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A method to predict 28-day compressive strength of high strength concrete (HSC) by using MFNNs is 
proposed in this paper. The artificial neural networks (ANN) model is constructed trained and tested 
using the available data. A total of 368 different data of HSC mix-designs were collected from technical 
literature. The data used to predict the compressive strength with ANN consisted of eight input 
parameters which include cement, water, coarse aggregate, fine aggregate, silica fume, 
superplasticizer, fly ash and granulated grated blast furnace slag. For the training phase, different 
combinations of layers, number of neurons, learning rate, momentum and activation functions were 
considered. The training was terminated when the root mean square error (RMSE) reached or was less 
than 0.001 and the results were tested with test data set. A total of 30 architectures were studied and 
the 8-10-6-1 architecture was the best possible architecture. The results show that the relative 
percentage error (RPE) for the training set was 7.02% and the testing set was 12.64%. The ANNs models 
give high prediction accuracy, and the research results demonstrate that using ANNs to predict 
concrete strength is practical and beneficial. 
 
Key words: Multilayer feedforward neural networks (MFNNs), artificial neural networks (ANNs), relative 
percentage error (RPE), high strength concrete (HSC), root mean square error (RMSE). 

 
 
INTRODUCTION 
 
High strength concrete (HSC) is defined as a concrete 
that has higher durability and strength as compared to 
the conventional concrete. Addition of the mineral and 
chemical admixture makes the HSC become a highly 
complex material resulting in a difficultly to model its 
behavior. The compressive strength of concrete is a 
major and important mechanical property, which is 
generally obtained by measuring concrete specimens 
after a standard curing of 28 days. Conventional methods 
of predicting 28-day compressive strength of concrete are 
basically based upon statistical analysis by which many 
linear and nonlinear regression equations have been 
constructed to model such a prediction problem (Hakim, 
2006). 
 
 
 
*Corresponding author. E-mail: jamalhakim@siswa.um.edu.my. 
Tel: 0060123551940. 

Obviously, obtaining test values of the early strength 
concrete takes time and results in a delay of time in 
forecasting the 28-day strength. Furthermore, choosing a 
suitable regression equation involves technique and 
experience and is not a simple task. Such traditional 
prediction models have been developed with a fixed 
equation form based on a limited number of data and 
parameters. If the new data is quite different from the 
original data, then the model should update to include its 
coefficients and also its equation form.  

ANNs do not need such a specific equation form. 
Instead of that, it needs sufficient input-output data. Also, 
it can continuously re-train the new data, so that it can 
conveniently adapt to the new data. ANN has been 
investigated to deal with problems involving incomplete or 
imprecise information (Noorzaei et al., 2007).  

Several authors have used ANNs in structural 
engineering. For example, Yeh (1998), Kasperkiewicz et 
al. (1995), Lai and Sera (1997)  and  Lee  (2003)  applied
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Figure 1. Architecture of a typical multilayer feed forward neural network. 

 
 
 
the NN for predicting properties of conventional concrete 
and high performance concretes. 

Bai et al. (2003) developed neural network models that 
provide effective predictive capability with respect to the 
workability of concrete incorporating metakaolin (MK) and 
fly ash (FA). Guang and Zong (2000) proposed a method 
to predict 28-day compressive strength of concrete by 
using multilayer feed forward neural networks. Dias and 
Pooliyadda (2001) used back propagation neural 
networks to predict the strength and slump of ready 
mixed concrete and high strength concrete, in which 
chemical admixtures and mineral additives were used. 
 
 
Artificial neural networks 
 
Artificial neural networks (ANNs) are data processing 
systems consisting of a large number of simple, highly 
interconnected processing elements (artificial neurons) in 
an architecture inspired by the structure of the central 
cortex of the brain. They have the ability to learn from 
experience in order to improve their performance and to 
adapt themselves to changes in the environment (Hola 
and Schabowicz, 2005; Mansour et al., 2004). 

