike the traditional optimization 
algorithms, such as Newton’s method, the PSO algorithm does not 
need a mathematical model of the problem. The only information 
required by the PSO to search for the optimum solution is the 
evaluation of fitness function.  
 
 
Particle swarm optimization with passive congregation 
 
In this study, a modified particle swarm optimization with the 
passive congregation (PSOPC) is proposed to  optimally  tune  PSS 

in multi-machine power systems. The theory of PSOPC creates an 
additional part at the end of the velocity update in (9) of SPSO, 
known as passive congregation part. The basic idea is that 
individuals need to monitor both their environment and their 
surroundings. Thus, each group member receives a multitude of 
information from other members, which may decrease the 
possibility of a failed attempt at detection or a meaningless search. 
This kind of information exchange can be realized by a model 
called passive congregation. Passive congregation is an attraction 
of an individual to other group members but not display of social 
behavior. Social  congregations  usually  happen  in  a group where  
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Figure 5. Flowchart of the PSOPC used for the optimization of PSS parameters. 

 
 
 
the members are related (sometimes highly related). A variety of 
inter-individual behaviors are displayed in social congregations, 
necessitating active information transfer. 

From the definitions given earlier, the third part of (9):c2 × r2 × 
(Pik − Xik) can be defined as passive congregation. However, Pg is 
the best solution the swarm has found so far, which can be 
regarded as the place with most food. Fish schooling is one of the 
representative types of passive congregation and the PSO is 
inspired by it. Adding the passive congregation model to the SPSO 
may increase its performance. The update velocity equation in 
hybrid PSO with the passive congregation (PSOPC) is defined as: 
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where Rik is a particle selected randomly from the swarm, c3 is the 
passive congregation coefficient, and r3 is a uniform random 
sequence in the range of 0 to 1. It must be noted that  each  particle 

obtains passive additional information from another particle that is 
selected at random. This could increase the diversity of the swarm 
and lead to an improved result. The particle will oscillate around the 
weighted mean of global and local best.  

On the one hand, if the previous best position and the 
neighborhood best position are near each other the particle will 
achieve a local exploration. On the other hand, if the previous best 
position and the neighborhood best position are far apart from each 
other, the particle will achieve a more investigative exploration. 
During the exploration, the neighborhood and previous best position 
will change and the particle will move from local search back to 
global search. The restriction factor method, balances the need for 
local and global search depending on what social conditions are in 
place. The detailed procedure for updating the position and velocity 
of individuals for PSOPC algorithm is presented in Figure 5. 
 
 
Constraint optimization using PSOPC  
 
General constrained nonlinear optimization problem can be defined 
as follows: 
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Figure 6. Single line diagram of a two area system. 
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where X is an n dimensional vector of design variables, f(X) is the 
objective function. g(X) and h(X) are the inequality and equality 
constraints respectively. Lk, Uk are lower and upper band 
constraints. 
 
A careful inspection of PSO algorithm reveals that, only the 
objective function is used to see if the new particle position is more 
favorable than the previous one. A number of approaches have 
been taken in the evolutionary computing field to do constraint 
handling. These methods can be grouped into four categories: 
methods that preserve the feasibility of solutions, penalty-based 
methods, methods that clearly distinguish between feasible and 
unfeasible solutions and hybrid methods. The common approach is 
penalty method. Penalty methods add a penalty to the objective 
function to decrease the quality of infeasible solutions. 

In this work, the penalty-based method proposed in (Yang et al., 
1997) is used and the constraint optimization problem in (14) is 
replaced with the alternative unconstrained problem as follows: 
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where f(X) is the original objective function of the problem in (14), r 
is a penalty factor and l is the power of the penalty function. The 
function qi(X) is a relative violated function of the constraints, as 
follows: 
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The parameters r and l are problem dependent and r should be a 
suitably positive large constant. In the present study, the values set 
for r and l are 1000 and 2, respectively.  

According to Equations (7) and (8), a total of 46+2n inequality 
constraints should be considered in the optimization of the PSS 
parameters. Finally, the main objective function may be obtained by 
substituting   the  objective  function  of  Equation (6) and  inequality 

constraints presented in Equations (7) and (8), into Equation (15). 
Therefore, the final objective function (fitness function) for optimal 
tuning of PSS using PSOPC can be formulated in the following 
form: 
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The implementation procedure of the proposed PSOPC for the 
optimal design of PSS parameters is shown as a flowchart in Figure 
5. 
 
