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Müller (1978), in the Euclidean plane 2E  introduced the one parameter planar motions and obtained the 
relation between absolute, relative, sliding velocities (and accelerations). During one parameter planar 
motion in the Euclidean plane 2E , the Euler-Savary formula was expressed by Müller (Blaschke and 
Müller, 1956). Also Blaschke and Müller (1956) and Tutar et al. (2001) provided the relation between the 
velocities (and accelerations) in the sense of the complex under the one parameter motions in the 

complex plane 
C { }2, , 1x iy x y IR i= + ∈ = −�

. In this paper we have defined canonical relative system 
of one parameter motions in the complex plane, C. With the aid of this relative system we have obtained 
the Euler-Savary formula giving the relation between the curvatures of the trajectory curves of one 
parameter motions in the complex plane c. 
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INTRODUCTION 
 
Complex numbers were first discovered by Cardan, who 
called them “fictitious”, during his attempts to find solu-
tions to cubic equations, (Conway, 1986). The solutions 
of a general cubic equation may require intermediate 
calculations containing the square roots of negative 
numbers, even when the final solutions are real numbers, 
a situation known as casus irreduciblis. This ultimately 
led to the fundamental theorem of algebra, which shows 
that complex numbers, it is always possible to find 
solutions to polynomial equations of degree one or 
higher, (Ahlfors, 1979; Pedoe, 1988). 

Complex numbers are used in many different fields 
including applications in engineering, electromagnetism, 
quantum physics, applied mathematics, and chaos 
theory, (Anastopoulos, 2006; Benioff, 2007; Duma, 1988; 
Philippsen and Guenthner, 2000). 

The Euler-Savary formula is well-known theorem that is 
used in serious fields of study of engineering and mathe-
matics,  (Alexander  and  Maddocks,  1988;  Buckley  and 
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Whitfield, 1949; Dooner and Griffis, 2007; Ito and 
Takahaski, 1999; Pennock and Raje, 2004). For each 
mechanism type a simple graphical procedure is outlined 
to determine the circles of inflections and cusps, which 
are useful to compute the curvature of any point of the 
mobile plane through the Euler-Savary formula. 
 
 
ONE PARAMETER MOTIONS IN COMPLEX PLANE, C 
 

Let A  and E  be moving and E′  be fixed complex 
planes and{ }1 2; ,B a a , { }1 2; ,O e e  and { }1 2; ,O e e′ ′′  be 

the coordinate systems for these planes, respectively. 
Suppose that ϕ  and ψ  are the rotation angles of one 

parameter planar motions A E  and A E′ , respectively. 

Let us consider a point X  with the coordinates of 
( )1 2,x x  in moving plane A . If we denote the vectors 
 

,BX OB
���� ����

  and 

 
O B′
�����

  with the complex numbers 
 

1 2 1 2 1 2, ,X x ix b b ib b b ib′ ′′= + = + = +�  



 
 
 
 
On the moving coordinate system of A , respectively, then 
we have 
 

( ) iX b X e ϕ= + �                           (1) 

 
And 
 

( ) iX b X eψ′ ′= + �                           (2) 

 
Where the complex numbers X  and X ′  denote the 
point X  with respect to the coordinate systems of E  
and E′ , respectively. Let’s find the velocities of one 
parameter motion with the help of the differentiation the 
equations (1) and (2)  
 

( ) idX i X dX e ϕσ τ= + +� �                         (3) 

 
So that here (Tutar et al., 2001) 
 

1 2 ,i db ib d dσ σ σ ϕ τ ϕ= + = + =                     (4) 
 
Therefore the relative velocity vector of X  with respect 
to E  is;  
 

.r

dX
V

dt
=  

 
Differentiating equation (2) yield us 
 

( ) id X i X dX e ψσ τ′ ′ ′= + +� �                         (5) 
 
Where (Tutar et al., 2001) 
 

1 2 ,i d b ib d dσ σ σ ψ τ ψ′ ′′ ′ ′ ′= + = + = .                    (6) 
 
Thus, the absolute velocity vector, that is, the velocity 
vector of X  with respect to E′ , is; 
 

.a

d X
V

dt
′

=  

 

Here 1 2 1 2, , , ,σ σ σ σ τ′ ′  and τ ′  are the Pfaffian forms of 
one parameter motion with respect to t . 