ANNs can provide meaningful answers even when the 
data to be processed include errors or are incomplete 
and can process information extremely rapidly when 
applied to solve real world problems.  

As shown in Figure 1, a typical neural network has 
three layers: The input layer, the hidden layer and the 
output layer. The MFNN model is one of the most 
commonly used ANN models, whose application 
stretches to almost every field. Each neuron in the input 
layer represents the value of one independent variable. 
The neurons in the hidden layer are only for  computation 

purpose. Each of the output neurons computes one 
dependent variable. Signals are received at the input 
layer, pass through the hidden layer, and reach the 
output layer. 
 
 
Problem presentation 
 
High-strength concrete is specified where reduced weight is 
important or where architectural considerations call for small 
support elements. By carrying loads more efficiently than normal-
strength concrete, high-strength concrete also reduces the total 
amount of material placed and lower the overall cost of the 
structure.  

HSC is a complicated mixture, the influencing material 
parameters are cement, aggregate, water, mineral and chemical 
admixture. For example, cements have different types, chemical 
compounds, fineness and strength. Coarse aggregates have 
natural, crushed and uncrushed; fine aggregates may have different 
size, quality and mine sources. Admixtures used in high strength 
concrete also have different types of chemical compounds. 
Moreover, the methods of mixing, testing age, loading rate during 
tests and transportation can also affect the durability and strength 
of concrete. 

Pozzolans, such as fly ash and silica fume, are the most 
commonly used mineral admixtures in high-strength concrete. It 
would be difficult to produce high-strength concrete mixtures 
without using chemical admixtures. A common practice is to use a 
superplasticizer in combination with a water-reducing retarder. 

The superplasticizer gives the concrete adequate workability at 
low water-cement ratios, leading to concrete with greater strength. 
The water-reducing retarder slows the hydration of the cement and 
allows workers more time to place the concrete.  

The prediction of high strength concrete has become more 
complicated because several parameters and characteristics need 
to be considered. Determining the major parameters and the most 
important characteristics that influence high strength concrete, is an 
important discussion point highlighted in this research. In addition, 
focus is given to the potentials and suitability of ANN within this 
application. 
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Table 1.  Range of component of data sets. 
 

Input parameter Minimum (kg/m
3
) Maximum (kg/m

3
) 

Cement 60 950 

Water 72 270.8 

Coarse aggregate 409 1464.6 

Fine aggregate 172.2 1296 

Silica fume 0 97 

Superplasticizer 0 33 

Fly Ash 0 280 

Granulated graded blast furnace slag 0 320 
 
 
 
Data set for neural network training and testing 

 
368 different high strength concrete mix design data were collected 
from the laboratory by Professor Janusz Kasperkiewicz (1995 and 
2000) in the Institute of Fundamental Technology Research of 
Poland through direct communication and some from the laboratory 
of concrete technology of the University Putra Malaysia (UPM) 
together with other technical papers (Yeh, 1998; Lee, 2003; Lai and 
Sera, 1997; Pala et al., 2005; Hola and Schabowicz, 2004, 2005). 
Test data were assembled for high strength concrete containing 
cement, coarse aggregate, fine aggregate, water, fly ash, silica 
fume, granulated graded blast furnace slag, and superplasticizer. 
These data were gathered for compressive strength of high 
strength concrete at 28 days and the range of compressive strength 
is from 40 to 140 MPa.  

A neural network model was conducted, trained and tested using 
these available test data. Out of the 368 specimen outputs, 256 
were used as training examples, and 112 were used as testing 
examples. Based on literature review (Mansour et al., 2004; Kim et 
al., 2001; Eldin and Senouci, 1994; Oztas et al., 2005; Hadi, 2003; 
Ashour and Alqedra, 2005). These numbers of specimens were 
enough for training and testing of ANN. Division of the data was 
carried out randomly between the two sets. The ranges of input 
parameters are shown in Table 1. 