  
SIMULATION RESULTS 
 
Power system under study   
 
To demonstrate the application and robustness of 
PSOPC in tuning PSS, a two-area multi-machine power 
system (Rogers, 2000) is simulated by using the power 
system toolbox (PST) (Chow and Rogers, 1993). The 
single line diagram of the system is shown in Figure 6. In 
this system, there are two generation areas and two 
loads interconnected by transmission lines. Each area 
has two generators. All the generators are equipped with 
identical speed governors and turbines, which includes 
exciters, AVRs, and PSSs. The generators and their 
controls are assumed to be identical. The system is quite 
heavily stressed, and it has 400 MW flowing on the tie-
lines from area 1 to area 2. 

The simple model shows the fundamental 
electromechanical oscillations that are inherent in 
interconnected power systems. There are three different 
electromechanical modes of oscillation, which includes 
two local modes of oscillation corresponding to each 
area, and one inter-area mode. This system is unstable 
without PSS and therefore, PSS must be installed with 
appropriate parameters. Participation factors are useful 
measures for indicating the best generator for power 
system stabilizer placement. They show the sensitivity of 
an eigenvalue to a change in the diagonal elements of 
the  state  matrix. If mechanical damping could be applied  
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Figure 7. Real part of generator speed participation factors. 

 
 
 
to the shaft of a generator, it would appear in the state 
equations as a negative coefficient on the diagonal of the 
state matrix in the row, corresponding to the speed 
change of the generator. If the real part of the 
participation factor is positive, a damping torque at the 
corresponding generator’s shaft will add the damping to 
the mode. A bar chart of the real parts of participation 
factor for the inter-area mode is shown in Figure 7. In this 
case, all the participation factors are real and positive and 
a damping torque at any of the generators will add to the 
damping of the inter-area mode. To analyze the LFO in 
the system, the following cases representing various 
operating conditions are studied: 
 
Case 1: Base case (all lines in service). 
Case 2: Loss of a line between bus 3 and bus 101. 
Case 3: Loss of a line between bus 13 and bus 101. 
Case 4: Loss of either of these lines. 
 
Furthermore the above conditions are individually studied 
with: 
 
1. Without any PSSs. 
2. Conventional PSS (CPSS) having the parameters K = 
10.00, T1 = 0.05 s, T2 = 0.015 s, T3 = 0.05 s, and T4 = 
0.01 s, respectively for all four generators. 
3. The PSS parameters optimized using the GA algorithm 
4. The PSS parameters optimized using the SPSO 
algorithm change rows of the state matrix. 
4. The PSS parameters optimized using the PSOPC 
algorithm.  

PSOPC-based PSS design and eigenvalue analysis 
 
The optimal tuning of five PSS parameters namely, Ki, 
T1i to T4i is performed by the PSOPC. Since there are 
four PSSs, twenty parameters need be optimized. 
Fortunately, these parameters have upper and lower 
limits as shown in Table 1. These limits help in reducing 
the computational times significantly. In this work, the 
values of � and � are considered as  and 3, 
respectively. The weight parameter ϖ is set to be 10, 
which is derived from the experiences of many 
experiments conducted on this problem. The optimization 
procedure following the methods described above was 
carried out by a specially prepared computer program 
coded in MATLAB. All the programs were executed on a 
2.10 GHz Pentium IV processor with 2GB of Random 
Access Memory (RAM). To achieve optimum 
performance in the proposed methodology, the 
parameters for the three algorithms need to be carefully 
adjusted. The optimization procedure was terminated 
when one of the following stopping criteria was met: (i) 
the maximum number of generations is reached; (ii) after 
a given number of iterations, there is no significant 
improvement of the solution.  

Table 2 shows the specified parameters for the three 
algorithms PSOPC, SPSO and GA that are used in this 
study. First, the system is run without PSS for the four 
cases mentioned before. Then PSSs are connected to all 
the four generators and GA, SPSO, and the PSOPC 
algorithms are used separately to find out the optimum 
parameters  for   the   PSSs.   The   final   values   of   the  
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Table 1. Lower and upper limits of PSS parameters. 
 

Parameters T1 T2 T3 T4 Kpss 
Lower limit 0.01 0.01 0.01 0.01 1 
Upper limit 2 2 2 2 50 

 
 
 

Table 2. Parameters used for GA, SPSO and PSOPC algorithm. 
 

