
International Journal of the Physical Sciences Vol. 6(19), pp. 4564-4570, 16 September, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.890 
ISSN 1992-1950 ©2011 Academic Journals 
 
 
 
Full Length Research Paper 
 

Investigation of induction motor parameter 
identification using particle swarm optimization-based 

RBF neural network (PSO-RBFNN) 
 

Hassan Farhan Rashag1, S. P. Koh1, S. K. Tiong1, K. H. Chong1 and Ahmed N. Abdalla2* 
 

1Department of Electronics and Communication Engineering, University Tenaga Nasional, Selangor 43009, Malaysia. 
2Faculty of Electrical and Electronic Engineering, University of Technology, Pekan 26600, Malaysia. 

 
Accepted 5 August, 2011 

 
High dynamic performance of induction motor drives is required for accurate system information. From 
the actual parameters, it is possible to design high performance induction motor drive controllers. In 
this paper, improving the induction motor performance using intelligent parameter identification was 
proposed. First, machine model parameters were presented by a set of time-varying differential 
equations. Second, estimation of each parameter was achieved by minimizing the experimental 
response based on matching of the stator current, voltage and rotor speed. Finally, simulation results 
demonstrate the effectiveness of the proposed method and great improvement of induction motor 
performance. 
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INTRODUCTION 
 
Nowadays, parameter identification with good accuracy 
and general practicality is quite a significant tool for 
increasing the performance of induction motor controller. 
However, the intelligent parameters identification 
technique achieved through excellent performance with 
good exactness and universal practicality is very import-
ant in order to give fast dynamic response performance. 

Many researchers have done a lot of research on 
parameters identification of the induction motor using 
offline identification methods of the induction motor 
(SeungMoon and Ali, 1994; ManueleBertoluzzo et al. 
2001; Sonnaillon et al., 2007; Jul-Ki et al., 1997; Young-
Su et al., 2009; Paolo and Andrea, 2005). Previous works 
have also discussed the parameters evaluation of the 
machine in standstill (Willis et al., 1989; Seok et al., 
1997). These methods have good performance in 
practical. But these methods are not ideal in the online 
real time performance. Ribeiro et al. (1997) proposed 
effective estimation method under any mechanical load. 
Choi and Sul (1999) proposed a  complicated  calculation 
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and hardware. Therefore, it is necessary to estimate 
these parameters before the operation, that is, offline 
parameter identification, and to track their variation during 
normal conditions. Fuzzy logic control is a feasible 
alternative to conventional control technique in situations 
where there are unidentified variations in the parameters 
of plant and structure (Gandomkara et al., 2011). 
Messaoudi et al. (2007) present a robust nonlinear 
observer for variables and parameters estimation in 
sensorless Indirect Field Oriented Control (IFOC) of 
induction motors (IM). A mismatch in parameters will 
create incorrect flux estimation and as a result incorrect 
torque estimations (Bose, 1986; Novotny and Lipo, 1996; 
Tajima, 2002). Azzolin et al. (2007) proposed the identifi-
cation of all electrical parameters, using Recursive Least 
Square identification algorithms, without any previous 
tests. Particle swarm optimization (Picardi and Rogano, 
2006; Noor et al., 2011; Mohammad et al., 2010), genetic 
algorithm (Ursem and Vadstrup, 2003; Huang et al., 2002) 
and differential evolution (Alonge et al., 1998) were used 
as a computational and optimization methods for 
estimating induction motor parameters. Surya et al. (2007) 
studied the analytical sensitivity expression for an 
indeterminate structural design optimization problem can 



 
 
 
 
be factored into a simple determinate term and a 
complicated indeterminate component. Sensitivity can be 
approximated by retaining only the determinate term and 
setting the indeterminate factor to zero. Muhammad et al. 
(2010), focus on modified variation of parameters method, 
which is an elegant coupling of variation of parameters 
method and Adomian’s decomposition method, for 
solving the solution system of nonlinear boundary value 
problems associated with obstacle, contact and unilateral 
problems. Hao and Pu (2011) present a hybrid approach 
which combined genetic algorithm and local optimization 
technique for simulation optimization problems. Through 
the combination of genetic algorithms and with the local 
optimization method, it can maximally use the good 
global property of random searching and the 
convergence rate of a local method. Lu Lu and 
XiuxiaQuan (2011) propose a learning genetic algorithm 
to solve the experimental parameters optimization 
problem. This method can not only enhance the 
efficiency of genetic algorithm through the pre-given user 
experience, but also improve the efficiency of genetic 
algorithm via learning the knowledge obtained from the 
optimization process.  

