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The manuscript deals with the abundant travelling wave solutions of the Caudrey-Dodd-Gibbon (CDG) 

equation which have been obtained in a uniform way by using alternative ( / )G G –expansion method 
wherein the generalized Riccati equation is used. Moreover, a relatively new technique which is called 
(U

`
/U)-expansion is also used to find solitary wave solutions of CDG equation. The solutions obtained in 

this article may be imperative and significant for the explanation of some practical physical phenomena. 
Numerical results coupled with the graphical representation explicitly reveal the complete reliability and 
high efficiency of the proposed algorithms. 
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INTRODUCTION 
 
The rapid development of nonlinear sciences witnesses a 
wide range of reliable and efficient techniques which are 
of great help in tackling physical problems even of highly 
complex nature. After the observation of solitonary 
phenomena by John Scott Russell (Wazwaz, 2009) in 
1834 and since the KdV equation was solved by Gardner 
et al. (1967) by the inverse scattering method, finding 
exact solutions of nonlinear evolution equations (NLEEs) 
has turned out to be one of the most exciting and 
particularly active areas of research. The appearance of 
solitary wave solutions in nature is quite common. Bell-
shaped Sech-solutions and kink-shaped Tanh-solutions 
model wave phenomena in elastic media, plasmas, solid 
state   physics,   condensed   matter   physics,    electrical 

circuits, optical fibers, chemical kinematics, fluids, bio-
genetics etc. The travelling wave solutions of the KdV 
equation and the Boussinesq equation which describe 
water waves are well-known examples. Apart from their 
physical relevance, the closed-form solutions of NLEEs if 
available facilitate the numerical solvers in comparison, 
and aids in the stability analysis. In soliton theory, there 
are many methods and techniques to deal with the 
problem of solitary wave solutions for NLEEs, such as, 
Backlund transformation (Rogers and Shadwick, 1982), 
Hirota’s bilinear transformation (Hirota, 1971), Variational 
Iteration (Mohyud-Din, 2008), homogeneous balance 
(Wang, 1996), Tanh-function (Malfliet, 1992), Jacobi elliptic 
function  (Ali,  2011),  F-expansion  (Zhou  et  al.,   2003),
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Homotopy Analysis (Liao, 1992a, b), Homotopy Perturbation 
(Mohyud-Din, 2007), Adomian’s Decomposition (Adomian, 
1994), First Integration (Taghizadeh and Mirzazadeh, 
2011), Exp-function (He and Wu, 2006; Abdou et al., 
2007; Akbar and Ali, 2011b; Mohyud-Din et al., 2010; 
Naher et al., 2011b), and others (Abbasbandy, 2007a, b; 
Mohyud-Din et al., 2009, 2011a, b; Usman et al., 2011). 

In the similar context, Wang et al. (2008) established a 
widely used direct and concise technique which is called 

the ( / )G G -expansion method for obtaining the exact 

travelling wave solutions of NLEEs, where ( )G  satisfies 

the second order linear ordinary differential equation 

(ODE) 0G G G     , where  and   are arbitrary 

constants. In the articles, Abazari (2010), Akbar and Ali 
(2011a), Bekir (2008), Liu et al. (2010), Naher et al. 
(2011a), Zayed (2009a), Zayed and Gepreel (2009), 
Zhang et al. (2008a, b), Zayed and Al-Joudi (2010), the 

( / )G G -expansion method is applied to investigate 

solutions of nonlinear partial differential equations in 
mathematical physics. It is to be highlighted that Zhang et 

al. (2010) presented an improved ( / )G G -expansion 

method to seek more general travelling wave solutions. 
Zayed (2009b) presented a new approach of the ( / )G G -

expansion method where ( )G   satisfies the Jacobi 

elliptic equation 2 4 2

2 1 0[ ( )] ( ) ( )G e G e G e      , 
2 1 0, ,e e e  

are arbitrary constants, and obtained new exact 
solutions. Zayed (2011) again presented an alternative 

approach of this method in which ( )G   satisfies the 

Riccati equation 
2( ) ( )G A BG    , where A  and B  

are arbitrary constants. Inspired and motivated by the 
ongoing research in this area, we investigate ample new 
travelling wave solutions of the CDG equation in a 
uniform way by making use of the alternative ( / )G G –

expansion method wherein the generalized Riccati 
equation is functioned. Moreover, we have also applied a 
relatively new technique namely (U

`
/U)-expansion 

Method to tackle the CDG equation. Numerical results 
coupled with the graphical representations explicitly 
reveal the complete reliability and high efficiency of the 
proposed algorithms. 
 