Parameters GA SPSO PSOPC 
Swarm size 25 25 25 
itermax 250 250 250 
C1 - 2 2 
C2 - 2 1 
C3 - - 0.4 
wmin - 0.4 0.45 
wmax - 0.9 0.95 
Crossover probability 0.95 - - 
Mutation probability 0.10 - - 

 
 
 

Table 3. Searched gains and time constants of PSSs by the GA, SPSO and PSOPC. 
 

 Unit K T1 T2 T3 T4 
G1 11.934 0.0512 0.0241 0.0500 0.0567 
G2 17.033 0.1907 0.0161 0.1021 0.0348 
G3 26. 308 0.0675 0.0231 0.0731 0.0364 

 
GA optimized parameters 

G4 15.099 0.0356 0.0151 0.0715 0.0384 
       

G1 22.5477 0.0489 0.0201 0.0825 0.6231 
G2 12.9182 0.1070 0.0491 0.1032 0.0700 
G3 27.8645 0.0653 0.0251 0.0800 0.2180 

 
SPSO optimized parameters 

G4 11.0024 0.0512 0.0235 0.0699 0.3011 
       

G1 24.4382 0.0834 0.0153 0.0500 0.1670 
G2 15.8664 0.5070 0.0440 0.0487 0.0650 
G3 26.3067 0.0675 0.0160 0.0541 0.0158 

 
PSOPC optimized parameters 

G4 23. 4433 0.0356 0.0100 0.0389 0.0100 
 
 
 
optimized parameters with the objective function F by the 
three methods (PSOPC, SPSO and GA) are presented in 
Table 3. It shows the values of the parameters 
corresponding to the best fitness achieved by each 
algorithm after 10 trials. The principal eigen values and 
the damping ratios obtained for all operating conditions 
with no PSS, CPSS and after application of various 
optimization methods in the system are given in Table 4. 
The bolded values represent the greatest damping factor, 
and the values enclosed in square  frames  represent  the 

smallest damping ratio values. For the system without 
PSS, it can be observed that some of the modes are 
weekly damped and for some operating conditions the 
system is unstable. The unstable cases are highlighted in 
Table 4. The addition of PSSs improves the damping in 
the system oscillations. The results clearly show that the 
performance of PSOPC optimized PSSs is better than 
SPSO and GA optimized PSSs and CPSS.  

All damping factors are smaller than -1.0 and all 
damping  ratios  are  greater  than 0.2 when the proposed
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Table 4. Eigenvalues and damping ratios with and without PSSs for four cases. 
 

 Case 1 Case 2 Case 3 Case 4 
0.044387 ± 4.0309i, -0.0110 -0.0231 ± 3.297i, -0.0700 0.0413 ± 3.3227, -0.0124 0.0014 ± 2.5144i, -0.00057 
-0.55258 ± 7.302i, 0.07546 -0.5477 ± 7.2853i, 0.0750 -0.5720 ± 7.2695i, 0.0784 -0.5784 ± 7.2473i, 0.0796 Without PSSs 
-0.55317 ± 7.383i, 0.07471 -0.5643 ± 7.3284i, 0.0768 -0.5412 ± 7.3456i, 0.0735 -0.5355 ± 7.2801i ,0.0734 

     
-0.52484 ± 3.8483i, 0.1351 -0.4636 ± 2.9055i, 0.1576 -0.4511 ± 2.9236i, 0.1525 -0.4469 ± 1.7633i, 0.2457 
-3.2505 ± 8.2795i, 0.36545 -2.8394 ± 7.8648i, 0.3396 -2.9202 ± 7.7275i, 0.3535 -2.6431 ± 8.0318i, 0.3126 With CPSS 
-3.248 ±  8.5995i, 0.35333 -3.0725 ± 7.9076i, 03622 -2.9536 ± 8.0302i, 0.3452 -2.9310 ± -8.2929i, 0.3332 

     
-0. 9499 ± 3.5917i, 0.255 -0. 8084 ± 3.4146i, 0.2342 -0.8002 ± 3. 304i, 0.2353 -0.8653 ± 3. 558i, 0.2368 
-4.0428 ± 5.8045i, 0.5716 -3.7688 ± 6.0058i, 0.5315 -3.8675 ± 5.9526i, 0.6866 -3.59805 ± 6.2598i, 0.6586 With GA 

-5.5160 ± 5.22030i, 0.7108 -5.1901 ± 5.6320i, 0.6777 -5.0132 ± 5.7291i, 0.5760 -5.1746 ± 5.8396i, 0.5788 
     