In this paper, precise and fast method for evaluation of 
the parameters of the induction motor, using HPSO was 
proposed. First, induction motor model and experimental 
setup were explained in detail. The induction motor used 
for this test is a 2.2 kW, 4 pole. Second, the HPSO 
algorithm based on combination of RBFNN and PSO was 
used in induction motor identification system. Third, the 
proposed method is compared with least square 
algorithm (LSA) in terms of improving induction motor 
response. Finally, simulation and experimental results are 
presented to validate the viability and performance of the 
proposed methods. 
 
 
THEORETICAL BACKGROUND 
 
Model of Induction motor  
 
The induction motor model can be expressed in the d-q fixed 
reference frame by the following Equations (1) to (6). 
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where, dq ,βα: Axis of the generic reference system and axis of  the  

Rashag et al.          4565 
 
 
 
system fixed to  the  stator;  , , :stator  voltage,  current 
and flux vectors; , : Rotor current and flux vectors; wr, ws, 
wm,:Rotor electrical, slip and rotor mechanical speed. Lm,Ls, Lr, : 

Mutual, stator and rotor inductances. Lls,Llr:Stator and rotor leakage 
inductances; Rs,Rr:Stator and rotor resistances; Te,TL:Motor and 
load torque; B, J:Friction coefficient and Inertia of the system. The 
equivalent circuit corresponding to these equations is illustrated in 
Figure 1. 
 
 
PSO algorithm 
 
Kennedy and Eberhart (2001) proposed particle swarm optimization 
(PSO) in 1995 as an adaptive algorithm based on a social-
psychological metaphor; a population of individuals (referred to as 
particles) adapts by returning stochastically toward previously 
successful regions.  
There are two primary operators; Position up date and velocity 

update. Each particle during each generation is accelerated toward 
the particles previous best position and the global best position. 
The evaluation of new velocity in each iteration for each particle is 
referred to its current velocity, the distance from its previous best 
position, and the distance from the global best position. The value 
of new velocity is used to compute the next position of the particle 
in the search space. This process is iterated as a set of number of 
times, or until lowest error is completed. 
The algorithm of PSOIn D-dimensional space can be illustrates as 

follows: Let Xi =(x1i,x2i,…,xDi)  is the “particle” current position and 
Vi=(v1i,v2i,…,vDi) its velocity. The local best location is denoted as 
Pbest,i=(p1i,p2i,…,pDi). Let Pgbest = (pg1,pg2,…,pgd) represent the global 
best position of the whole particles. The velocity can be determined 
by the following equations: 
 

������
����

 ������
������

���
 � ��
��
�������
���
 	������

��� � �������������
���
 	������

���       (7) 

 

������
����

 ��������

���
 �������
���

�                                            (8) 

 
where, i=1,2,…n, d=1,2,…D; and D is the dimensions number for 
each particle, c1, c2 is constant of acceleration, k is the times of 
iterative,r1, r2 are the two random number with the range of [0,1], h 
is the inertia weighting factor. 
 
 
RBF neural network 
 
Radial basis function (RBF) neural network is embedded in a three 
layers neural network as shown in Figure 2, which is an input layer, 
a nonlinear hidden layer and a linear output layer. The input layer 
implements the data input to the network non-linearly. The output 
layer implements linearly a weighted sum of hidden unit outputs. 
There is a layer of processing units between the inputs and outputs 
which called hidden units. Each of them achieves a function of 
radial basis. 

Pattern classification of RBF network shown in Figure 2 is based 
on the assumption that the set of training data is X=[x1,x2,…,xm]T. 
The output is Y=[y1,y2,…,yp]T. The Gaussian activation function is 
used as basis function which is given by: 
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where, ciis is the center of the Gaussian activation function, and σt 

is the variance of Gaussian activation function. 
The neural network is used as a pattern classification, which is 

shown in Figure 2. RBF neural network has to learn three 
parameters:  the center of radial basis function, the variance of 
radial basis of function and the weight. The choice of the three
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Figure 1. Equivalent circuit of induction motor. 

 
 
 

 
 
Figure 2. RBF network in pattern classification. 

 
 
 
parameters has an important effect on the classification 
performance of RBF neural network. 
 