 
METHODOLOGY 
 

Suppose the general nonlinear partial differential equation 
 

( , , , , , , ) 0t x t t t x x xF u u u u u u                (1)  

 

where ( , )u u x t  is an unknown function, F  is a polynomial in 
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( , )u x t  and its partial derivatives in which the highest order partial 

derivatives and the nonlinear terms are involved. The main steps of 

the alternative ( / )G G -expansion method combined with the 

generalized Riccati equation are as follows: 

 
Step 1: The travelling wave variable 

 

( , ) ( )u x t u  , x Vt                  (2) 

 

where V  is the speed of the travelling wave, and permits us to 

transform the Equation (1) into an ODE: 
 

( , , , ) 0Q u u u                   (3) 

 
where the superscripts stands for the ordinary derivatives with 

respect to .  

 
Step 2: If Equation (3) is integrable, integrate term by term one or 

more times, yields constant(s) of integration. 

 
 
Alternative (G`/G)-expansion method with generalized Riccati 
equation 

 
Step 3: Suppose the traveling wave solution of Equation (3) can be 

expressed by a polynomial in ( / )G G  as follows: 

 

0

( )

nm

n

n

G
u a

G




 
  

 
 , 0ma                (4) 

 

where ( )G G   satisfies the generalized Riccati equation, 

 
2G r pG qG    ,                (5) 

 

where ( 0,1, 2, , )na n m , r , p  and q  are arbitrary 

constants to be determined later. 
The generalized Riccati Equation (5) has the following twenty 

seven solutions (Zhu, 2008). 

 

Family 1: When 
2 4 0p q r   and 0p q   (or 0r q  ), the 

solutions of Equation (5) are: 

 

2 2

1

1 1
4 tan 4

2 2
G p qr p qr p

q


  
      

  
, 

 

2 2

2

1 1
4 cot 4

2 2
G p qr p qr p

q


  
      

  
, 

    2 2 2

3

1
4 tan 4 sec 4

2
G p q r p q r p q r p

q
        

  
, 
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    2 2 2

4

1
4 cot 4 csc 4

2
G p q r p q r p q r p

q
        

  
, 

 

2 2 2

5

1 1 1
2 4 tan 4 cot 4

4 4 4
G p q r p q r p q r p

q
 

     
           

     
, 

 

 
 

2 2 2 2 2

6
2

( ) (4 ) 4 cos 41

2 sin 4

A B q r p A q r p q r p
G p

q A q r p B





     
   
 

   

, 

 

 
 

2 2 2 2 2

7
2

( ) (4 ) 4 cos 41

2 sin 4

A B q r p A q r p q r p
G p

q A q r p B





     
   
 

   

, 

 

where A  and B  are two non-zero real constants and satisfies the condition 
2 2 0A B  . 

 

2

8
2 2 2

1
2 cos 4

2

1 1
4 sin 4 cos 4

2 2

r q r p

G

q r p q r p p q r p



 

 
  

 
   

      
   

, 

 

2

9
2 2 2

1
2 sin 4

2

1 1
sin 4 (4 ) cos 4

2 2

r q r p

G

p q r p q r p q r p



 

 
 

 
   

       
   

, 

 

 
   

2

10
2 2 2 2

2 cos 4

(4 ) sin 4 cos 4 (4 )

r q r p
G

q r p q r p p q r p q r p



 

 


     
, 

 

 
   

2

11
2 2 2 2

2 sin 4

sin 4 (4 ) cos 4 (4 )

r q r p
G

p q r p q r p q r p q r p



 



      

, 

 

2 2

12
2 2 2 2 2 2

1 1
4 sin 4 cos 4

4 4
.