If 0rV =  and 0aV =  then the point X  is fixed in the 

planes E  and E′ , respectively. Thus, the conditions that 
the point is fixed in planes E  and E′  become 
 

dX i Xσ τ= − −� �                          (7) 
 
And 
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d X i Xσ τ′ ′= − −� �                         (8) 
 
respectively. Substituting equation (7) into equation (5), 
considering that the sliding velocity vector of the point X  
is f fV d X dt= , we see that 

 

( ) ( ) i
fd X i X e ψσ σ τ τ� �′ ′= − + −� �

� .           (9) 

 
Therefore we can easily see that (Tutar et al., 2001). 
 

fd X d X dX′ = + .                        (10) 
 
To avoid the cases of pure translation, we suppose that 

0ϕ ≠�  and 0ψ ≠� . In the one parameter planar motion 
the rotation pole is characterized by vanishing sliding 
velocity. Thus, if we take 0fd X =  and considering 

equation (9). We find that the pole point P  of one 
parameter planar motion E E′  is 
 

P i
σ σ
τ τ

′ −=
′ −

                        (11) 

 

Such that 

 

BP 1 2BP P p ip= = +
����

 (Tutar et al., 2001). If we pass 
to the Euclidean coordinates, then the last equation to be 
 

2 2 1 1
1 2,p p

σ σ σ σ
τ τ τ τ

′ ′− −= − =
′ ′− −

.                     (12) 

 

In one parameter complex planar motion E E′ , moving 
and fixed pole curves determine the geometric locus of 
the point P  in planes E  and E′ , respectively. In other 
words; ( )P  and ( )P′  are the representation of the 

moving and fixed pole curves, respectively. 
 
 
EULER-SAVARY FORMULA FOR ONE PARAMETER 
MOTIONS IN C 
 
The Euler-Savary formula is the relation between the 
curvatures of the trajectory curves under one parameter 
motion E E′ . In the one parameter planar motion, the 
Euler-Savary formula was expressed in Euclidean plane 

2E  by Blaschke and Müller (1956). The formula is very 
important for Engineering and Mathematics. There are a 
lot of applications in engineering of the formula, (Buckley 
and Whitfield, 1949; Pennock and Raje, 2004). 

Now, we will study the formula in the one parameter 
motion in complex plane C. In this section we choose the 
relative system { }1 2; ,B a a  satisfying the following 

conditions: 
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1a

2a  

PB =  

( )P  

( )P′  

 
 

Figure 1.  Pole curves of ( )P  and ( )P′ . 

 
 
 

i) The initial point B  of the system is the instantaneous 
rotation pole P  (that is P B= ). 
ii) The axis { }1;B a  coincides with the common tangent 

of the pole curves ( )P  and ( )P′  (Figure 1). 
 
If we consider the condition i), then, from equations (11) 
and (12) we see that 1 2 0p p= = . 
 
Thus  
 

1 1 2 2,σ σ σ σ′ ′= = .                       (13) 
 
From equations (4) and (6), we get 
 

( )
( )

1 1 2 2

1 1 2 2 .

i i

i i

db db ib d e a a e

d b db ib d e a a e

ϕ ϕ

ψ ψ

ϕ σ σ σ

ψ σ σ σ

= + = + =

′ ′′ ′ ′ ′= + = + =
                 (14) 

 
Taking equation (13) together with equation (14) into 
consideration we reach that 
 

dp dp db d b′ ′= = = .           (15) 
 

This means that the moving pole curve ( )P  and fixed 

pole curve ( )P′  roll on each other without sliding. 

Considering the condition ii) yields us that 2 2 0σ σ ′= = . 