It is meaningful to mention that in ANNs, learning is better if the 
data collected is from many different fields. The scattering of input 
information for the training phase will affect the accuracy of a neural 
network. Therefore, classification of the input information is very 
important in the training phase. 

 
 
RESULTS AND DISCUSSION 
 
A total of 30 different architecture networks were trained 
in order to obtain the final developed ANN architecture in 
this study. In this paper, the WinNN software is used to 
predict the compressive strength of high strength 
concrete. Table 2 shows the architecture network with 
different conditions.  

From Table 2, networks N1- N4 have a bigger error as 
compared to networks N5-N8 and the other two hidden 
layer networks. The decreased error from network N1 to 
network N8 is due to the increased connection weight 
(number of hidden neurons). On the other hand, the 
increased connection weights will cause long 
computational time. This is because the network needs 
more hidden neurons to learn the mistake and store the 
knowledge in the neurons.  

However, too much connection weight in one hidden 
layer will only make the network produced over fitting the 
network output. Furthermore, the percentage of good 
patterns achieved by one hidden layer is less than the 
two hidden layers. For the one hidden layer network, the 
iteration is higher than the two hidden layers network. 
Therefore, the N1-N8 was not suitable. For the N27-N30, 
the RMSE is small but it needs a higher number of 
hidden neurons as compared to the other networks.  

As shown in Table 2, networks N9-N24 have a higher 
RMSE and Iteration. These networks took a longer 
computational time which made it more complicated. 
Table 2 shows that network N25 has the best possible 
result. Obviously, the network consists of two hidden 
layers which have a better result as compared to the one 
hidden layer. 

This network architecture consists of 8-10-6-1; there 
are eight neurons (eight parameters) in the input layer, 
ten neurons in the first hidden layer, six neurons in the 
second hidden layer and one neuron in the output layer 
which represents the compressive strength. 

This network has been chosen as the most suitable 
network for generalization due to its small root mean 
square error (RMSE) and a high percentage in good 
patterns as compared to other different architecture 
networks. Furthermore, the sigmoid of activation function 
in this architecture network has effectively limited the 
amplitude of the output neurons. This 8-10-6-1-
architecture network is shown in Figure 2. After selecting 
the best possible architecture, the network was trained to 
reduce the error between the neural network output and 
the target output. The aim of training is to find a set of 
connection weights that will minimize the mean squared 
error forecasting error in the shortest possible training 
time (Kim et al., 2004). Training data is a process to 
minimize the RMSE between actual and estimated output 
values with a set of suitable connection weights. 

In this study, the training is carried out using 256 data 
sets. It is meaningful to mention that the target error for 
this research will be set to 0.001. Error backpropagation 
training algorithm is used to minimize the output error by 
updating the weights. 

The training process weights and biases are modified 
and converge towards values representing  a  solution  of
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Table 2. Comparison training result between specifications of different architectures. 
 