 
PROPOSED METHOD 
 
The estimation method in general may use the data that can 
become obtainable from the motor manufacturer, or are effortlessly 
measured, like the characteristic of slip-current, or the slip-torque 
characteristic, or the slip-power factor features. The procedure of 
parameter evaluation becomes very significant, when a slip-
dependent parameter model is employed. In this case, the model 
coefficients of Equations (1) to (6) are hard of unfeasible to be 

calculated without employing an evaluation procedure. It can be 
noted that there is an obvious disparity between the simulation 
model and experimental responses representing a difference 
between estimated parameters and the experimental. The 
procedure of RBF and PSO proposed can be done by the following 
steps: 
 
1. Initialize a group of particles, number of iterations, the random 
particle position and velocity. Each particle consists of the center of 
radial basis function. 
2. Evaluate the fitness value of each particle used to measure the 
performance of the model with current parameters of RBF neural 
network; 
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Figure 3. Experimental setup sensor. 

 
 
 

Table 1. The value of identified parameter. 
 

Element Exact 
PSO-RFFNN algorithm LS algorithm 

Parameter Error (%) Parameter Error (%) 
Rs(Ω) 2.531 2.54352 0.01252 2.4162 0.0215 
Rr(Ω) 2.408 2.4860 0.0169 2.329 -0.079 
Ls(H) 0.0025 0.0024 0.0001 0.01248 0.00998 
Lr(H) 0.0025 0.0026 0.0001 0.002612 0.000112 
Lm (H) 0.0847 0.0886 0.0039 0.081 -0.0037 

 
ME 0.01252  0.0215 
AAE 0.006704  0.022858 

 
 
 
3. Compare the fitness value for each particle with its location 
position of experiencing the best comparison: Pibest if better than 
Pibest' then replace thePibest as the current position; 
4. Compare the fitness value for each particle with the global 
position of experiencing the best: gibest' if better, then reset the index 
number of the gibest ; 
5. According to the standard particle swarm optimization update 
each particle's velocity and position; its velocity and position are 
computed by equations (7) and (8), respectively. 
6. If not achieve, the maximum number of iterations, then return to 
step 2; 
7. The best location would be experienced by groups to get 
induction motor model parameters based on PSO-RBF neural 
network. 
 
 
RESULTS AND DISCUSSION  
 

In order to verify the accuracy and identification precision 
of presented parameter identification method, the method 
is tested on the IM whose Y-connected, P = 2.2 kW, U = 
420 V, I = 5.2 A, 4 pole and the experiment setup is 
shown in Figure 3. The system consists of a three-phase 
supply, current and voltage sensors. Blocked–rotor, no–

load and Dc tests have been used to find exact 
parameter of induction motor as shown in Table 1 and it 
gives the induction motor parameters identified by PSO-
RBFNN algorithm. In addition, Table 1 shows the per-
formance of optimization algorithm results with respect to 
average absolute error (AAE) and maximum error (ME) 
for both PSO-RBFNN and LSA. So, it is clear that the 
proposed algorithm is much better than LSA compared to 
experimental result. 

The training error curves for PSO-RBFNN are shown in 
Figure 4. From this curve it can be inferred that the 
identification speed based on PSO-RBFNN can trace the 
real speed accurately. 

To verify the accuracy of induction motor parameter in 
Table 1, a set of samples of the phase voltages, the 
phase currents and speed are calculated using PSO-
RBFNN and compared with experimental data. From 
Figure 5, it can be concluded that the errors between the 
responses of the induction motor with the real parameters 
are quite small.  

Finally, the proposed method is compared with least 
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Figure 4. Training curve for PSO-RBFNN. 
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Figure 5. Induction motor response by real parameter and PSO-RBFNN identify 
parameter (a) stator line current, and (b) speed. 
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Figure 6. (a) Induction motor response using LSA parameter; (b) Induction motor response using PSO-RBF 
parameter. 

 
 
 
squares algorithm (LSA) transform as shown in Figure 6a 
and b. It is clear that induction motor response is more 
stable using PSO-RBFF Parameter identification. In 
addition, PSO-RBFNN is much fast than LSA. 
 
 
Conclusion 
 
This paper describes a model parameter identification 
method of the induction motor based on PSO-RBF 
algorithm. It is compared with the results of simulation 
model and experimental transient measurements for any 
operating condition using PSO-RBFNN to obtain the main 
five electric parameters of the induction machines. The 
experimental results show that the proposed method can 
improve the induction motor performance accuracy. PSO 
is successfully used to optimize the RBF neural network 
parameters, reduce the impact from the interference 
factors in observation process and the structure is very 
simple.  

Future researches should follow up on improving the 
performance of this proposed approach, and applying it 
to find induction motor with different drive system. 
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