If we choose 1 1σ σ σ′= =  then the differential equations 

for the canonical relative system { }1 2; ,P a a  become 

 

1 2 2 1 1, ,i i ida a i e da a e dp a eϕ ϕ ϕτ τ τ τ σ σ= = = − = − = =    
                                                                                   (16)                                                                                  
 

1 2 2 1 1, ,i i id a a i e d a a i e d p a eψ ψ ψτ τ τ τ σ σ′ ′ ′ ′ ′ ′ ′= = = − = − = =  
                                                                                  (17) 
 

Where; dsσ =   is  the  scalar  arc  element  of  the  pole  

 
 
 
 
curves ( )P  and ( )P′ , τ  is the central cotangent angle, 

that is, two neighboring tangents angle of ( )P . Hence the 

curvature of the moving pole curve ( )P  at the point P  

isτ σ . Similarly τ ′  is a central cotangent angle and the 

curvature of the fixed pole curve ( )P′  at the point P  

isτ σ′ . Therefore the curvature radii of the pole curves 

( )P  and ( )P′  are 
 

r
σ
τ

=                          (18) 

 
And 
 

r
σ
τ

′ =
′
                        (19) 

 

respectively. Moving plane E  rotates the infinitesimal 
instantaneous angle of the dφ τ τ′= −  around the 

rotation pole P  within the time scale dt  with respect to 
fixed plane E′ . Therefore the angular velocity of 
rotational motion of E  with respect to E′  becomes 
 

d
ds ds

τ τ φ φ
′ − = = � .                        (20) 

 
From equations (18), (19) and the last equation, we 
obtain 
 

1 1d
ds ds r r

τ τ φ′ − = = −
′

.                      (21) 

 

Suppose that for the direction of unit tangent vector 1a , 

0
ds
dt

> . In these cases since the curvature centre of the 

moving pole curve ( )P  stays in the left-hand side of the 

directed pole curve{ }1;P a
��

, we can easily see that 0r > . 

Similarly 0r′ > . 
Let us investigate the differentiation of point X  which 

has the coordinates of 1 2,x x  with respect to the 
canonical relative system. Considering the condition ii) 
and equations (3) and (5) we obtain 
 

( )1 1,idX i X dX e ϕσ τ σ σ= + + =� � .                   (22) 
 
And 
 

( )1
id X i X dX e ψσ τ′ ′= + +� �                        (23) 



 
 
 
 
respectively. Thus the condition that the point X  to be 
the fixed in the moving plane E  and the fixed plane E′  
are 
 

1dX i Xσ τ= − −� �                         (24) 
 
And 
 

1d X i Xσ τ′ ′= − −� �                         (25) 
 
respectively. Therefore the sliding velocity of the motion 
is written to be 
 

( ) i
fd X i X eψτ τ′= − � .                                   (26) 

 
Now, we search for the curvature centres of trajectory 
curves which are drawn in the fixed plane by the points of 
moving plane in the movement E E′ . 

According to the canonical relative system, let the 
coordinates of the points X (at E ) and X ′ (at E′ ) be 

( )1 2,x x  and ( 1 2,x x′ ′ ), respectively. The points X , X ′  

and the instantaneous rotation pole P  stay on a line, that 
is on an instantaneous trajectory normal related to X  at 
every time t . In general a curvature centre with respect to 
a point of a plane curve stays on the normal of the curve 
with respect to that point. However, this curvature centre 
thought to be the limit of the meeting point of the two 
neighbouring point that are on the curve. Thus the 
vectors 
 

   
PX 

 
1 2PX x ix X= + =

′ ′

����

�����
 

1 2PX x ix X′ ′′ ′= + =
����� 

PX'                                                  (27) 
 
Have the same direction which passes the rotation 
pole P . Therefore, for the points  
 

X  And X ′  we write 
 

X
IR

X
λ= ∈

′
.                         (28) 

 
Differentiating the last equations gives us 
 

0dX X X dX′ ′− = .                        (29) 
 