R. M. S. E No. of iteration No. of C.W Good pattern (100%) A. F M L. R A N 

0.013736 18073 41 66.4 Linear 0.60 0.010 8-4-1 N1 

0.007094 14990 51 78.5 Sig(x) 0.64 0.020 8-5-1 N2 

0.007811 15030 81 81.6 Tanh(x) 0.60 0.054 8-8-1 N3 

0.006216 9345 101 83.2 Sig(x) 0.65 0.040 8-10-1 N4 

0.004982 17080 131 86.7 Tanh(x) 0.54 0.060 8-13-1 N5 

0.002973 11460 151 91.8 Sig(x) 0.60 0.040 8-15-1 N6 

0.002581 19430 161 93.4 Sig(x) 0.50 0.041 8-16-1 N7 

0.002484 16390 171 93 Sig(x) 0.58 0.055 8-17-1 N8 

0.005326 8820 88 85.5 Sig(x) 0.65 0.052 8-5-6-1 N9 

0.003325 15330 116 90.6 Sig(x) 0.68 0.063 8-5-10-1 N10 

0.003818 11835 87 88.7 Sig(x) 0.65 0.060 8-6-4-1 N11 

0.003442 7920 151 91.4 Sig(x) 0.65 0.065 8-6-12-1 N12 

0.003148 7930 127 93.8 Sig(x) 0.67 0.069 8-7-7-1 N13 

0.003415 11420 145 90.6 Sig(x) 0.60 0.063 8-7-9-1 N14 

0.004058 10770 123 88.3 Sig(x) 0.70 0.042 8-8-5-1 N15 

0.001578 7470 153 96.9 Sig(x) 0.68 0.053 8-8-8-1 N16 

0.002505 6890 163 93.8 Sig(x) 0.66 0.070 8-8-9-1 N17 

0.003679 11725 126 92.2 Sig(x) 0.67 0.067 8-9-4-1 N18 

0.003318 16650 126 92.2 Tanh(x) 0.69 0.063 8-9-4-1 N19 

0.002820 12370 148 93 Sig(x) 0.62 0.055 8-9-6-1 N20 

0.003493 10705 159 92.2 Sig(x) 0.66 0.067 8-9-7-1 N21 

0.003800 7400 127 92.6 Sig(x) 0.65 0.068 8-10-3-1 N22 

0.004132 11830 151 91.8 Sig(x) 0.66 0.067 8-10-5-1 N23 

0.003412 11987 163 91.8 Tanh(x) 0.70 0.068 8-10-6-1 N24 

0.002988 10079 163 93 Sig(x) 0.70 0.068 8-10-6-1 N25 

0.005425 14635 152 88.7 Tanh(x) 0.76 0.060 8-11-4-1 N26 

0.002682 3840 178 92.2 Sig(x) 0.68 0.070 8-11-6-1 N27 

0.002912 7065 179 94.9 Sig(x) 0.60 0.130 8-12-5-1 N28 

0.003169 6160 178 93.8 Sig(x) 0.55 0.080 8-13-4-1 N29 

0.002608 8470 175 93.4 Sig(x) 0.56 0.110 8-14-3-1 N30 
 

N: Network; A: Architecture; L. R: Learning rate; M: Momentum; A. F: Activation functions for hidden and output layers; C. W: Connectivity weights; R. 
M. S .E: Root mean square error. 
 
 
 

the problem. Training stops when the RMSE achieves an 
equal or less than value of 0.001 or the percentage of 
good patterns achieved is close to 100%. 

The networks become unstable and oscillation occurs 
when the learning rate is higher than 0.10 and the 
momentum rate is between 0.85 and 1.0. The RMSE 
becomes bigger when the higher learning rate is added to 
the network due to that network being unable to learn or 
store the knowledge as the learning rate is too fast.  

It is worth mentioning that, the learning rate in a 
parameter determines the size of the weights adjustment 
each time the weights are changed during training. Small 
values for the learning rate cause small weight changes 
and large values cause large changes. The learning rate 
has to be chosen as high as possible to allow fast 
learning without leading to oscillations (Yeh et al., 1992; 
Kim, 2001). The value of learning rate ranges between 
“0.0”   and   “1.0”   where  a  value  closer  to  1  indicates 

significant modification in weight while a value closer to 0 
indicates little modification (Okine and Fekpel, 1996). 

For the momentum, it is added to the network to 
achieve a higher percentage in good patterns. Moreover, 
it helps avoid oscillatory entrapment in the local minima 
and achieve to global minima. Learning rate and 
momentum interact with each others, so several different 
conditions of networks are run to check the accuracy. 

The network with the learning rate in the range 0.01 to 
0.05 and momentum in the range 0.40 to 0.60, give a 
bigger RMSE and also the highest iteration. Therefore, 
this range is not suitable for the network generalization. 
The best possible range found was 0.6 to 0.8 for the 
learning rate and the momentum range fall within 0.65 to 
0.75. Besides this, the activation function is another 
important parameter for the layers. The aim of an 
activation function is to limit the amplitude of the output 
neurons. The nonlinearity degree of an activation function 
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Figure 2. Final architecture of the developed artificial neural network. 