-0. 9944 ± 3.6930i, 0.2600 -0. 8168 ± 3.5782i, 0.2225 -0.8105 ± 3.5297i, 0.2237 -0. 7829 ± 3.5290i, 0.2170 
-5.4132 ± 5.8041i, 0.7148 -5.2506 ± 5.8287i, 0.6693 -5.3782 ± 57275i, 0.6845 -5.2328 ± 5.9824i, 0.6584 With SPSO 
-5.5969 ± 5.4586i, 0.6914 -5.2227 ± 6.0117i, 0.6558 -5.0100 ± 6.1150i, 0.6338 -5.1627 ± 6.1754i, 0.6414 

     
-1.2134 ± 3.5317i , 0.3258 -1.1412 ± 3.5233i, 0.3081 -1.1324 ± 3.5222i, 0.3060 -1.1254 ± 3. 5175i, 0.3047 
-6. 3034 ± 4.7931i, 0.7977 -5.9715 ± 4.9960i, 0.7670 -5.8049 ± 5.1216i, 0.7499 -5.9465 ± 5.3284i, 0.7448 With PSOPC 
-7.2232 ± 5.9910i, 0.7697 -6.4870 ± 6.5369i, 0.7044 -6.6810 ± 6.3634i, 0.7241 -6.1758 ± 6.8565i, 0.6693 

 
 
 
method is applied. The results from the SPSO 
show that, the minimum damping ratio and the 
maximum damping factor, under all cases are 
better than the results obtained by the use of 
CPSS and GA. Also, the results from the PSOPC 
are better than those from SPSO. It means that 
the addition of passive congregation part can 
increase the system dynamic stability. The 
principal eigen values are drawn in the s-plane, 
shown in Figure 8. In Figure 8, it not only shows 
that the proposed PSOPC can shift the unstable 
or lightly damped oscillation modes but also shift 
other  oscillation   modes  more to  the  left  in  the   

s-plane.  
 
 
Nonlinear time-domain simulation 

 
A number of time domain simulations have been 
performed to demonstrate the efficiency of tuning 
of PSS parameters, using the proposed PSOPC 
method. In these tests, to evaluate the 
effectiveness of the PSOPC based tuned PSS 
using the proposed multi-objective function, a 
200-ms three-phase fault is applied at bus 3 and a 
fault  between  the bus 3 and bus 101 is cleared in 

0.05 s at the near end. After a further 0.05 s, 
remote end circuit breaker at bus 101 is operated 
for the complete clearance in each case. From 
Figures 9 to 12, line powers from bus 3 to 101 are 
shown for illustration. Observe that with the 
optimally tuned parameters using PSOPC, the 
system reaches the steady state slightly faster 
than using other tuning methods under any 
system operating condition. The speed deviations 
of generators G1, G2, G3 and G4 under the fault 
at bus 3 are shown in Figures 13 to 16, 
respectively. 

These  time  domain simulations are also in well
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Figure 8. The searched eigenvalues with the objective 
function for the four cases. 

 
 
 

 
 
Figure 9. The line powers from bus 3 to 101 for the case 1. 

 
 

 
 
Figure 10. The line powers from bus 3 to 101 for the case 2. 
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Figure 11. The line powers from bus 3 to 101 for the case 3. 

 
 

 
 
Figure 12. The line powers from bus 3 to 101 for the case 4. 

 
 

 
 
Figure 13. Speed response of generator G1. 
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Figure 14. Speed response of generator G2. 

 
 
 

 
 
Figure 15. Speed response of generator G3. 

 
 
 

 
 
Figure 16. Speed response of generator G4.  
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Table 5. Iterations and time required by GA, SPSO and PSOPC algorithms. 
 

Best result Average result Worst result 
 

GA SPSO PSOPC GA SPSO PSOPC GA SPSO PSOPC 
Iterations 195 120 35 217 140 41 240 160 47 
Elapse time (s) 54000 25694 6247 56936 27847 6600 59872 30000 6953 
Best fitness value 0.9145 0.8710 0.8047 0.9655 0.9016 0.8351 1.0165 0.9322 0.8656 

 
 
 
agreement with the results of eigenvalue analysis. The 
addition of PSSs improves the damping in the system 
oscillations. It can be seen that the PSSs tuned using the 
proposed method achieve good results and provide 
superior damping, in comparison to the case when either 
SPSO or GA is used. All of these figures represent large 
signal stability of the test systems with optimum PSSs. 
Furthermore, it seems that PSOPC based PSSs show 
better performances in most of the cases. It is clear that 
the newly proposed method is quite efficient to damp out 
the local modes, as well as the inter-area modes of 
oscillations. This illustrates the potential and the 
superiority of the proposed design approach to get the 
optimal set of PSS parameters. 
 