Substituting equations (24) and (25) into equation (29) we 
obtain 
 

( ) ( ) 0X X i X Xσ τ τ′ ′ ′− + − = .                      (30) 

 
If we pass to polar coordinates that is 
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iX a e α=                          (31) 
 

iX a e α′ ′=                          (32) 
 
Then we obtain from equation (30) 
 

( ) ( ) 0ia a i a a e ασ τ τ′ ′ ′− + − = .                      (33) 
 

Where; a  and a′ , represent the distance of the points 
X  and X ′  on the complex plane from rotation pole P . If 
we consider last equation together with equation (21) we 
reach 
 

1 1 1 1i d
ie

a a r r ds
α φ−� �− = − =� �′ ′	 


.                       (34) 

 

Here, r  and r′  are the radii of curvature of pole curves 
P  and P′ , respectively. ds  represents the scalar arc 
element and dφ  represents the infinitesimal angle of the 
motion of the pole curves. The equation (34) is called 
Euler-Savary formula for one parameter motion in 
complex plane, C. Therefore the following theorem can 
be given. 

Theorem: Let E  and E′  be moving and fixed complex 
planes. A point X  in E  in a one parameter planar 
movement ( )E E′  draws a trajectory in plane E′  for 

which the curvature centre is at the point X ′ . In the 
reverse movement E E′  point X ′  in E′  draws a 

trajectory in plane E  for which the curvature centre is at 
the point X . The relation between the point X  and X ′  
is given by Euler-Savary formula equation (34). 
 
 
ACKNOWLEDGEMENT 
 
The authors would like to thank the referees for their 
careful reading of the manuscript. 
 
 
REFERENCES 
 
Ahlfors L (1979). “Complex Analysis”, Third Edition, McGraw-Hill Book 

Company, New York. 
Alexander JC, Maddocks JH (1988). “On the Maneuvering of Vehicles”, 

SIAM J. Appl. Math. 48(1): 38-52. 
Anastopoulos C (2006). “Some Remarks on the Role of Complex 

Numbers in Quantum Theory”, Int. J. Theor. Phys. 45(8): 1487-1498. 
Benioff P (2007). “A Representation of Real and Complex Numbers in 

Quantum Theory”, Int. J. Pure Applied Math. 39(3): 297-339. 
Blaschke W, Müller HR (1956). “Ebene Kinematik”, Verlag Von R. 

Oldenbourg, München. 
Buckley R, Whitfield EV (1949). “The Euler-Savary Formula”, The 

Mathematical Gazette 33(306): 297-299. 
Conway JB (1986). “Functions of One Complex Variable I”, Springer. 
Dooner DB, Griffis MW (2007). “On the Spatial Euler-Savary Equations 

for Envelopes”, J. Mech. Design 129(8): 865-875. 
Duma A (1988).  “Complex  Numbers  in  Mathematics,  Mechanics  and  



010          Int. J. Phys. Sci. 
 
 
 

Physics. (Italian)”, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. 
Natur. 65: 5-16. 

Ito N, Takahashi K (1999). “Extension of the Euler-Savary Equation to 
Hypoid Gears”, JSME Int. Journal. Ser C. Mech Systems 42(1): 218-
224. 

Müller HR (1978). “Verallgemeinerung einer formel von Steiner”, Abh.d. 
Brschw. Wiss. Ges. 24: 107-113. 

Pedoe D (1988). “Geometry: A Comprehensive Course”, Dover. 
Pennock GR, Raje NN (2004). “Curvature Theory for the Double Flier 

Eight-Bar Linkage”, Mech. Theory 39: 665-679. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Philippsen M, Guenthner E (2000). “Complex Numbers for Java”, 

Concurrency Pract. Exp. 12(6): 477-491. 
Tutar A, Kuruo�lu N, Düldül M (2001). “On the Moving Coordinate 

System on the Complex Plane and Pole Points”, Bull. Pure Appl. Sci. 
20E(1): 1-6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