 
 
 

 
 
Figure 3. Variation of RMSE versus rates of learning. 

 
 
 

is valuable for most ANN applications. In Table 2, 
networks N1, N3, N5, N19, N24 and N26 have the worse 
result with a large RMSE, long computational time and a 
lower percentage in good patterns than the other 
networks. 

To make sure the 8-10-6-1 architecture network is 
accurate, another different condition network was run to 
check the variation of the RMSE versus learning rate. 
The result in Figure 3 shows that the range 0.05 to 0.075 
of learning rate is more accurate due to its smaller 
RMSE. 

Furthermore, a variation of RMSE versus rates of 
momentum is also plotted in Figure 4; it shows that the 
lower and higher momentum rate is gives a larger RMSE. 
A suitable momentum is in the range 0.65 to 0.75 which 
gives a smaller RMSE. 

Finally, this network is  trained  with  the  0.068  rate  of 

learning, 0.7 for momentum, 20000 iteration and sigmoid 
as the activation function for both the hidden layer and 
output layer. In the ANNs, the training data is the most 
important source to determinate the suitability of the 
network for the generalization. The accuracy of the 
training data will decrease the RMSE. Besides that, the 
testing data also can not be neglected because the 
testing set is used to avoid over-training and to evaluate 
the confidence in the performance of the trained network.  

As Figure 5 shows, the predicted and experimental 
data in the training process seem very accurate. The 
relative percentage error (RPE) of the training process is 
7.02%. This result shows that the artificial neural network 
was very successful in predicting the compressive 
strength. 

After the training process, the neural networks will be 
tested with another data set, which has not been used for  
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Figure 4. Variation of RMSE versus rates of momentum. 

 
 
 

 
 
Figure 5. Comparison of experimental and predicted data in training process. 

 
 
 
the previous training process. In the testing phase, 112 
data sets are carried out. The aim of this verification is to 
guard against overtraining, where the ANN has 
memorized or over-fitted the connection weights to the 
training patterns. The testing set is used to evaluate the 
confidence in the performance of the trained network. 
The result of the testing process is shown in Figure 6. 
The predicted data has a more difference in percentage 
of RMSE with the experimental data. This is maybe 
because the data collected comes from a limited area 
study field or source. 

Furthermore, it might be due to some of the testing 
patterns that did not fall in the class of the training space. 
Also, the testing process results to bad output 
(compressive strength with big error) usually occurring 
form the bad data set within the range (100 to 140 Mpa). 
An explanation for these results could be that there is an 
insufficient amount of training data around this range. For 

the testing process the RPE is 12.64%, this percentage is 
considered to be a small RMSE. Based on the available 
literatures, the value of error achieved (12.64%) for 
testing data is acceptable; however, the aim was to 
achieve better results as close as possible to the training 
results. So, these results can be accepted for the 
prediction of the compressive strength of high strength 
concrete. 
 
 
Conclusions 
 
The main conclusions drawn from this study are as 
follows: 
 
1. The 8-10-6-1 architecture network is better than other 
architecture networks where there are eight neurons in 
the input layer, ten neurons in the  first  hidden  layer,  six
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Figure 6. Comparison of experimental and predicted data in testing process. 

 
 
 
neurons in the second hidden layer and one neuron in 
the output layer. 
2. Calculation of the mean percentage relative error for 
training and testing set data shows that the ANN 
predicted the high compressive strength of concrete with 
an error of 7.02 and 12.64%, respectively; these are 
acceptable in concrete technology.  
3. The results prove that ANNs can work efficiently in 
predicting the high compressive strength of concrete and 
is more accurate than the model using the regression 
analysis and conventional methods. Also, from the results 
obtained, it can be concluded that the ANNs can save a 
lot of computational effort compared to conventional 
methods significantly. The use of these networks will help 
in solving more complex problems. 
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