 
DISCUSSION  
 
In order to have a fair comparison among all the three 
algorithms, same number of iterations and same ranges 
of the parameters are used. To compare the accuracies 
of these algorithms, a maximum number of iteration 
cycles are considered as a stopping condition and the 
results obtained from these algorithms are compared. 
The values of different variables relevant for each 
algorithm are summarized in Table 2. For all the 
algorithms, the initialization is done randomly within the 
limits of the PSS parameters. The best fitness value 
achieved by each algorithm is a measure of the strength 
of the algorithm. Each algorithm is run for 10 times and 
the average elapsed time is considered as a criterion for 
the computational time. Table 5 illustrates the results 
obtained by PSOPC, SPSO and GA algorithms. The 
results indicate the iteration count, elapse time and the 
convergence of the solution or success is met. It is clearly 
obvious that, the proposed algorithm requires extremely 
fewer iterations and less computational time to reach a 
predefined threshold as compared to other algorithms.  

Hence, it can be concluded that the PSOPC is the best 
among the aforementioned algorithms, in terms of 
accuracy and convergence speed. Furthermore, Table 5 
compares the best fitness values achieved by the 
algorithms in 10 trials. It can be observed that as a whole, 
the performance is the best for the PSOPC. The fitness 
achieved by it is 0.8047.  This   is the  lowest  among  the 

three algorithms. Also, the worst result obtained by the 
PSOPC is even better than the best result obtained by 
GA and SPSO. The result shows that, using PSOPC for 
optimal tuning of PSSs has faster convergence rate 
compared to SPSO and GA, as it can be seen that the 
elapsed time for PSOPC is the least, which is 
approximately a quarter of the computation times for 
SPSO and GA. In addition, the fitness value versus 
iteration characteristics for each algorithm is depicted in 
Figure 17. Here the fitness corresponds to the average 
fitness of the 10 trials. Figure 17 confirms the success of 
the optimization process by using PSOPC algorithm. 
 
 
Conclusion 
 
In the present paper, an application of a hybrid PSO with 
the passive congregation algorithm to determine the 
optimal tuning of PSSs parameters is introduced. The 
design problem of PSSs parameters selection is 
converted into an optimization problem which is solved by 
the PSOPC technique with the eigen value-based multi- 
objective function. Maximization of the minimum damping 
ratio and minimum damping factor of dominant oscillatory 
modes are employed as two objectives to optimize the 
PSS parameters. Eigenvalue analysis shows acceptable 
damping of system modes, particularly the low-frequency 
modes, when the PSSs are tuned by PSOPC.  

Time domain simulations also show that, the 
oscillations of synchronous machines can be rapidly 
damped for power systems with the proposed PSSs over 
a wide range of conditions. Besides, the comparative 
performances of three optimization algorithms, namely 
PSOPC, SPSO and GA for finding the optimal 
parameters of power system stabilizers in a multi-
machine have been presented. Based on ten trial runs, it 
is observed that, the PSOPC consistently performs the 
best in solving the tuning problem. This indicates the 
efficiency of the proposed PSOPC algorithm in tuning 
PSS and stabilizing the system under LFOs. 
 
 
NOMENCLATURE: �, rotor angle; w, inertial weight; ��, 
speed deviation; iter, the current iteration number; T1, T2, 
T3, T4, lead/lag  time constants  of  PSS; G, the maximum 
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Figure 17. Average best fitness vs. iteration curve. 

 
 
 
number of iterations; �, damping ratio; pbesti  pbest of 
agent I; �min, expected damping; gbest, gbest of group; 
����, damping factor; r, random number between 0 and 1; 
Eq, q-axis component of stator voltage; g(X), inequality 
constraints; Ed, d-axis component of stator voltage; h(X),  
equality constraints; �d, d- axis component of stator flux 
linkage; Lk, lower band constraints; �q, q-axis component 
of stator flux linkage; Uk, upper band constraints; Ki, the 
power system stabilizer gain; qi(X), relative violated 
function of the constraints; Tw, the time constant of the 
signal washout block; l, the power of the penalty function; 
Vs, the output voltage of the phase compensator;  k,  the 
number of electromechanical modes; �,,,,    weight constant. 
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