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The optical band-gap energy (Eg) is an important feature of semiconductors which determines their 
applications in optoelectronics.  So, it is necessary to investigate the electronic states of ceramic ZnO 
and effect of doped impurities at different processing conditions.  Eg of the ceramic ZnO + xBi2O3 + 
xTiO2 where x = 0.5 mol%, was determined using UV-Vis spectrophotometer. The samples was prepared 
using solid-state route and sintered at the sintering temperatures from 1140 to 1260°C for 45 min in 
open air.  Eg was decreased with increase of sintering temperature. XRD analysis indicates that there is 
hexagonal ZnO and few small peaks of inter granular layers of secondary phases, namely, Bi4Ti3O12 and 
Zn2Ti3O8. The relative density of the sintered ceramics decreased and the average grain size increased 
with the increase of sintering temperature.  The variation of sintering temperatures and XRD findings 
are correlated with the UV-Vis spectrophotometer results of ZnO doped with 0.5 mol% of Bi2O3 and TiO2 
due to the formation of interface states at all sintering temperatures. 
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INTRODUCTION 
 
Polycrystalline Zinc Oxide (ZnO) is used extensively in 
rubber, paint, cosmetics and textile industries as well as 
in electronic industry (Ammar and Farag, 2010; Clarke, 
1999; Feng et al., 2010; Look, 2001). The ZnO based 
varistor is widely used as an electronic component in 
automobile electronics and also in sophisticated semi-
conductor electronic.  ZnO based varistor is fabricated 
with different types of additives which play important roles 
in its non-linear characteristics. Its unique grain boundary 
feature is responsible for non-linear  current-voltage  (I-V) 
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Abbreviations: ZnO, Zinc oxide; XRD, X-ray diffraction; 
FWHM, Full width of half maximum ; VPSEM, Variable Pressure 
Scanning Electron Microscopy. 

characteristics of the device (Clarke, 1999; Souza et al., 
2003) and thus, is used to protect electrical equipment 
against unwanted electrical surges. Currently, ZnO based 
varistors are being used for low-voltage applications. ZnO 
based varistor is fabricated with different metal oxides of 
small amounts such as Bi2O3, CoO, MnO, Sb2O3, and 
TiO2 (Matsuoka, 1971; Snow et al., 1980; Eda, 1989; Bai 
et al., 1995; Toplan et al., 1997; Fah and wang, 2000). I-
V studies have been extensively investigated for the ZnO 
based varistor by previous researchers (Eda, 1989; 
Choon and Byoung, 2003) and it is necessary to inves-
tigate the electronic states of ceramic ZnO and the effect 
of doped impurities at different processing conditions. 
The measurement of the absorption spectrum in semi-
conductors leads to the determination of the optical band-
gap energy (Ghoosh et al., 1995; Zelaya et al., 1994). 

In this study, the investigation regarding the optical 
properties and relationship with X-ray Diffraction (XRD) 
findings of ZnO doped  with  Bi2O3  and  TiO2  at  different   
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Figure 1. XRD patterns of ZnO based ceramic varistor at different sintering 
temperatures. 

 
 
 
sintering temperatures are discussed. 
 
 
EXPERIMENTAL PROCEDURE 
 
Oxide precursors of 99.9% purity (Alfa Aesar) were used. The 
composition consists of 99 mol% ZnO + 0.5 mol% Bi2O3 + 0.5 mol% 
TiO2 powder.  The powder was ball milled for 24 h in deionised 
water. The slurry was dried at 70°C using hot plate and conti-
nuously magnetically stirred to avoid the sedimentation of the heavy 
particle and pre-sintered at 800°C for two hours in open air with 
heating and cooling rate of 6°C min

-1
. The pre-sintered mixture was 

pulverized using an agate mortar/pestle and after 1.75 wt.% 
Polyvinyl Alcohol binder addition, granulated by sieving 75 micron 
mesh screen. The mixture was then pressed into discs of 10 mm in 
diameter and 1 mm in thickness, each at a pressure of 2 ton/m

2
.  

Finally, the discs were sintered at 1140, 1170, 1200, 1230 and 
1260°C in open air for 45 min sintering duration at heating and 
cooling rate of 2.66°C min

-1
. The disk from each sample was 

ground for optical and XRD characterizations. 
The crystalline phases were identified by an XRD (PANalytical 

X’Pert Pro PW3040/60, Philips) with CuK α radiation and the data 
were analyzed, using X’Pert High Score software. The density was 
measured by the geometrical method taking the average of 10 
disks (Wang et al., 2005). For the microstructure analysis, each of 
the disk samples was thermally etched at 150 °C in a tube furnace.  
The microstructure was examined by Variable Pressure Scanning 

Electron Microscopy (VPSEM, Leo 1455). The average grain size 
(d) was determined by lineal intercept method (Wurst and Nelson, 
1972), given by: 
 

d = 1.56L/MN                                                            (1) 
 
where L is the random line length on the micrograph, M is the 
magnification of the micrograph and N is the number of the grain 
boundaries intercepted by lines. 