1 1 1
2 sin 4 cos 4 2 (4 ) cos 4 (4 )

4 4 4

r q r p q r p

G

p q r p q r p q r p q r p q r p

 

  

   
    

   


     
            

     

 

 

Family 2: When 
2 4 0p q r   and 0p q   (or 0r q  ), the solutions of Equation (5) are: 

 

2 2

13

1 1
4 tanh 4

2 2
G p p qr p qr

q


  
      

  
, 



Akbar et al.          1839 
 
 
 

2 2

14

1 1
4 coth 4

2 2
G p p qr p qr

q


  
      

  
, 

 

    2 2 2

15

1
4 tanh 4 sec 4

2
G p p q r p q r i h p q r

q
        

  
, 

 

    2 2 2

16

1
4 coth 4 csc 4

2
G p p q r p q r h p q r

q
        

  
, 

 

2 2 2

17

1 1 1
2 4 tanh 4 coth 4

4 4 4
G p p q r p q r p q r

q
 

     
           

     
, 

 

 
 

2 2 2 2 2

18
2

( ) ( 4 ) 4 cosh 41

2 sinh 4

A B p q r A p q r p q r
G p

q A p q r B





     
   
 

   

, 

 

 
 

2 2 2 2 2

19
2

( ) ( 4 ) 4 cosh 41

2 sinh 4

B A p q r A p q r p q r
G p

q A p q r B





     
   
 

   

, 

 

where A  and B  are two non-zero real constants and satisfies the condition 
2 2 0B A  . 

 

2

20
2 2 2

1
2 cosh 4

2

1 1
4 sinh 4 cosh 4

2 2

r p q r

G

p q r p q r p p q r



 

 
 

 
   

      
   

, 

 

2

21
2 2 2

1
2 sinh 4

2

1 1
4 cosh 4 sinh 4

2 2

r p q r

G

p q r p q r p p q r



 

 
 

 
   

      
   

, 

 

 
   

2

22
2 2 2 2

2 cosh 4

4 sinh 4 cosh 4 4

r p q r
G

p q r p q r p p q r i p q r



 




     
, 

 

 
   

2

23
2 2 2 2

2 sinh 4

sinh 4 4 cosh 4 4

r p q r
G

p p q r p q r p q r p q r



 



      

, 

 

2 2

24
2 2 2 2 2 2

1 1
4 sinh 4 cosh 4

4 4
.

1 1 1
2 sinh 4 cosh 4 2 4 cosh 4 4

4 4 4

r p q r p q r

G

p p q r p q r p q r p q r p q r

 

  

   
    

   


     
            

     
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Family 3: When 0r   and 0p q  , the solutions of Equation 

(5) are: 
 

 25
cosh( ) sinh( )

p d
G

q d p p 




 
, 

 

 
 26

cosh( ) sinh( )

cosh( ) sinh( )

p p p
G

q d p p

 

 




 
, 

 

where d  is an arbitrary constant. 

 

Family 4: When 0q   and 0r p  , the solution of Equation 

(5) is: 

 

27

1

1
G

q c



, 

 

where 1c  is an arbitrary constant. 

 
Step 4: To determine the positive integer m , substitute solution 

Equation (4) along with Equation (5) into Equation (3) and then 
consider homogeneous balance between the highest order 
derivatives and the nonlinear terms appearing in Equation (3). 
 
 
 

 
 
 
 
Step 5: Substituting Equation (4) together with Equation (5) into 

Equation (3) together with the value of m  obtained in step 3, we 

obtain polynomials in 
iG  and 

iG ( 0,1,2,3 )i   and 

vanishing each coefficient of the resulted polynomial to zero, yields 

a set of algebraic equations for na  p , q , r  and V . 

 

Step 6: Suppose the value of the constants na  p , q , r  and V  

can be obtained by solving the set of algebraic equations obtained 
in step 5. Since the general solutions of Equation (5) are known for 

us, substituting, na  p , q , r  and V  together with the general 

solution of Equation (5) into Equation (4), we obtain new exact 
traveling wave solutions of the nonlinear evolution Equation (1). 
 