The UV-Vis spectrophotometer was used to measure the optical 
band-gap energy of the ceramics. The transmission signal was 
measured  for  the  wavelength  from  200  to   800   nm   and   then  

converted to absorption signal for further evaluation (Gonzalez et 
al., 2002).  It was assumed that the fundamental absorption edge of 
the ceramics is due to the direct allowed transition.  The optical 
band-gap energy is given by the expression (Smith, 1978): 

 
(Ahυ)

2
 = C(hυ-Eg)                                                 (2) 

 
where A is the optical absorption coefficient, C is the constant 
independent of photon energy (hυ), and Eg is the direct allowed 
optical band-gap energy. From the plot of (Ahυ)

2
 versus hυ, the 

value of Eg is obtained by using Origin Pro 8.0 software within the 
linear fitted regions at (Ahυ)

2
=0. 

 
 

RESULTS AND DISCUSSION 
 

The XRD analysis (Figure 1), reveals diffraction peaks 
which belong to two phases, that is, ZnO (ICSD code: 
067454) and inter granular layers in the varistor 
ceramics. The inter granular layers are composed of 
Ti6O11 (ref. code: 00-018-1401) and appeared as a very 
small peak in the XRD pattern for the sample sintered at 
1140°C for 45 min sintering time only. Many secondary 
phases with small peaks were detected in the ceramics, 
namely, Bi4Ti3O12 (ICSD code: 024735) and Zn2Ti3O8 
(ICSD code: 022381) at all sintering temperatures. Figure 
2a shows the dependence of the full width of half 
maximum (FWHM) of the XRD peaks for the plane (100) 
of ZnO on the sintering temperature. The FWHM for ZnO 
at plane (100) slightly decreases with the increase of 
sintering temperature which indicates a structural 
ordering of ZnO inside the grain and grain boundaries. 
However, the FWHM of Bi4Ti3O12 (640 plane), (Figure 
2b), increases with the increase of sintering temperature, 
which indicates a structural disordering of impurities at 
the grain boundaries in ZnO ceramic.  The  results  agree  
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Figure 2.  Dependence of the FWHM of XRD peaks at (a) (100 plane for ZnO) and (b) (640 plane 
for Bi4Ti3O12 ceramics). 
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Figure 3.  (aϒ Relative density (%) and (b - ) average grain size of ZnO ceramics at different sintering temperatures. 

 
 
 
with Toyoda and Shimamoto, (1998) that dealt only with 
ZnO and Bi2O3. 

The relative density of sintered ceramics decreases 
with the increase of sintering temperature from 93.70 to 
87.16% of theoretical density (5.67 g/cm

3
), (Figure 3a).  

The average grain size increased from 26.2 to 38.4 µm 
with the increase of sintering temperature, (Figure 3b). 
This increase in average grain size is due to the TiO2 
which is a strong grain enhancer. It was observed under 
VPSEM that a few abnormal grains of irregular shapes 
and size were distributed in the whole sample especially 
at high sintering temperature. The abnormal grain growth 
increases with increase of sintering temperature, (Figure 
4). This indicates that the pores increase with the 
increase of sintering temperature. The pores are trapped 
between the large grains in the ceramics at high sintering 
temperature (Sabri et al., 2009). 

Eg is estimated from the plot of (Ahυ)
2
 against hυ, (Figure 

5), and are 2.96 eV at the sintering temperature 1140°C, 
2.99 eV at 1170°C, 2.97 eV at 1200°C, 2.92 eV at 
1230°C

 
and 2.94 eV at 1260°C, (Figure 6). Eg is 

decreased compared to the pure ZnO (3.2 eV). It is 
observed through linear fitting of the data that the trend in 
Eg is decreasing.  The liquid phase of Bi2O3 generates the 
interface state which reduces the Eg of pure ZnO (Toyoda 
and Shimamoto, 1998). Doping TiO2 in ZnO-Bi2O3 system 
slightly reduces the Eg. Only 1140°C sintering tempera-
ture shows that the limited substitution of Ti

+4
 ions in the 

ZnO lattice as the ionic radii of Ti
+4 

(0.68 Ǻ) is smaller 
than that of Zn

+2
 (0.74 Ǻ) as evidence in XRD findings, 

Figure 1. The addition interface states are generated that 
reduces the Eg at other higher temperatures. This 
reduction of Eg correlates with the structural disordering 
increment of Bi4Ti3O12  in  the  grain  boundaries  with  the  
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Figure 4. SEM micrographs of ceramics after sintering at (a) 1170°C and (b) 1260°C. 
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Figure 5. Optical absorption spectra of ZnO ceramics at 
different sintering temperatures. 
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Figure 6.  The variation of optical band-gap energy with sintering temperatures. 

 
 
 
increase of sintering temperature. 
 
 
Conclusions 
 
The ZnO ceramics Optical band gap energy decreases 
with the increase of sintering temperature. It shows the 
segregation Bi2O3 at grain boundaries and possibly 
substitution of Ti ion with Zn ion which creates interface 
states within the forbidden region. These results are cor-
related with the analysis obtained by XRD which shows a  

structural disordering in the grain boundaries. 
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