 
New approach of (G`/G)-expansion method 
 
Step 3: According to new approach of (G`/G)-expansion method, 

we assume that the wave solution can be expressed in the 
following form  
 

                                           (6) 
 

where is the solution of first order nonlinear equation in the 
form 

   (7) 

 

 

 

 

 

where  and  are real constants. The Riccati Equation (5) plays important role in manipulating nonlinear equations to get exact solutions 

by the (G/G)-expansion method. It has the following type of exact solutions. 
 

Family 1: When  
 

 

 

Family 2: When  and  or  and  
 

  

 

Family 3: When  and  
 

 

 

Family 4: When  and  
 

 



 
 
 
 

Family 5: When  and  

 

 

 

Step 4: Determine . This, usually, can be accomplished by 

balancing the linear term(s) of highest order with the highest order 
nonlinear term(s) in Equation (4). 
 
Step 5: Substituting Equation (6) into Equation (4) with (7) will 

yields an algebraic equation involving power of (G/G). Equating the 

coefficients of like power of (G/G) to zero gives a system of 

algebraic equations for  and . Then, we solve the 

system with the aid of a computer algebra system (CAS), such as 
MAPLE 13, to determine these constants. 
 
Step 6: Putting these constant into Equation (6), coupled with the 

well known solutions of Equation (7), we can obtained the more 
general type and new exact travelling wave solution of the nonlinear 
partial differential Equation (1). 

 
 
(U

`
/U)-expansion method 

 
Step 3: According to (U`/U)-expansion method, we assume that the 

wave solution can be expressed in the following form 
 

               (8) 

 

where  is the solution of first order nonlinear equation in the form 

 

                 (9) 

 

where  and  are real constants,  is a positive integer to be 

determined and the Equation (9) has solution 
 

 

 

Step 4: Determine . This, usually, can be accomplished by 

balancing the linear term(s) of highest order with the highest order 
nonlinear term(s) in Equation (4). 
 
Step 5: Substituting (9) into ODE with (8) yields an algebraic 
equation involving power of U. Equating the coefficients of like 
power of U to zero gives a system of algebraic equations for 

 and . Then, we solve the system with the aid of a 

computer algebra system (CAS), such as MAPLE 13, to determine 
these constants. 
 
Step 6: Putting these constant into Equation (8), coupled with the 

well known solutions of Equation (9), we obtained the more general 
type and new exact travelling wave solution of the nonlinear partial 
differential Equation (1). 
 
 
New travelling wave solutions of Cuadrey-Dodd-Gibbon (CDG) 
equation 

 

Here, the alternative ( / )G G -expansion method together with the 

generalized Riccati equation is  employed  to  construct  some  new 
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travelling wave solutions for the (1+1)-dimensional Cuadrey-Dodd-
Gibbon (CDG) equation which is a very important nonlinear 
evolution equation in mathematical physics and engineering and 
have been paid attention by many researchers. Some exact 
solutions of the CDG equation are found in the literature. In general, 
the solutions of the CDG equation have been obtained by means of 
an Ansatz method. Included in the methods are the sin-cosine 
method and the rational Exp-function method (Abdollahzadeh et al., 
2010), the Hirota’s bilinear transformation method (Jiang and Bi, 
2010), the Exp-function method (Xu, 2008), the variational iteration 
method (Jin, 2010), the multi-wave method (Shi et al., 2010), and 
the variable separation method (Zheng, 2010). In this paper, we 

apply the alternative ( / )G G -expansion method together with 

generalized Riccati equation for searching its solitary wave 
solutions. Let us consider the CDG equation: 
 

230 30 180 0t xxxxx xxx x xx xu u uu u u u u                (10) 

 
 
NUMERICAL RESULTS AND DISCUSSION 
 
Alternative (G`/G)-expansion method using 
generalized Riccati equation 
 
Now, we use the wave transformation equation into 
Equation (10), which yield: 
 

(5) 230 30 180 0V u u uu u u u u          ,        (11) 

 

where 
(5)u  denotes the fifth derivative of u  with respect 

to  . Equation (11) is integrable, therefore, integrating 

we obtain 
 

(4) 330 60 0C V u u uu u              (12) 

 
According to step 3, the solution of Equation (12) can be 

expressed by a polynomial in ( / )G G  as follows: 

 

2

0 1 2( ) ( ) ( ) ( )m

m

G G G
u a a a a

G G G


  
     , 0ma       (13) 

 

where , ( 0,1,2, , )na n m  are constants to be 

determined and ( )G G   satisfies the generalized 

Riccati Equation (10). Considering the homogeneous 
balance between the highest order derivative and the 

nonlinear terms in Equation (12), we obtain 2m  . 

Therefore, the solution Equation (13) takes the form, 
 

2

0 1 2 2( ) ( ) ( ) , 0
G G

u a a a a
G G


 

             (14) 

 
Using Equation (5), Equation (14) can be rewritten as, 
 

1 1 2

0 1 2( ) ( ) ( )u a a p r G qG a p r G qG              (15) 
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Substituting Equation (15) into (12), the left hand side is 

converted into polynomials in 
iG  and 

, ( 0,1,2,3, )iG i  . Setting each coefficient of these 

resulted polynomials to zero, we obtain a set of 
simultaneous algebraic equations (we will omit to display 

 
 
 
 

them for simplicity) for 0 1 2, ,a a a , p , q , r  and V . 

Solving the over-determined set of algebraic equations 
by using the symbolic computation software, such as 
Maple, we obtain 
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where p , q  and r  are arbitrary constants. 

Now on the basis of the solutions of Equation (5), we obtain the following families of solutions of Equation (10). 
 

Family 1: When 2 4 0p q r   and 0p q   (or 0r q  ), the periodic form solutions of Equation (10) are, 
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where A  and B  are two non-zero real constants satisfies the condition 
2 2 0A B  . 
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Family 2: When 
2 4 0p q r   and 0p q   (or 0r q  ), the soliton and soliton-like solutions of Equation (10) are, 
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where A  and B  are two non-zero real constants and satisfies the condition 
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Family 3: When 0r   and 0p q  , the solutions of Equation (10) are, 
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Family 4: When 0q   and 0r p  , the solutions of 

Equation (10) are, 
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where 1c  is an arbitrary constant. 

Because of the arbitrariness of the parameters p , q  

and r  in the above families of solution, the physical 
quantities u  and v  may possess rich structures. 

Graph is a powerful tool for communication and 
describes lucidly the solutions of the problems. 
Therefore, some graphs of the solutions are given below 
(Graph 1a to h). The graphs readily have shown the 
solitary wave form of the solutions. 
 
 
New approach of (G`/G)-expansion method 
 
To convert Equation (10) into ODE we used the following 
transformation 
 

    (17) 

 

where  and  are arbitrary constant. Substituting 
Equation (17) into (10) and using the chain rule and 

 we obtain 
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Integrating the above equation once, ignoring the 
constant of integration equal to zero we have the 
following equation 
 

 
 

For m = 2, we obtained the trail solution 
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where  satisfying the following Riccati equation 
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Putting Equation (20) into (18) coupled with auxiliary 
equation; the Equation (18) yields an algebraic equation 

involving power of  as 

 

 

 

Compare the like powers of  we have system of equations 
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(a)                                                                    (b) 

 

   
(c)                                                                        (d) 

 

   
(e)                                                                           (f) 

 

   
(g)                                                                          (h) 

 

Graph 1. Solitons corresponding to solutions (a) 1u  for 1p q r    (b) 2u  for 

1, 2p q r    (c) 8u  for 2p q r   (d) 13u for 3, 2, 1p q r   (e) 14u  for 

2, 1, 0.5p q r   (f) 20u  for 3, 1, 2p q r   (g) 26u  for 1.5, 1, 0p q r   (h) 27u  for 

0, 1, 0p q r   . 
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Solving the above system for unknown parameters, we have the following solution sets. 
 
 
1st solution set 
 

  

 

Family 1: When  

 

 

 

where  

 

Family 2: When  and  or  and  

 

 

 

where   

 

Family 3: When  and  

 

 

 

where  

 

Family 4: When  and  

 

 

 

where  

 

Family 5: When  and  

 

 

 

where  



1848          Int. J. Phys. Sci. 
 
 
 

     
                             (a)                                                             (b)  
 

Graph 2. (a) 2D and (b) 3D travelling wave solutions of Equation (10) for different values of 

parameters. 
 
 
 

In all cases  

Graph 2a and b show 2D and 3D travelling wave solutions of Equation (10) for different values of parameters. 
 
 

2nd solution set 
 

 
 

Family 1: When  
 

 

 

where  

 

Family 2: When  and  or  and  
 

 

 

where   

 

Family 3: When  and  
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                            (a)                                                                                    (b)  
 
Graph 3. (a) 2D and (b) 3D periodic wave solutions of Equation (10) for different values of parameters. 

 
 
 

where  

 

Family 4: When  and  
 

 

 

where  

 

Family 5: When  and  
 

 

 

where  

 

In all cases  

 

Graph 3a and b show 2D and 3D periodic wave solutions of Equation (10) for different values of parameters. 
 
 

3rd solution set 
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Family 1: When  
 

 

 

where  

 

Family 2: When  and  or  and  
 

 

 

where   

 

Family 3: When  and  

 

 

 

where  

 

Family 4: When  and  

 

 

 

where  

 

Family 5: When  and  

 

 

 

where  

 

In all cases  

 
Graph 4a and b show 2D and 3D periodic wave solutions of Equation (10) for different values of parameters. 
 
 

(U`/U)-expansion method 
 

For m = 2, we obtained the trail solution 
 

   (21) 
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                                       (a)                                                                   (b)  
 

Graph 4. (a) 2D and (b) 3D periodic wave solutions of Equation (10) for different values of parameters. 

 
 
 

where  satisfying the following Riccati equation 

 

     (22) 

 
Putting Equation (22) into (18) coupled with auxiliary equation; the Equation (18) yields an algebraic equation involving 

power of  as 

 

 

 

Compare the like powers of  we have system of equations 
 

  

 

  

 

  

 

  

 

  

 

  

 

  

 
Solving the above system for unknown parameters, we have the following solution sets 
 
 
1st solution set 
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                            (a)                                                            (b)  
 

Graph 5. (a) 2D and (b) 3D travelling wave solutions of Equation (10) for different values of 

parameters. 
 
 
 

Substituting the solution set into trial solution 
 

 

 

Graph 5a and b show 2D and 3D travelling wave solutions of Equation (10) for different values of parameters. 
 
 

2nd solution set 
 

  

 

Substituting the solution set into trial solution 
 

 

 

Graph 6a and b show 2D and 3D travelling wave solutions of Equation (10) for different values of parameters. 
 
 

3rd solution set 
 

  

 

Substituting the solution set into trial solution 
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                            (a)                                                               (b)  
 
Graph 6. (a) 2D and (b) 3D travelling wave solutions of Equation (10) for different values of 

parameters. 
 
 
 

         
                            (a)                                                           (b)  
 
Graph 7. (a) 2D and (b) 3D travelling wave solutions of Equation (10) for different values 

of parameters. 
 
 
 

Graph 7a and b show 2D and 3D travelling wave solutions of Equation (10) for different values of parameters. 
 
 

4th solution set 
 

  

 

Substituting the solution set into trial solution 
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                               (a)                                                           (b)  

 

Graph 8. (a) 2D and (b) 3D travelling wave solutions of Equation (10) for different values of 
parameters. 

 
 
 

     
                                (a)                                                        (b)  
 

Graph 9. (a) 2D and (b) 3D travelling wave solutions of Equation (10) for different values of 
parameters. 

 
 
 

Graph 8a and b show 2D and 3D travelling wave solutions of Equation (10) for different values of parameters. 
 
 

5th solution set 
 

  

 

Substituting the solution set into trial solution 
 

 

 

Graph 9a and b show 2D and 3D travelling wave solutions of Equation (10) for different values of parameters. 



 
 
 
 
Conclusion 

 
Alternative ( / )G G -expansion along with the generalized 

Riccati equation and (U
`
/U)-expansion methods are 

successfully used for searching abundant exact travelling 
wave solutions to the (1+1)-dimensional CDG equation 
with the help of symbolic computation. Numerical results 
re-confirm the efficiency of the proposed algorithms. It is 
concluded that suggested schemes can be extended for 
other kinds of NLEEs in mathematical physics. 
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